Download citation
Download citation
link to html
In the title mol­ecule, C16H16N2S4, the two di­thio­carbamate groups, which are perpendicular to each other, are linked by an S-S bond. The di­thio­carbamate groups adopt a trans-planar conformation and form a dihedral angle of 89.75 (8)° with each other. The phenyl rings make dihedral angles of 77.3 (2) and 89.2 (2)° with the di­thio­carbamate plane. The C-N bonds in the di­thio­carbamate groups show partial double-bond character.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801011412/wn6028sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801011412/wn6028Isup2.hkl
Contains datablock I

CCDC reference: 170902

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.071
  • wR factor = 0.216
  • Data-to-parameter ratio = 21.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Bis(dialkylthiocarbamoyl) disulfide compounds are highly effective in breaking the dormancy of plant seeds, bulbs and tubers. These compounds can be used as herbicides or in the cultivation of crop plants during the off-season (Hideo et al., 1974). Gasoline base-stocks are blended with 0.001–0.500% by weight of these compounds to obtain stable compounds suitable for long-term storage without sludge deposition (Kenichiro & Michiro, 1992). They are also used as additives to electrolytes for secondary lithium batteries. The use of these electrolytes prevents the growth of Li dendrites and results in a long life-cycle for the batteries [Masayuki, 1996].

The X-ray crystal structure of the title compound, (I) (Fig. 1), confirms that the molecules consists of two N-methyl-N-phenyldithiocarbamate units linked by an S—S bond. The two planar dithiocarbamate units are oriented perpendicular to each other, with a dihedral angle of 89.75 (8)° between them. The methyl C atoms are nearly coplanar with the NCSS units, with deviations of 0.010 (4) and 0.013 (5) Å. The bridging S2—S3 moiety is almost in the plane of each S2CNMe subunit (Table 1). The two phenyl rings make anglesof 77.26 (17) and 89.17 (19)° with each S2CNMe plane. The shorter N1—C8 and N2—C9 bond distances in the dithiocarbamate units are indicative of considerable double-bond character. The S—C, SC and C—N bond distances are comparable with those observed in the related structures (Sharma et al., 1991; Gimeno et al., 1996; Jian et al., 1999). Short S2···C1 [2.828 (3) Å], S2···C9 [2.980 (4) Å], S3···C11 [2.820 (4) Å], S3···C8 [2.985 (4) Å], S1···C7 [3.071 (4) Å] and S4···C10 [3.044 (5) Å] intramolecular contacts are observed in this structure.

Experimental top

To a heated aqueous solution of sodium N-methyl-N-phenyldithiocarbamate was added, with stirring, a solution of lanthanum chloride. The white precipitate was collected by filtration. Colourless block crystals were obtained by recrystallizing the deposit from a solution of EtOH.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Bis(N-methyl-N-phenylthiocarbamoyl) disulfide top
Crystal data top
C16H16N2S4F(000) = 760
Mr = 364.55Dx = 1.355 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6233 (2) ÅCell parameters from 5529 reflections
b = 10.7356 (2) Åθ = 2.1–28.3°
c = 17.2999 (3) ŵ = 0.53 mm1
β = 91.624 (1)°T = 293 K
V = 1786.57 (6) Å3Block, colourless
Z = 40.26 × 0.22 × 0.08 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
4353 independent reflections
Radiation source: fine-focus sealed tube2395 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
Detector resolution: 8.33 pixels mm-1θmax = 28.3°, θmin = 2.1°
ω scansh = 1211
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
k = 1412
Tmin = 0.875, Tmax = 0.959l = 2322
12183 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071H-atom parameters constrained
wR(F2) = 0.216 w = 1/[σ2(Fo2) + (0.1095P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
4353 reflectionsΔρmax = 0.46 e Å3
202 parametersΔρmin = 0.78 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (2)
Crystal data top
C16H16N2S4V = 1786.57 (6) Å3
Mr = 364.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6233 (2) ŵ = 0.53 mm1
b = 10.7356 (2) ÅT = 293 K
c = 17.2999 (3) Å0.26 × 0.22 × 0.08 mm
β = 91.624 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4353 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2395 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.959Rint = 0.083
12183 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.216H-atom parameters constrained
S = 0.99Δρmax = 0.46 e Å3
4353 reflectionsΔρmin = 0.78 e Å3
202 parameters
Special details top

Experimental. The data collection covered a hemisphere of reciprocal space by a combination of three sets of exposures; each set had a different ϕ angle (0, 88 and 180°) for the crystal and each exposure of 10 s covered 0.3° in ω. The crystal-to-detector distance was 4 cm and the detector swing angle was -35°. Coverage of the unique set is over 99% complete. Crystal decay was monitored by repeating fifty initial frames at the end of data collection and analysing the duplicate reflections, and was found to be negligible.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25051 (11)0.34438 (12)0.04194 (7)0.0637 (4)
S20.04187 (11)0.17521 (9)0.12010 (6)0.0516 (3)
S30.20733 (11)0.17675 (9)0.19393 (7)0.0544 (3)
S40.02917 (11)0.39421 (11)0.24788 (7)0.0576 (4)
N10.0058 (3)0.2965 (3)0.00920 (18)0.0416 (7)
N20.2791 (3)0.3310 (3)0.30389 (19)0.0489 (8)
C10.1431 (3)0.2432 (3)0.0027 (2)0.0396 (8)
C20.2375 (4)0.3001 (4)0.0453 (3)0.0578 (11)
H2A0.21100.36830.07540.069*
C30.3713 (4)0.2541 (4)0.0477 (3)0.0596 (11)
H3A0.43500.29060.08020.071*
C40.4106 (4)0.1541 (4)0.0020 (3)0.0576 (11)
H4A0.50130.12430.00310.069*
C50.3179 (5)0.0990 (4)0.0444 (3)0.0664 (13)
H5A0.34540.03120.07460.080*
C60.1822 (5)0.1424 (4)0.0473 (3)0.0549 (11)
H6A0.11870.10390.07910.066*
C70.0140 (4)0.3707 (4)0.0799 (2)0.0586 (11)
H7A0.11150.38490.08650.088*
H7B0.03280.44920.07530.088*
H7C0.02370.32640.12380.088*
C80.0957 (4)0.2793 (3)0.0443 (2)0.0427 (9)
C90.1732 (4)0.3106 (3)0.2536 (2)0.0412 (8)
C100.2710 (5)0.4287 (5)0.3631 (3)0.0773 (15)
H10A0.36250.46010.37490.116*
H10B0.23220.39450.40900.116*
H10C0.21290.49530.34390.116*
C110.4071 (4)0.2607 (4)0.3044 (2)0.0476 (9)
C120.5154 (5)0.3017 (6)0.2612 (3)0.0783 (15)
H12A0.50590.37270.23070.094*
C130.6409 (5)0.2346 (6)0.2637 (4)0.0950 (19)
H13A0.71440.25980.23370.114*
C140.6549 (6)0.1340 (6)0.3096 (3)0.0847 (18)
H14A0.73840.09040.31150.102*
C150.5493 (6)0.0962 (5)0.3524 (3)0.0835 (17)
H15A0.56080.02720.38450.100*
C160.4233 (5)0.1583 (4)0.3499 (3)0.0640 (12)
H16A0.35000.13000.37910.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0288 (5)0.0857 (9)0.0762 (7)0.0162 (5)0.0046 (5)0.0068 (6)
S20.0406 (6)0.0450 (6)0.0680 (6)0.0074 (4)0.0201 (5)0.0020 (5)
S30.0453 (6)0.0449 (6)0.0717 (7)0.0123 (4)0.0236 (5)0.0122 (5)
S40.0366 (6)0.0642 (7)0.0715 (7)0.0171 (5)0.0079 (5)0.0028 (6)
N10.0275 (15)0.0461 (17)0.0511 (15)0.0045 (13)0.0020 (14)0.0000 (15)
N20.0403 (18)0.051 (2)0.0545 (17)0.0127 (15)0.0145 (15)0.0141 (16)
C10.0243 (17)0.042 (2)0.0521 (18)0.0032 (15)0.0099 (15)0.0044 (17)
C20.036 (2)0.047 (2)0.090 (3)0.0049 (18)0.003 (2)0.007 (2)
C30.036 (2)0.067 (3)0.076 (3)0.003 (2)0.004 (2)0.000 (3)
C40.033 (2)0.066 (3)0.073 (3)0.0161 (19)0.016 (2)0.018 (2)
C50.059 (3)0.055 (3)0.084 (3)0.028 (2)0.013 (3)0.000 (2)
C60.047 (2)0.049 (2)0.068 (3)0.0102 (19)0.003 (2)0.011 (2)
C70.042 (2)0.066 (3)0.068 (2)0.012 (2)0.005 (2)0.013 (2)
C80.0288 (18)0.041 (2)0.058 (2)0.0007 (15)0.0030 (17)0.0158 (18)
C90.0330 (19)0.043 (2)0.0482 (17)0.0050 (16)0.0011 (16)0.0005 (17)
C100.071 (3)0.071 (3)0.088 (3)0.026 (3)0.031 (3)0.034 (3)
C110.033 (2)0.047 (2)0.062 (2)0.0095 (17)0.0154 (18)0.010 (2)
C120.048 (3)0.096 (4)0.090 (4)0.003 (3)0.003 (3)0.022 (3)
C130.046 (3)0.135 (5)0.105 (4)0.010 (3)0.012 (3)0.010 (4)
C140.054 (3)0.122 (5)0.076 (3)0.038 (3)0.022 (3)0.038 (4)
C150.090 (4)0.067 (3)0.092 (4)0.037 (3)0.039 (3)0.019 (3)
C160.055 (3)0.055 (3)0.082 (3)0.012 (2)0.012 (2)0.005 (2)
Geometric parameters (Å, º) top
S1—C81.647 (4)C1—C21.390 (5)
S2—C81.810 (4)C2—C31.380 (5)
S2—S32.0128 (14)C3—C41.380 (6)
S3—C91.805 (4)C4—C51.353 (6)
S4—C91.652 (4)C5—C61.389 (6)
N1—C81.339 (5)C11—C161.358 (6)
N1—C11.447 (4)C11—C121.372 (6)
N1—C71.477 (5)C12—C131.406 (7)
N2—C91.339 (5)C13—C141.345 (8)
N2—C111.444 (5)C14—C151.338 (8)
N2—C101.469 (5)C15—C161.383 (6)
C1—C61.376 (5)
C8—S2—S3102.54 (12)C1—C6—C5119.1 (4)
C9—S3—S2102.49 (13)N1—C8—S1124.5 (3)
C8—N1—C1122.8 (3)N1—C8—S2111.6 (3)
C8—N1—C7122.5 (3)S1—C8—S2123.9 (2)
C1—N1—C7114.7 (3)N2—C9—S4124.9 (3)
C9—N2—C11123.5 (3)N2—C9—S3110.8 (3)
C9—N2—C10121.0 (3)S4—C9—S3124.3 (2)
C11—N2—C10115.5 (3)C16—C11—C12119.9 (4)
C6—C1—C2120.5 (4)C16—C11—N2120.7 (4)
C6—C1—N1120.2 (3)C12—C11—N2119.3 (4)
C2—C1—N1119.1 (3)C11—C12—C13118.9 (5)
C3—C2—C1119.1 (4)C14—C13—C12120.1 (5)
C4—C3—C2120.1 (4)C15—C14—C13120.4 (5)
C5—C4—C3120.4 (4)C14—C15—C16121.0 (5)
C4—C5—C6120.8 (4)C11—C16—C15119.7 (5)
C8—S2—S3—C986.18 (18)C11—N2—C9—S4176.2 (3)
C8—N1—C1—C6105.2 (4)C10—N2—C9—S43.8 (6)
C7—N1—C1—C674.4 (5)C11—N2—C9—S35.0 (5)
C8—N1—C1—C279.1 (5)C10—N2—C9—S3175.0 (3)
C7—N1—C1—C2101.3 (4)S2—S3—C9—N2176.0 (2)
C6—C1—C2—C30.1 (6)S2—S3—C9—S45.2 (3)
N1—C1—C2—C3175.8 (4)C9—N2—C11—C1692.7 (5)
C1—C2—C3—C41.0 (7)C10—N2—C11—C1687.2 (5)
C2—C3—C4—C51.2 (7)C9—N2—C11—C1290.3 (5)
C3—C4—C5—C60.5 (7)C10—N2—C11—C1289.7 (5)
C2—C1—C6—C50.6 (6)C16—C11—C12—C131.3 (8)
N1—C1—C6—C5175.1 (4)N2—C11—C12—C13178.3 (5)
C4—C5—C6—C10.4 (7)C11—C12—C13—C141.8 (9)
C1—N1—C8—S1176.4 (3)C12—C13—C14—C150.7 (9)
C7—N1—C8—S14.1 (5)C13—C14—C15—C160.9 (8)
C1—N1—C8—S23.7 (4)C12—C11—C16—C150.3 (7)
C7—N1—C8—S2175.9 (3)N2—C11—C16—C15176.7 (4)
S3—S2—C8—N1176.3 (2)C14—C15—C16—C111.4 (8)
S3—S2—C8—S13.7 (3)

Experimental details

Crystal data
Chemical formulaC16H16N2S4
Mr364.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.6233 (2), 10.7356 (2), 17.2999 (3)
β (°) 91.624 (1)
V3)1786.57 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.26 × 0.22 × 0.08
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.875, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
12183, 4353, 2395
Rint0.083
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.216, 0.99
No. of reflections4353
No. of parameters202
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.78

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL and PLATON (Spek, 1990).

Selected geometric parameters (Å, º) top
S1—C81.647 (4)N1—C11.447 (4)
S2—C81.810 (4)N1—C71.477 (5)
S2—S32.0128 (14)N2—C91.339 (5)
S3—C91.805 (4)N2—C111.444 (5)
S4—C91.652 (4)N2—C101.469 (5)
N1—C81.339 (5)
S3—S2—C8—S13.7 (3)S2—S3—C9—S45.2 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds