Download citation
Download citation
link to html
A mononuclear copper(II) coordination complex, [Cu(Hpy­dc)2]·2H2O (pydc = 2,4-pyridine­di­carboxyl­ate, C7H4NO4), has been prepared from the hydro­thermal reaction of CuO and H2pydc in H2O. The complex consists of discrete [Cu­(Hpydc)2] and two uncoordinated water mol­ecules, the copper(II) displaying a typical planar four-coordinate geometry. All Cu-O and Cu-N distances range from 1.945 (2) to 1.975 (2) Å. The discrete structure is further extended into a three-dimensional structure by weak hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801011333/wn6019sup1.cif
Contains datablocks I, Cu

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801011333/wn6019Isup2.hkl
Contains datablock I

CCDC reference: 170880

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.036
  • wR factor = 0.098
  • Data-to-parameter ratio = 10.3

checkCIF results

No syntax errors found

GLOBAL _publ field problems



Red Alert Alert Level A:
PUBL_002 Alert A The contact author's address is missing, _publ_contact_author_address. ADDSYM reports no extra symmetry
1 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
0 Alert Level C = Please check

Comment top

Research into transition metal complexes has been rapidly expanding because of their fascinating structural diversity and potential applications as functional materials and enzymes (Li et al., 1998). The key step in the design of polymeric transition metal complexes is to select suitable multidentate bridging ligands containing certain features, such as flexibility, versatile binding modes and the ability to form hydrogen bonds. With these criteria in mind, we chose pyridine-2,5-dicarboxylic acid as ligand. It reacts with transition metals or rare earths; a series of novel complexes having infinite or discrete structures has been obtained and reported (Liang et al., 2000, 2001). In this paper, we report the synthesis and crystal structure of a mononuclear copper(II) compound, (I), i.e. [Cu(Hpydc)2]·2H2O, (I), where pydc is pyridine-2,4-dicarboxylate.

The coordination complex [Cu(Hpydc)2]·2H2O was prepared by the hydrothermal reaction of CuO and H2pydc in H2O. The crystallographic analysis reveals that the compound is a discrete [Cu(Hpydc)22(H2O)] molecule, in which the CuII atom is coordinated by the two N and two O atoms of two Hpydc ligands to form a distorted planar four-coordinate geometry, as shown in Fig. 1. There is a weak interaction between the Cu and hydrate O atoms, with an average Cu—O distance of 2.602 Å. Other Cu—O and Cu—N distances are listed in Table 1, as are N—Cu—N, O—Cu—O and O—Cu—N angles. The molecules are connected by hydrogen-bonding interactions between the carboxylate groups and H2O, with an average O···O distance of 2.675 Å, to form a three-dimensional network, as shown in Fig. 2.

Experimental top

A mixture of CuO (0.080 g, 2.0 mmol), [H2pydc]·H2O (0.185 g, 1.0 mmol) and H2O (16 ml) in a molar ratio of ca 2:1:890 was sealed in a 25 ml stainless-steel reactor with Teflon liner. The reaction system was heated at 443 K for 72 h. Slowly cooling the system to room temperature yielded needle-like green crystals of the complex and some blue–green precipitate. The organic H atoms were positioned geometrically (C—H bond fixed at 0.96 Å) and allowed to ride on their parent C atoms before the final cycle of refinement. The hydrate H atoms were located from difference maps and refined with isotropic displacement parameters.

Computing details top

Data collection: SMART (Siemens, 1994); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: XPREP (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of [Cu(Hpydc)2]·2H2O. Displacement ellipsoids are plotted at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of [Cu(Hpydc)2]·2H2O. Dashed lines indicate the hydrogen bonds.
(I) top
Crystal data top
[Cu(C7H4NO4)2]·2H2OZ = 2
Mr = 431.80F(000) = 438
Triclinic, P1Dx = 1.820 Mg m3
a = 7.212 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.139 (3) ÅCell parameters from 4087 reflections
c = 11.337 (5) Åθ = 1.9–25.0°
α = 73.67 (3)°µ = 1.45 mm1
β = 82.67 (3)°T = 293 K
γ = 85.04 (3)°Needle, green
V = 787.8 (5) Å30.42 × 0.10 × 0.04 mm
Data collection top
SMART CCD
diffractometer
2754 independent reflections
Radiation source: fine-focus sealed tube2345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 86
Tmin = 0.586, Tmax = 0.944k = 1112
4087 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.4456P]
where P = (Fo2 + 2Fc2)/3
2754 reflections(Δ/σ)max = 0.001
268 parametersΔρmax = 0.61 e Å3
6 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cu(C7H4NO4)2]·2H2Oγ = 85.04 (3)°
Mr = 431.80V = 787.8 (5) Å3
Triclinic, P1Z = 2
a = 7.212 (3) ÅMo Kα radiation
b = 10.139 (3) ŵ = 1.45 mm1
c = 11.337 (5) ÅT = 293 K
α = 73.67 (3)°0.42 × 0.10 × 0.04 mm
β = 82.67 (3)°
Data collection top
SMART CCD
diffractometer
2754 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2345 reflections with I > 2σ(I)
Tmin = 0.586, Tmax = 0.944Rint = 0.017
4087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0366 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.61 e Å3
2754 reflectionsΔρmin = 0.33 e Å3
268 parameters
Special details top

Experimental. Empirical, from equivalent reflections (XEMP in SHELXTL; Siemens, 1994)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu1.27541 (5)1.49224 (3)0.25191 (3)0.03307 (15)
O11.2538 (3)1.4647 (2)0.43016 (17)0.0368 (5)
O21.2721 (3)1.5772 (2)0.56913 (18)0.0444 (5)
O31.6457 (4)2.0310 (2)0.3902 (2)0.0534 (6)
O41.5974 (4)2.1257 (2)0.1930 (2)0.0534 (6)
H4A1.607 (6)2.211 (3)0.208 (4)0.081 (14)*
O51.2745 (3)1.5269 (2)0.07431 (17)0.0355 (5)
O61.1984 (3)1.4340 (2)0.06682 (18)0.0394 (5)
O70.9924 (4)0.8422 (2)0.3087 (2)0.0517 (6)
H7A0.979 (6)0.760 (3)0.291 (4)0.079 (14)*
O81.0782 (5)0.9119 (3)0.1063 (3)0.0798 (10)
O010.9524 (3)1.6088 (2)0.26439 (19)0.0358 (5)
H01A0.907 (5)1.615 (4)0.193 (2)0.062 (12)*
H01B0.869 (4)1.555 (3)0.322 (3)0.064 (12)*
O021.6122 (3)1.3612 (2)0.2347 (2)0.0435 (5)
H02A1.646 (5)1.362 (4)0.309 (2)0.063 (12)*
H02B1.686 (5)1.423 (3)0.176 (3)0.064 (12)*
N11.3952 (3)1.6618 (2)0.2473 (2)0.0288 (5)
N21.1834 (3)1.3128 (2)0.2575 (2)0.0300 (5)
C111.2989 (4)1.5657 (3)0.4626 (2)0.0307 (6)
C121.3909 (4)1.6795 (3)0.3611 (2)0.0280 (6)
C131.4613 (4)1.7935 (3)0.3799 (3)0.0312 (6)
H13A1.45841.80350.45920.037*
C141.5364 (4)1.8928 (3)0.2778 (3)0.0301 (6)
C151.5437 (4)1.8727 (3)0.1610 (3)0.0345 (6)
H15A1.59691.93680.09180.041*
C161.4709 (4)1.7564 (3)0.1490 (2)0.0323 (6)
H16A1.47441.74330.07080.039*
C171.6002 (4)2.0233 (3)0.2941 (3)0.0359 (7)
C211.2142 (4)1.4312 (3)0.0412 (2)0.0306 (6)
C221.1656 (4)1.3025 (3)0.1436 (2)0.0280 (6)
C231.1163 (4)1.1824 (3)0.1244 (3)0.0327 (6)
H23A1.10071.17790.04550.039*
C241.0903 (4)1.0683 (3)0.2259 (3)0.0340 (6)
C251.1122 (4)1.0791 (3)0.3419 (3)0.0364 (7)
H25A1.09701.00320.41040.044*
C261.1566 (5)1.2032 (3)0.3555 (3)0.0378 (7)
H26A1.16821.21090.43400.045*
C271.0492 (5)0.9338 (3)0.2068 (3)0.0409 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0532 (3)0.0268 (2)0.0222 (2)0.01591 (16)0.00435 (15)0.00754 (14)
O10.0578 (13)0.0306 (11)0.0248 (10)0.0177 (9)0.0060 (9)0.0068 (8)
O20.0680 (15)0.0474 (13)0.0223 (10)0.0271 (11)0.0006 (9)0.0114 (9)
O30.0734 (17)0.0470 (14)0.0487 (14)0.0196 (12)0.0122 (12)0.0202 (11)
O40.0873 (19)0.0309 (12)0.0455 (14)0.0212 (12)0.0097 (12)0.0100 (11)
O50.0546 (13)0.0307 (11)0.0236 (10)0.0155 (9)0.0031 (9)0.0079 (8)
O60.0597 (14)0.0409 (12)0.0214 (10)0.0145 (10)0.0056 (9)0.0108 (9)
O70.0668 (16)0.0323 (12)0.0601 (16)0.0182 (11)0.0061 (12)0.0204 (12)
O80.152 (3)0.0427 (15)0.0544 (17)0.0150 (17)0.0312 (18)0.0180 (13)
O010.0489 (13)0.0309 (11)0.0297 (11)0.0141 (9)0.0051 (9)0.0076 (9)
O020.0686 (15)0.0351 (12)0.0307 (12)0.0225 (11)0.0075 (11)0.0083 (10)
N10.0378 (13)0.0263 (12)0.0238 (11)0.0054 (10)0.0044 (9)0.0077 (9)
N20.0418 (13)0.0276 (12)0.0227 (11)0.0091 (10)0.0006 (10)0.0092 (10)
C110.0382 (15)0.0320 (15)0.0228 (14)0.0086 (12)0.0072 (11)0.0050 (12)
C120.0342 (14)0.0266 (14)0.0237 (13)0.0042 (11)0.0062 (11)0.0055 (11)
C130.0392 (16)0.0308 (15)0.0280 (14)0.0063 (12)0.0056 (12)0.0129 (12)
C140.0330 (14)0.0260 (14)0.0332 (15)0.0049 (11)0.0032 (11)0.0103 (12)
C150.0439 (17)0.0295 (15)0.0296 (15)0.0092 (13)0.0005 (12)0.0070 (12)
C160.0452 (16)0.0292 (15)0.0242 (14)0.0066 (12)0.0023 (12)0.0093 (12)
C170.0359 (16)0.0357 (16)0.0394 (17)0.0098 (13)0.0021 (13)0.0158 (14)
C210.0376 (15)0.0313 (15)0.0240 (14)0.0059 (12)0.0022 (11)0.0086 (12)
C220.0310 (14)0.0293 (14)0.0254 (14)0.0060 (11)0.0009 (11)0.0098 (11)
C230.0404 (16)0.0342 (16)0.0286 (14)0.0057 (12)0.0063 (12)0.0149 (12)
C240.0349 (15)0.0320 (15)0.0383 (16)0.0035 (12)0.0048 (12)0.0139 (13)
C250.0499 (18)0.0294 (15)0.0286 (15)0.0104 (13)0.0038 (12)0.0068 (12)
C260.0553 (19)0.0353 (16)0.0251 (14)0.0144 (14)0.0005 (13)0.0105 (13)
C270.0500 (19)0.0285 (16)0.0489 (19)0.0008 (14)0.0142 (15)0.0144 (14)
Geometric parameters (Å, º) top
Cu—O51.945 (2)O02—H02B0.920 (19)
Cu—O11.948 (2)N1—C161.339 (4)
Cu—N21.972 (2)N1—C121.347 (3)
Cu—N11.975 (2)N2—C261.340 (4)
O1—C111.260 (3)N2—C221.347 (3)
O2—C111.235 (3)C11—C121.512 (4)
O2—O02i2.716 (3)C12—C131.381 (4)
O2—O01ii2.736 (3)C13—C141.387 (4)
O3—C171.202 (4)C13—H13A0.9300
O4—C171.313 (4)C14—C151.390 (4)
O4—O02iii2.575 (3)C14—C171.504 (4)
O4—H4A0.939 (19)C15—C161.379 (4)
O5—C211.262 (3)C15—H15A0.9300
O6—C211.236 (3)C16—H16A0.9300
O6—O02iv2.721 (3)C21—C221.516 (4)
O6—O01v2.764 (3)C22—C231.378 (4)
O7—C271.306 (4)C23—C241.390 (4)
O7—O01vi2.600 (3)C23—H23A0.9300
O7—H7A0.929 (19)C24—C251.379 (4)
O8—C271.210 (4)C24—C271.499 (4)
O01—H01A0.900 (19)C25—C261.378 (4)
O01—H01B0.918 (19)C25—H25A0.9300
O02—H02A0.908 (19)C26—H26A0.9300
O5—Cu—O1174.94 (9)C12—C13—H13A120.7
O5—Cu—N283.63 (9)C14—C13—H13A120.7
O1—Cu—N296.47 (9)C13—C14—C15119.3 (2)
O5—Cu—N197.05 (9)C13—C14—C17119.8 (3)
O1—Cu—N183.40 (9)C15—C14—C17120.9 (3)
N2—Cu—N1173.73 (10)C16—C15—C14119.1 (3)
C11—O1—Cu114.43 (17)C16—C15—H15A120.4
C11—O2—O02i151.7 (2)C14—C15—H15A120.4
C11—O2—O01ii116.58 (19)N1—C16—C15121.5 (3)
O02i—O2—O01ii87.39 (9)N1—C16—H16A119.2
C17—O4—O02iii112.48 (19)C15—C16—H16A119.2
C17—O4—H4A112 (3)O3—C17—O4124.9 (3)
O02iii—O4—H4A2 (3)O3—C17—C14122.7 (3)
C21—O5—Cu114.81 (17)O4—C17—C14112.4 (3)
C21—O6—O02iv112.72 (19)O6—C21—O5125.0 (3)
C21—O6—O01v159.0 (2)O6—C21—C22119.0 (2)
O02iv—O6—O01v86.75 (9)O5—C21—C22115.9 (2)
C27—O7—O01vi110.48 (19)N2—C22—C23121.9 (2)
C27—O7—H7A109 (3)N2—C22—C21113.7 (2)
O01vi—O7—H7A1 (3)C23—C22—C21124.3 (2)
H01A—O01—H01B102 (3)C22—C23—C24118.3 (3)
H02A—O02—H02B106 (3)C22—C23—H23A120.8
C16—N1—C12119.6 (2)C24—C23—H23A120.8
C16—N1—Cu128.61 (19)C25—C24—C23119.3 (3)
C12—N1—Cu111.75 (18)C25—C24—C27121.1 (3)
C26—N2—C22119.7 (2)C23—C24—C27119.5 (3)
C26—N2—Cu128.11 (19)C26—C25—C24119.6 (3)
C22—N2—Cu111.84 (18)C26—C25—H25A120.2
O2—C11—O1124.8 (3)C24—C25—H25A120.2
O2—C11—C12119.2 (2)N2—C26—C25121.1 (3)
O1—C11—C12116.0 (2)N2—C26—H26A119.5
N1—C12—C13121.9 (2)C25—C26—H26A119.5
N1—C12—C11113.7 (2)O8—C27—O7124.2 (3)
C13—C12—C11124.4 (2)O8—C27—C24121.8 (3)
C12—C13—C14118.5 (2)O7—C27—C24113.8 (3)
Symmetry codes: (i) x+3, y+3, z+1; (ii) x+2, y+3, z+1; (iii) x, y+1, z; (iv) x+3, y+3, z; (v) x+2, y+3, z; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C7H4NO4)2]·2H2O
Mr431.80
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.212 (3), 10.139 (3), 11.337 (5)
α, β, γ (°)73.67 (3), 82.67 (3), 85.04 (3)
V3)787.8 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.42 × 0.10 × 0.04
Data collection
DiffractometerSMART CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.586, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
4087, 2754, 2345
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.04
No. of reflections2754
No. of parameters268
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.33

Computer programs: SMART (Siemens, 1994), SMART and SAINT (Siemens, 1994), XPREP (Siemens, 1994), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Cu—O51.945 (2)O2—O01ii2.736 (3)
Cu—O11.948 (2)O4—O02iii2.575 (3)
Cu—N21.972 (2)O6—O02iv2.721 (3)
Cu—N11.975 (2)O6—O01v2.764 (3)
O2—O02i2.716 (3)O7—O01vi2.600 (3)
O5—Cu—O1174.94 (9)C11—O1—Cu114.43 (17)
O5—Cu—N283.63 (9)C21—O5—Cu114.81 (17)
O1—Cu—N296.47 (9)C16—N1—Cu128.61 (19)
O5—Cu—N197.05 (9)C12—N1—Cu111.75 (18)
O1—Cu—N183.40 (9)C26—N2—Cu128.11 (19)
N2—Cu—N1173.73 (10)C22—N2—Cu111.84 (18)
Symmetry codes: (i) x+3, y+3, z+1; (ii) x+2, y+3, z+1; (iii) x, y+1, z; (iv) x+3, y+3, z; (v) x+2, y+3, z; (vi) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds