organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(2-{[(benz­yl­oxy)carbon­yl]amino}­propan-2-yl)-5-hy­dr­oxy-6-oxo-1,6-di­hydro­pyrimidine-4-carboxyl­ate

aCollege of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, People's Republic of China
*Correspondence e-mail: zhenhuashang@yahoo.com.cn

(Received 20 March 2011; accepted 29 April 2011; online 7 May 2011)

In the title compound, C17H19N3O6, the dihedral angle between the two aromatic rings is 45.9 (1)°. The crystal structure is stabilized through inter­molecular N—H⋯O hydrogen bonds and intra­molecular O—H⋯O hydrogen bonds are also present.

Related literature

For related structures, see: Fun et al. (2009[Fun, H.-K., Balasubramani, K., Hazra, A., Kumar Das, M. & Goswami, S. (2009). Acta Cryst. E65, o1484-o1485.]); Shang & Shang (2007[Shang, Z.-H. & Shang, Q. (2007). Acta Cryst. E63, o2280-o2281.]). The title compound is an inter­mediate in the preparation of the anti­retroviral drug raltegravir [systematic name N-(2-(4-(4-fluoro­benzyl­carbamo­yl)-5-hy­droxy-1-meth­yl-6-oxo-1,6-dihydro­pyrimidin-2-yl)propan-2-yl)-5-methyl-1,3,4-oxadiazole-2-carboxamide. For therapeutic details of raltegravir, see Steigbigel et al. (2008[Steigbigel, R. T., et al. (2008). N. Engl. J. Med. 359, 339-354.]). For synthetic details, see: Culbertson (1979[Culbertson, T. P. (1979). J. Heterocycl. Chem. 16, 1423-1424.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19N3O6

  • Mr = 361.35

  • Monoclinic, P 21 /c

  • a = 12.122 (2) Å

  • b = 16.300 (3) Å

  • c = 9.1766 (18) Å

  • β = 106.29 (3)°

  • V = 1740.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 113 K

  • 0.24 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.983

  • 15564 measured reflections

  • 4142 independent reflections

  • 3386 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.103

  • S = 1.09

  • 4142 reflections

  • 250 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O5i 0.882 (15) 2.133 (15) 2.8911 (14) 143.7 (12)
N2—H2⋯O2ii 0.938 (16) 1.886 (16) 2.8135 (16) 169.3 (13)
O1—H1⋯O3 0.918 (17) 1.788 (17) 2.6163 (14) 148.7 (16)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Raltegravir (MK-0518, brand name Isentress), an antiretroviral drug produced by Merck & Co, is used to treat HIV infection (Steigbigel et al., 2008). It received FDA approval in October 2007, the first of a new class of HIV drugs, the integrase inhibitors, to receive such approval. The title compound is a key intermediate in the preparation of Raltegravir.

The pyrimidinone ring is planar, as it is in a related compound (Fun et al., 2009). This is in contrast with another related compound (Shang et al., 2007), where the heterocyclic ring is twisted. In the title compound the dihedral angle between the two aromatic rings is 45.9 (1)°. The crystal structure is stabilized through intermolecular N—H···O hydrogen bonds; intramolecular O—H···O hydrogen bonds are also present.

Related literature top

For related structures, see: Fun et al. (2009); Shang & Shang (2007). The title compound is an intermediate in the preparation of the antiretroviral drug raltegravir [systematic name N-(2-(4-(4-fluorobenzylcarbamoyl)-5-hydroxy-1-methyl-6-oxo-1,6-dihydropyrimidin-2-yl)propan-2-yl)-5-methyl-1,3,4-oxadiazole-2-carboxamide. For therapeutic details of raltegravir, see Steigbigel et al. (2008). For synthetic details, see: Culbertson (1979).

Experimental top

The title compound was prepared by a published method (Culbertson, 1979). To a slurry of benzyl 1-amino-1-(hydroxyimino)-2-methylpropan-2-ylcarbamate (2.9 g) in methanol (12 ml) was added dimethyl acetylenedicarboxylate (1.77 g) slowly at room temperature. After 1.5 h, the mixture was added to xylene (20 ml). The reaction mixture was then heated to reflux for 2 h and cooled to 60 °C. Methyl tert-butyl ether (9 ml) was added slowly to build a seed bed. The batch was then cooled to 0 °C for 14 h, and then further cooled to -5 °C and allowed to stand for 1 h before filtration. The solid was washed with methyl tert-butyl ether (4 ml) and dried. 50 mg of the title compound was dissolved in 30 ml methanol and the solution was kept at room temperature for 10 d. Natural evaporation gave colorless single crystals of the title compound which were suitable for X-ray analysis.

Refinement top

All H atoms attached to C atoms were positioned geometrically and treated as riding with C—H = 0.95 Å (aromatic), 0.98 Å (methyl group) and 0.99 Å (methyene group). Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other carbon-bound H atoms. The positional parameters of the nitrogen-bound H and oxygen-bound H atoms were refined freely (N—H = 0.882 (15) and 0.938 (16) Å; O—H = 0.918 (17) Å).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, drawn with 30% probability ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound,viewed down the a axis. The dashed lines indicate the hydrogen bonds.
[Figure 3] Fig. 3. The formation of the title compound.
Methyl 2-(2-{[(benzyloxy)carbonyl]amino}propan-2-yl)-5-hydroxy- 6-oxo-1,6-dihydropyrimidine-4-carboxylate top
Crystal data top
C17H19N3O6Dx = 1.379 Mg m3
Mr = 361.35Melting point = 183–185 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.122 (2) ÅCell parameters from 4990 reflections
b = 16.300 (3) Åθ = 2.5–27.9°
c = 9.1766 (18) ŵ = 0.11 mm1
β = 106.29 (3)°T = 113 K
V = 1740.4 (6) Å3Plate, colorless
Z = 40.24 × 0.20 × 0.16 mm
F(000) = 760
Data collection top
Bruker SMART
diffractometer
4142 independent reflections
Radiation source: rotating anode3386 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.035
ω scansθmax = 27.9°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1515
Tmin = 0.975, Tmax = 0.983k = 2118
15564 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.1964P]
where P = (Fo2 + 2Fc2)/3
4142 reflections(Δ/σ)max = 0.001
250 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C17H19N3O6V = 1740.4 (6) Å3
Mr = 361.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.122 (2) ŵ = 0.11 mm1
b = 16.300 (3) ÅT = 113 K
c = 9.1766 (18) Å0.24 × 0.20 × 0.16 mm
β = 106.29 (3)°
Data collection top
Bruker SMART
diffractometer
4142 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3386 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.035
15564 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.33 e Å3
4142 reflectionsΔρmin = 0.24 e Å3
250 parameters
Special details top

Experimental. 1H-NMR (500 MHz, DMSO) 1.51(s, 6H), 3.82(s, 3H), 4.98(s, 2H), 7.35(bs, 5H), 7.45 (s, 1H), 10.24(s, 1H), 12.58(s, 1H)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.18567 (8)0.11941 (5)0.81459 (10)0.0159 (2)
N20.36822 (8)0.06461 (6)0.92786 (11)0.0179 (2)
N30.39582 (8)0.18366 (6)1.15086 (11)0.0170 (2)
O10.28432 (8)0.00917 (5)0.54614 (9)0.0247 (2)
O20.45987 (7)0.02265 (5)0.80609 (9)0.0282 (2)
O30.08230 (7)0.05655 (5)0.42611 (9)0.0234 (2)
O40.01176 (7)0.14406 (5)0.56692 (9)0.01951 (19)
O50.40819 (7)0.26902 (6)0.95868 (9)0.0279 (2)
O60.54363 (7)0.26725 (5)1.18631 (10)0.0285 (2)
C10.27523 (9)0.11186 (6)0.93025 (12)0.0148 (2)
C20.18776 (9)0.07855 (6)0.68378 (12)0.0160 (2)
C30.27744 (10)0.03116 (7)0.67123 (12)0.0176 (2)
C40.37656 (10)0.02098 (7)0.80389 (13)0.0196 (2)
C50.27947 (9)0.15246 (6)1.08134 (12)0.0157 (2)
C60.18968 (10)0.22037 (7)1.05981 (14)0.0215 (3)
H6A0.19290.24481.15850.032*
H6B0.11300.19731.01470.032*
H6C0.20550.26260.99240.032*
C70.25766 (11)0.08712 (7)1.18957 (13)0.0216 (3)
H7A0.31560.04371.20260.032*
H7B0.18100.06351.14720.032*
H7C0.26240.11221.28820.032*
C80.08872 (9)0.09093 (7)0.54685 (12)0.0171 (2)
C90.07754 (10)0.16603 (8)0.43090 (14)0.0259 (3)
H9A0.04230.18450.35260.039*
H9B0.12450.21030.45420.039*
H9C0.12620.11810.39380.039*
C100.44448 (10)0.24266 (7)1.08715 (13)0.0185 (2)
C110.60365 (11)0.33419 (8)1.13972 (14)0.0266 (3)
H11A0.55180.38181.10740.032*
H11B0.63330.31731.05410.032*
C120.70133 (10)0.35578 (7)1.27658 (13)0.0206 (3)
C130.68387 (11)0.36043 (8)1.41951 (14)0.0247 (3)
H130.61000.34911.43140.030*
C140.77345 (11)0.38150 (8)1.54519 (15)0.0284 (3)
H140.76090.38381.64270.034*
C150.88144 (11)0.39923 (8)1.52900 (16)0.0302 (3)
H150.94240.41441.61490.036*
C160.89961 (11)0.39465 (8)1.38730 (16)0.0282 (3)
H160.97330.40671.37550.034*
C170.80992 (10)0.37236 (7)1.26174 (15)0.0230 (3)
H170.82320.36851.16480.028*
H30.4221 (12)0.1800 (8)1.2505 (17)0.024 (3)*
H20.4269 (13)0.0577 (9)1.0186 (18)0.036 (4)*
H10.2178 (15)0.0049 (10)0.474 (2)0.045 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0170 (5)0.0159 (4)0.0139 (4)0.0015 (3)0.0029 (4)0.0008 (3)
N20.0177 (5)0.0210 (5)0.0134 (4)0.0034 (4)0.0014 (4)0.0024 (4)
N30.0182 (5)0.0189 (5)0.0116 (4)0.0021 (4)0.0004 (4)0.0005 (4)
O10.0292 (5)0.0293 (5)0.0143 (4)0.0056 (4)0.0038 (4)0.0051 (3)
O20.0265 (5)0.0372 (5)0.0188 (4)0.0140 (4)0.0029 (4)0.0049 (4)
O30.0259 (5)0.0283 (4)0.0135 (4)0.0018 (3)0.0012 (3)0.0026 (3)
O40.0173 (4)0.0220 (4)0.0158 (4)0.0007 (3)0.0010 (3)0.0012 (3)
O50.0294 (5)0.0371 (5)0.0142 (4)0.0095 (4)0.0009 (3)0.0056 (4)
O60.0273 (5)0.0334 (5)0.0189 (4)0.0152 (4)0.0031 (4)0.0055 (4)
C10.0154 (5)0.0143 (5)0.0147 (5)0.0011 (4)0.0040 (4)0.0004 (4)
C20.0180 (6)0.0156 (5)0.0129 (5)0.0018 (4)0.0019 (4)0.0005 (4)
C30.0227 (6)0.0164 (5)0.0130 (5)0.0011 (4)0.0037 (4)0.0015 (4)
C40.0220 (6)0.0202 (6)0.0158 (5)0.0029 (4)0.0040 (4)0.0011 (4)
C50.0158 (5)0.0169 (5)0.0135 (5)0.0011 (4)0.0025 (4)0.0028 (4)
C60.0209 (6)0.0212 (6)0.0209 (6)0.0033 (4)0.0034 (5)0.0051 (5)
C70.0265 (6)0.0216 (6)0.0182 (6)0.0037 (4)0.0087 (5)0.0015 (4)
C80.0183 (6)0.0171 (5)0.0149 (5)0.0043 (4)0.0031 (4)0.0009 (4)
C90.0209 (6)0.0308 (7)0.0201 (6)0.0011 (5)0.0037 (5)0.0048 (5)
C100.0197 (6)0.0209 (5)0.0139 (5)0.0017 (4)0.0030 (4)0.0018 (4)
C110.0276 (7)0.0319 (7)0.0181 (6)0.0124 (5)0.0028 (5)0.0028 (5)
C120.0208 (6)0.0190 (5)0.0204 (6)0.0025 (4)0.0034 (5)0.0002 (4)
C130.0195 (6)0.0305 (6)0.0230 (6)0.0005 (5)0.0041 (5)0.0011 (5)
C140.0306 (7)0.0309 (7)0.0206 (6)0.0027 (5)0.0020 (5)0.0040 (5)
C150.0239 (6)0.0263 (6)0.0317 (7)0.0014 (5)0.0067 (5)0.0005 (5)
C160.0172 (6)0.0249 (6)0.0390 (7)0.0007 (5)0.0019 (5)0.0080 (6)
C170.0236 (6)0.0202 (6)0.0262 (6)0.0016 (4)0.0084 (5)0.0042 (5)
Geometric parameters (Å, º) top
N1—C11.2937 (14)C6—H6A0.9800
N1—C21.3792 (14)C6—H6B0.9800
N2—C41.3692 (15)C6—H6C0.9800
N2—C11.3704 (14)C7—H7A0.9800
N2—H20.938 (16)C7—H7B0.9800
N3—C101.3446 (15)C7—H7C0.9800
N3—C51.4663 (14)C9—H9A0.9800
N3—H30.882 (15)C9—H9B0.9800
O1—C31.3456 (14)C9—H9C0.9800
O1—H10.918 (17)C11—C121.5062 (16)
O2—C41.2308 (14)C11—H11A0.9900
O3—C81.2245 (14)C11—H11B0.9900
O4—C81.3230 (14)C12—C171.3874 (18)
O4—C91.4491 (13)C12—C131.3881 (18)
O5—C101.2154 (14)C13—C141.3872 (17)
O6—C101.3489 (13)C13—H130.9500
O6—C111.4413 (14)C14—C151.389 (2)
C1—C51.5242 (15)C14—H140.9500
C2—C31.3646 (16)C15—C161.380 (2)
C2—C81.4881 (15)C15—H150.9500
C3—C41.4602 (16)C16—C171.3924 (18)
C5—C61.5259 (15)C16—H160.9500
C5—C71.5291 (16)C17—H170.9500
C1—N1—C2116.87 (10)H7A—C7—H7C109.5
C4—N2—C1123.91 (10)H7B—C7—H7C109.5
C4—N2—H2117.4 (9)O3—C8—O4123.86 (10)
C1—N2—H2118.4 (9)O3—C8—C2122.24 (11)
C10—N3—C5123.00 (9)O4—C8—C2113.87 (9)
C10—N3—H3115.1 (9)O4—C9—H9A109.5
C5—N3—H3116.8 (9)O4—C9—H9B109.5
C3—O1—H1104.1 (11)H9A—C9—H9B109.5
C8—O4—C9115.30 (9)O4—C9—H9C109.5
C10—O6—C11116.95 (9)H9A—C9—H9C109.5
N1—C1—N2123.03 (10)H9B—C9—H9C109.5
N1—C1—C5120.75 (10)O5—C10—N3126.23 (11)
N2—C1—C5116.14 (9)O5—C10—O6124.12 (11)
C3—C2—N1123.81 (10)N3—C10—O6109.62 (9)
C3—C2—C8118.60 (10)O6—C11—C12105.89 (9)
N1—C2—C8117.51 (10)O6—C11—H11A110.6
O1—C3—C2126.16 (10)C12—C11—H11A110.6
O1—C3—C4114.98 (10)O6—C11—H11B110.6
C2—C3—C4118.86 (10)C12—C11—H11B110.6
O2—C4—N2122.55 (10)H11A—C11—H11B108.7
O2—C4—C3123.97 (11)C17—C12—C13118.85 (11)
N2—C4—C3113.48 (10)C17—C12—C11120.61 (12)
N3—C5—C1109.22 (9)C13—C12—C11120.53 (11)
N3—C5—C6111.64 (9)C14—C13—C12120.51 (12)
C1—C5—C6110.88 (9)C14—C13—H13119.7
N3—C5—C7106.23 (9)C12—C13—H13119.7
C1—C5—C7108.70 (9)C13—C14—C15120.27 (13)
C6—C5—C7110.02 (10)C13—C14—H14119.9
C5—C6—H6A109.5C15—C14—H14119.9
C5—C6—H6B109.5C16—C15—C14119.59 (12)
H6A—C6—H6B109.5C16—C15—H15120.2
C5—C6—H6C109.5C14—C15—H15120.2
H6A—C6—H6C109.5C15—C16—C17119.98 (12)
H6B—C6—H6C109.5C15—C16—H16120.0
C5—C7—H7A109.5C17—C16—H16120.0
C5—C7—H7B109.5C12—C17—C16120.77 (13)
H7A—C7—H7B109.5C12—C17—H17119.6
C5—C7—H7C109.5C16—C17—H17119.6
C2—N1—C1—N21.36 (16)N1—C1—C5—C7102.55 (12)
C2—N1—C1—C5178.04 (9)N2—C1—C5—C774.35 (12)
C4—N2—C1—N10.28 (18)C9—O4—C8—O35.78 (16)
C4—N2—C1—C5177.10 (10)C9—O4—C8—C2171.97 (9)
C1—N1—C2—C30.47 (16)C3—C2—C8—O34.06 (17)
C1—N1—C2—C8176.14 (10)N1—C2—C8—O3179.15 (10)
N1—C2—C3—O1179.23 (10)C3—C2—C8—O4173.74 (10)
C8—C2—C3—O12.66 (18)N1—C2—C8—O43.06 (14)
N1—C2—C3—C41.43 (17)C5—N3—C10—O511.21 (19)
C8—C2—C3—C4178.00 (10)C5—N3—C10—O6170.86 (10)
C1—N2—C4—O2178.10 (11)C11—O6—C10—O55.83 (18)
C1—N2—C4—C31.58 (16)C11—O6—C10—N3176.18 (10)
O1—C3—C4—O22.06 (18)C10—O6—C11—C12173.06 (10)
C2—C3—C4—O2177.35 (11)O6—C11—C12—C17137.37 (11)
O1—C3—C4—N2178.27 (10)O6—C11—C12—C1343.44 (15)
C2—C3—C4—N22.32 (16)C17—C12—C13—C140.16 (18)
C10—N3—C5—C163.17 (13)C11—C12—C13—C14179.05 (11)
C10—N3—C5—C659.82 (14)C12—C13—C14—C150.83 (19)
C10—N3—C5—C7179.76 (10)C13—C14—C15—C160.91 (19)
N1—C1—C5—N3141.95 (10)C14—C15—C16—C170.00 (19)
N2—C1—C5—N341.15 (12)C13—C12—C17—C161.07 (17)
N1—C1—C5—C618.51 (14)C11—C12—C17—C16178.14 (11)
N2—C1—C5—C6164.59 (10)C15—C16—C17—C121.00 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O5i0.882 (15)2.133 (15)2.8911 (14)143.7 (12)
N2—H2···O2ii0.938 (16)1.886 (16)2.8135 (16)169.3 (13)
O1—H1···O30.918 (17)1.788 (17)2.6163 (14)148.7 (16)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formulaC17H19N3O6
Mr361.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)12.122 (2), 16.300 (3), 9.1766 (18)
β (°) 106.29 (3)
V3)1740.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
15564, 4142, 3386
Rint0.035
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.09
No. of reflections4142
No. of parameters250
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.24

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O5i0.882 (15)2.133 (15)2.8911 (14)143.7 (12)
N2—H2···O2ii0.938 (16)1.886 (16)2.8135 (16)169.3 (13)
O1—H1···O30.918 (17)1.788 (17)2.6163 (14)148.7 (16)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z+2.
 

Acknowledgements

The authors thank the funds of Hebei Province Science and Technology Research and Development Projects (No. 08276409D) and Hebei University of Science and Technology.

References

First citationBruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCulbertson, T. P. (1979). J. Heterocycl. Chem. 16, 1423–1424.  CrossRef CAS Google Scholar
First citationFun, H.-K., Balasubramani, K., Hazra, A., Kumar Das, M. & Goswami, S. (2009). Acta Cryst. E65, o1484–o1485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShang, Z.-H. & Shang, Q. (2007). Acta Cryst. E63, o2280–o2281.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteigbigel, R. T., et al. (2008). N. Engl. J. Med. 359, 339–354.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds