organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 2-amino-5-[(E)-(furan-2-yl­methyl­­idene)amino]­thio­phene-3,4-di­carboxyl­ate

aDepartment of Chemistry, University of Montreal, CP 6128, succ. Centre-ville, Montréal, Québec, Canada H3C 3J7
*Correspondence e-mail: w.skene@umontreal.ca

(Received 21 October 2010; accepted 26 October 2010; online 31 October 2010)

In the crystal structure of the title compound, C15H16N2O5S, the azomethine adopts the E configuration. The two heterocyclic rings adopt an anti­periplanar orientation. The mean planes of the thio­phene and furan rings are twisted by 2.51 (4)°. The crystal structure exhibits inter­molecular N—H⋯O hydrogen bonding. ππ stacking is also observed, the centroid-to-centroid distance being 3.770 (4) Å.

Related literature

For general background, see: Dufresne & Skene (2008[Dufresne, S. & Skene, W. G. (2008). J. Org. Chem. 73, 3859-3866.]). For a related crystal structure, see: Skene et al. (2006[Skene, W. G., Dufresne, S., Trefz, T. & Simard, M. (2006). Acta Cryst. E62, o2382-o2384.])

[Scheme 1]

Experimental

Crystal data
  • C15H16N2O5S

  • Mr = 336.36

  • Monoclinic, P 21 /n

  • a = 9.3452 (19) Å

  • b = 14.635 (3) Å

  • c = 11.343 (2) Å

  • β = 99.73 (3)°

  • V = 1529.0 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.14 mm−1

  • T = 123 K

  • 0.14 × 0.10 × 0.04 mm

Data collection
  • Bruker SMART 6000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.728, Tmax = 0.920

  • 6320 measured reflections

  • 3005 independent reflections

  • 2475 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.03

  • 3005 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.88 2.20 2.889 (2) 135
N1—H1B⋯O4ii 0.88 2.50 3.059 (3) 122
Symmetry codes: (i) -x, -y, -z+2; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: UdMX (Marris, 2004[Marris, T. (2004). UdMX. Université de Montréal, Canada.]).

Supporting information


Comment top

During the course of our ongoing conjugated azomethine research, we prepared the title compound. The X-ray crystallographic analysis not only confirmed the structure (Fig. 1), but that the energetically stable E isomer was formed. Neither solvent nor counter-ions were found in the structure.

The heterocyclic rings were found not to be coplanar; the angle between the heterocyclic mean planes is 2.51 (4)°. This angle is less than that in a previously reported azomethine thiophene system, whose angle is 7.25 (11)° (Skene et al., 2006).

A major point of interest is the azomethine bond. The bond lengths for N2—C4, N2—C5 and C5—C6 are 1.382 (2), 1.289 (2) and 1.420 (2) Å, respectively. These are similar to the related azomethine thiophene compound (Skene et al., 2006), whose homologous lengths are 1.381 (3), 1.283 (3) and 1.426 (3) Å.

Fig. 2 shows that two different hydrogen bonds occur in the crystal structure, viz. N1—H1A···O2iii and N1—H1B···O4ii. The D—H···A angles are 135° and 122° and distances of 2.880 (3) Å and 3.059 (3) Å were measured between the nitrogen and oxygens (Table 1). Dimerization of two molecules occurs via H-bonding between N1—H1A···O2iii. Additionally, π-stacking takes place between two different molecules, at [x, y, z] and [1 - x, -y, 1 - z]. Fig. 3 shows the interactions, with the distance between the planes being 3.440 (4) Å. The centroid···centroid distance between the two rings is 3.770 (4) Å.

Related literature top

For general background, see: Dufresne & Skene (2008). For a related crystal structure, see: Skene et al. (2006)

Experimental top

2-Furaldehyde (37 mg, 0.39 mmol) and 2,5-diamino-thiophene-3,4-dicarboxylic acid diethyl ester (100 mg, 0.39 mmol) were mixed in anhydrous 2-propanol with a catalytic amount of TFA and refluxed for 12 h. The reaction was then purified by flash chromatography to afford the title compound as a brownish yellow solid (110 mg, 85%). Single crystals were obtained by slow evaporation of an acetone solution.

Refinement top

Carbon-bound H atoms were placed in calculated positions (Cmethyl—H = 0.98 Å, Cmethylene—H = 0.99 Å and Csp2—H = 0.95 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = kUeq(C), where k = 1.5 for Cmethyl and 1.2 for Cmethylene and Csp2. The H atoms of the amino group were placed in calculated positions (N—H = 0.88 Å) and included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(N).

Structure description top

During the course of our ongoing conjugated azomethine research, we prepared the title compound. The X-ray crystallographic analysis not only confirmed the structure (Fig. 1), but that the energetically stable E isomer was formed. Neither solvent nor counter-ions were found in the structure.

The heterocyclic rings were found not to be coplanar; the angle between the heterocyclic mean planes is 2.51 (4)°. This angle is less than that in a previously reported azomethine thiophene system, whose angle is 7.25 (11)° (Skene et al., 2006).

A major point of interest is the azomethine bond. The bond lengths for N2—C4, N2—C5 and C5—C6 are 1.382 (2), 1.289 (2) and 1.420 (2) Å, respectively. These are similar to the related azomethine thiophene compound (Skene et al., 2006), whose homologous lengths are 1.381 (3), 1.283 (3) and 1.426 (3) Å.

Fig. 2 shows that two different hydrogen bonds occur in the crystal structure, viz. N1—H1A···O2iii and N1—H1B···O4ii. The D—H···A angles are 135° and 122° and distances of 2.880 (3) Å and 3.059 (3) Å were measured between the nitrogen and oxygens (Table 1). Dimerization of two molecules occurs via H-bonding between N1—H1A···O2iii. Additionally, π-stacking takes place between two different molecules, at [x, y, z] and [1 - x, -y, 1 - z]. Fig. 3 shows the interactions, with the distance between the planes being 3.440 (4) Å. The centroid···centroid distance between the two rings is 3.770 (4) Å.

For general background, see: Dufresne & Skene (2008). For a related crystal structure, see: Skene et al. (2006)

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: UdMX (Marris, 2004).

Figures top
[Figure 1] Fig. 1. ORTEP-3 (Farrugia, 1997) representation of the molecular structure, with the numbering scheme adopted. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Supramolecular structure showing the intermolecular hydrogen bonding (dashed lines). [Symmetry codes: (i) 1/2 - x, 1/2 + y, 1.5 - z; (ii) 1/2 - x, -1/2 + y, 1.5 - z; (iii) -x, -y, 2 - z.]
[Figure 3] Fig. 3. The three-dimensional network demonstrating the π-stacking (dashed lines) in the crystal structure.
Diethyl 2-amino-5-[(E)-(furan-2-ylmethylidene)amino]thiophene-3,4-dicarboxylate top
Crystal data top
C15H16N2O5SF(000) = 704
Mr = 336.36Dx = 1.461 Mg m3
Monoclinic, P21/nMelting point: 425(2) K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54178 Å
a = 9.3452 (19) ÅCell parameters from 3360 reflections
b = 14.635 (3) Åθ = 5.0–38.8°
c = 11.343 (2) ŵ = 2.14 mm1
β = 99.73 (3)°T = 123 K
V = 1529.0 (5) Å3Block, yellow
Z = 40.14 × 0.10 × 0.04 mm
Data collection top
Bruker SMART 6000
diffractometer
3005 independent reflections
Radiation source: rotating anode2475 reflections with I > 2σ(I)
Montel 200 optics monochromatorRint = 0.036
Detector resolution: 5.5 pixels mm-1θmax = 72.3°, θmin = 5.0°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1718
Tmin = 0.728, Tmax = 0.920l = 1313
6320 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0643P)2]
where P = (Fo2 + 2Fc2)/3
3005 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C15H16N2O5SV = 1529.0 (5) Å3
Mr = 336.36Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.3452 (19) ŵ = 2.14 mm1
b = 14.635 (3) ÅT = 123 K
c = 11.343 (2) Å0.14 × 0.10 × 0.04 mm
β = 99.73 (3)°
Data collection top
Bruker SMART 6000
diffractometer
3005 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2475 reflections with I > 2σ(I)
Tmin = 0.728, Tmax = 0.920Rint = 0.036
6320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
3005 reflectionsΔρmin = 0.34 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15876 (5)0.01058 (3)0.62132 (4)0.02153 (13)
O30.26457 (13)0.20322 (8)0.97617 (10)0.0216 (3)
O50.53448 (13)0.16250 (8)0.86520 (11)0.0229 (3)
O10.53601 (14)0.14839 (10)0.36188 (11)0.0299 (3)
O40.42258 (13)0.28091 (8)0.76310 (11)0.0261 (3)
O20.11370 (14)0.08821 (9)1.00209 (11)0.0280 (3)
N20.37833 (15)0.11513 (10)0.55344 (12)0.0201 (3)
N10.01952 (16)0.02136 (10)0.80267 (14)0.0247 (3)
H1A0.00290.01080.87370.030*
H1B0.02740.06370.75630.030*
C130.42543 (18)0.20165 (12)0.79259 (14)0.0180 (3)
C20.21155 (17)0.09610 (11)0.82328 (15)0.0177 (3)
C40.29499 (18)0.09523 (12)0.63985 (15)0.0194 (4)
C100.19189 (18)0.12672 (12)0.94126 (15)0.0192 (4)
C30.30893 (17)0.13360 (12)0.75044 (14)0.0175 (3)
C140.65332 (19)0.22184 (13)0.91629 (17)0.0274 (4)
H14A0.62310.26190.97800.033*
H14B0.68300.26080.85330.033*
C10.12570 (18)0.02730 (12)0.76478 (15)0.0191 (4)
C60.42538 (19)0.08612 (12)0.35493 (16)0.0218 (4)
C50.35120 (19)0.07232 (12)0.45285 (15)0.0225 (4)
H50.27570.02810.44350.027*
C110.2356 (2)0.24369 (13)1.08714 (15)0.0259 (4)
H11A0.25260.19841.15280.031*
H11B0.13350.26461.07760.031*
C80.5077 (2)0.08255 (14)0.18213 (16)0.0284 (4)
H80.52040.06750.10310.034*
C70.4049 (2)0.04441 (13)0.24649 (16)0.0272 (4)
H70.33510.00140.21910.033*
C90.5836 (2)0.14410 (15)0.25473 (17)0.0316 (5)
H90.66040.18000.23430.038*
C150.7766 (2)0.16205 (14)0.97085 (18)0.0320 (4)
H15A0.74550.12311.03210.048*
H15B0.85830.20021.00750.048*
H15C0.80680.12370.90870.048*
C120.3367 (2)0.32281 (13)1.11445 (17)0.0351 (5)
H12A0.43720.30071.12840.053*
H12B0.31670.35431.18620.053*
H12C0.32270.36531.04670.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0226 (2)0.0245 (2)0.0170 (2)0.00387 (17)0.00208 (16)0.00373 (16)
O30.0288 (7)0.0215 (6)0.0158 (6)0.0027 (5)0.0072 (5)0.0041 (5)
O50.0206 (6)0.0213 (6)0.0245 (7)0.0023 (5)0.0025 (5)0.0003 (5)
O10.0275 (7)0.0373 (8)0.0254 (7)0.0063 (6)0.0062 (6)0.0053 (6)
O40.0286 (7)0.0206 (7)0.0278 (7)0.0032 (5)0.0013 (5)0.0036 (5)
O20.0310 (7)0.0308 (7)0.0253 (7)0.0070 (6)0.0134 (6)0.0019 (6)
N20.0221 (7)0.0234 (8)0.0148 (7)0.0023 (6)0.0036 (6)0.0009 (6)
N10.0242 (8)0.0269 (8)0.0239 (8)0.0083 (6)0.0069 (6)0.0038 (6)
C130.0205 (8)0.0216 (9)0.0131 (8)0.0010 (6)0.0060 (6)0.0011 (6)
C20.0171 (8)0.0183 (8)0.0175 (8)0.0003 (6)0.0028 (6)0.0004 (6)
C40.0191 (8)0.0222 (9)0.0170 (8)0.0003 (7)0.0032 (7)0.0008 (7)
C100.0178 (8)0.0213 (9)0.0184 (8)0.0015 (6)0.0025 (7)0.0006 (7)
C30.0174 (8)0.0184 (8)0.0168 (8)0.0013 (6)0.0032 (6)0.0017 (6)
C140.0222 (9)0.0273 (10)0.0309 (10)0.0057 (7)0.0011 (8)0.0059 (8)
C10.0181 (8)0.0200 (8)0.0185 (8)0.0023 (6)0.0013 (7)0.0006 (7)
C60.0235 (8)0.0226 (9)0.0188 (8)0.0000 (7)0.0022 (7)0.0008 (7)
C50.0267 (9)0.0222 (9)0.0188 (9)0.0013 (7)0.0041 (7)0.0005 (7)
C110.0380 (10)0.0256 (9)0.0154 (8)0.0023 (8)0.0080 (8)0.0038 (7)
C80.0314 (10)0.0375 (11)0.0174 (9)0.0075 (8)0.0076 (8)0.0002 (8)
C70.0365 (10)0.0259 (10)0.0198 (9)0.0008 (8)0.0061 (8)0.0038 (7)
C90.0266 (10)0.0429 (12)0.0278 (10)0.0014 (8)0.0115 (8)0.0052 (9)
C150.0236 (9)0.0391 (11)0.0303 (10)0.0003 (8)0.0043 (8)0.0037 (9)
C120.0578 (14)0.0241 (10)0.0235 (10)0.0043 (10)0.0078 (9)0.0049 (8)
Geometric parameters (Å, º) top
S1—C11.7242 (18)C14—C151.495 (3)
S1—C41.7633 (18)C14—H14A0.99
O3—C101.334 (2)C14—H14B0.99
O3—C111.4573 (19)C6—C71.357 (2)
O5—C131.3272 (19)C6—C51.420 (2)
O5—C141.451 (2)C5—H50.95
O1—C91.364 (2)C11—C121.494 (3)
O1—C61.370 (2)C11—H11A0.99
O4—C131.206 (2)C11—H11B0.99
O2—C101.224 (2)C8—C91.340 (3)
N2—C51.289 (2)C8—C71.416 (3)
N2—C41.382 (2)C8—H80.95
N1—C11.349 (2)C7—H70.95
N1—H1A0.88C9—H90.95
N1—H1B0.88C15—H15A0.98
C13—C31.493 (2)C15—H15B0.98
C2—C11.385 (2)C15—H15C0.98
C2—C31.437 (2)C12—H12A0.98
C2—C101.452 (2)C12—H12B0.98
C4—C31.360 (2)C12—H12C0.98
C1—S1—C491.65 (8)C7—C6—C5129.21 (18)
C10—O3—C11115.96 (13)O1—C6—C5120.86 (16)
C13—O5—C14116.42 (14)N2—C5—C6125.07 (17)
C9—O1—C6105.92 (15)N2—C5—H5117.5
C5—N2—C4118.38 (15)C6—C5—H5117.5
C1—N1—H1A120O3—C11—C12106.90 (15)
C1—N1—H1B120O3—C11—H11A110.3
H1A—N1—H1B120C12—C11—H11A110.3
O4—C13—O5124.46 (16)O3—C11—H11B110.3
O4—C13—C3124.88 (16)C12—C11—H11B110.3
O5—C13—C3110.65 (14)H11A—C11—H11B108.6
C1—C2—C3111.96 (15)C9—C8—C7106.42 (17)
C1—C2—C10120.84 (15)C9—C8—H8126.8
C3—C2—C10127.08 (15)C7—C8—H8126.8
C3—C4—N2126.11 (16)C6—C7—C8106.60 (17)
C3—C4—S1110.77 (13)C6—C7—H7126.7
N2—C4—S1123.06 (13)C8—C7—H7126.7
O2—C10—O3122.79 (16)C8—C9—O1111.14 (17)
O2—C10—C2123.91 (16)C8—C9—H9124.4
O3—C10—C2113.27 (14)O1—C9—H9124.4
C4—C3—C2113.65 (15)C14—C15—H15A109.5
C4—C3—C13121.43 (15)C14—C15—H15B109.5
C2—C3—C13124.67 (15)H15A—C15—H15B109.5
O5—C14—C15107.41 (15)C14—C15—H15C109.5
O5—C14—H14A110.2H15A—C15—H15C109.5
C15—C14—H14A110.2H15B—C15—H15C109.5
O5—C14—H14B110.2C11—C12—H12A109.5
C15—C14—H14B110.2C11—C12—H12B109.5
H14A—C14—H14B108.5H12A—C12—H12B109.5
N1—C1—C2128.96 (16)C11—C12—H12C109.5
N1—C1—S1118.97 (13)H12A—C12—H12C109.5
C2—C1—S1111.94 (13)H12B—C12—H12C109.5
C7—C6—O1109.92 (16)
C14—O5—C13—O43.5 (2)O5—C13—C3—C4101.12 (18)
C14—O5—C13—C3177.89 (14)O4—C13—C3—C2108.6 (2)
C5—N2—C4—C3179.86 (17)O5—C13—C3—C272.8 (2)
C5—N2—C4—S12.9 (2)C13—O5—C14—C15167.31 (15)
C1—S1—C4—C31.07 (14)C3—C2—C1—N1177.66 (17)
C1—S1—C4—N2176.35 (15)C10—C2—C1—N11.3 (3)
C11—O3—C10—O25.4 (2)C3—C2—C1—S11.82 (18)
C11—O3—C10—C2172.78 (14)C10—C2—C1—S1174.49 (12)
C1—C2—C10—O29.1 (3)C4—S1—C1—N1177.96 (14)
C3—C2—C10—O2175.17 (17)C4—S1—C1—C21.66 (13)
C1—C2—C10—O3169.01 (15)C9—O1—C6—C70.0 (2)
C3—C2—C10—O36.7 (2)C9—O1—C6—C5179.52 (17)
N2—C4—C3—C2177.09 (15)C4—N2—C5—C6178.96 (16)
S1—C4—C3—C20.22 (19)C7—C6—C5—N2179.79 (19)
N2—C4—C3—C132.6 (3)O1—C6—C5—N20.3 (3)
S1—C4—C3—C13174.76 (12)C10—O3—C11—C12175.14 (15)
C1—C2—C3—C41.0 (2)O1—C6—C7—C80.1 (2)
C10—C2—C3—C4175.00 (16)C5—C6—C7—C8179.58 (18)
C1—C2—C3—C13173.30 (15)C9—C8—C7—C60.2 (2)
C10—C2—C3—C1310.7 (3)C7—C8—C9—O10.2 (2)
O4—C13—C3—C477.5 (2)C6—O1—C9—C80.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.882.202.889 (2)135
N1—H1B···O4ii0.882.503.059 (3)122
Symmetry codes: (i) x, y, z+2; (ii) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H16N2O5S
Mr336.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)9.3452 (19), 14.635 (3), 11.343 (2)
β (°) 99.73 (3)
V3)1529.0 (5)
Z4
Radiation typeCu Kα
µ (mm1)2.14
Crystal size (mm)0.14 × 0.10 × 0.04
Data collection
DiffractometerBruker SMART 6000
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.728, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
6320, 3005, 2475
Rint0.036
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.03
No. of reflections3005
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.34

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997), UdMX (Marris, 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.882.202.889 (2)135
N1—H1B···O4ii0.882.503.059 (3)122
Symmetry codes: (i) x, y, z+2; (ii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

NSERC Canada is thanked for DG and RTI grants allowing this work to be performed, in addition to CFI for additional equipment funding. SD also thanks NSERC for a graduate scholarship. WGS also acknowledges both the Alexander von Humboldt Foundation and the RSC for J. W. T. Jones Travelling fellowships, allowing the completion of this manuscript.

References

First citationBruker (2003). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDufresne, S. & Skene, W. G. (2008). J. Org. Chem. 73, 3859–3866.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMarris, T. (2004). UdMX. Université de Montréal, Canada.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkene, W. G., Dufresne, S., Trefz, T. & Simard, M. (2006). Acta Cryst. E62, o2382–o2384.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds