organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{[(E)-2-Hy­dr­oxy­benzyl­­idene]amino}-1H-iso­indole-1,3(2H)-dione

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, bDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore 570 006, Karnataka, India, cSequent Scientific India Limited, Baikampadi, Mangalore, Karnataka, India, and dDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 18 September 2010; accepted 25 September 2010; online 2 October 2010)

In the title compound, C15H10N2O3, the isoindoline ring system is almost planar [maximum deviation = 0.020 (2) Å] and makes a dihedral angle of 1.57 (7)° with the benzene ring. Intra­molecular O—H⋯N and C—H⋯O hydrogen bonds are observed.

Related literature

Based on the multiple binding sites of acetyl­cholinesterase (AChE), a series of AChE inhibitors involving phthalimide derivatives have been designed and synthesized, see: Zhao et al. (2009[Zhao, Q., Yang, G., Mei, X., Yuan, H. & Ning, J. (2009). Pestic. Biochem. Physiol. 95, 131-134.]). Phthalimide derivatives have also been developed as LXRa-selective antagonists, see: Motoshima et al. (2009[Motoshima, K., Noguchi-Yachide, T., Sugita, K., Hashimoto, Y. & Ishikawa, M. (2009). Bioorg. Med. Chem. 17, 5001-5014.]). For the biological activity of Schiff bases, see: Singh et al. (2006[Singh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 147-153.]); Sithambaram et al. (2006[Sithambaram Karthikeyan, M., Jagadesh Prasad, D., Poojary, B. & Subramanya Bhat, K. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Walsh et al. (1996[Walsh, O. M., Meegan, M. J., Prendergast, R. M. & Nakib, T. A. (1996). Eur. J. Med. Chem. 31, 989-1000.]). For a related structure, see: Jing et al. (2007[Jing, Z.-L., Li, R.-N. & Zhai, J.-Q. (2007). Acta Cryst. E63, o3002.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10N2O3

  • Mr = 266.25

  • Monoclinic, P 21 /c

  • a = 7.0877 (2) Å

  • b = 8.2400 (4) Å

  • c = 21.2752 (7) Å

  • β = 92.659 (3)°

  • V = 1241.19 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.22 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.988

  • 11806 measured reflections

  • 2184 independent reflections

  • 1541 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.098

  • S = 1.10

  • 2184 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯N2 0.82 1.90 2.6152 (16) 145
C9—H9⋯O4 0.93 2.24 2.8937 (19) 127

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Based on the multiple binding sites of acetylcholinesterase (AChE), a series of AChE inhibitors involving phthalimide derivatives were designed and synthesized (Zhao et al., 2009). Phthalimide derivatives have also been developed as LXRa-selective antagonists (Motoshima et al., 2009). Azomethine group-containing compounds, typically known as Schiff bases, form a significant class of compounds in medicinal and pharmaceutical chemistry, with several biological applications that include antibacterial (Sithambaram Karthikeyan et al., 2006), antifungal (Singh et al., 2006) and antitumor activity (Walsh et al., 1996).

The asymmetric unit of 2-{[(1E)-(2-hydroxyphenyl)methylene]amino} -1H-isoindole-1,3(2H)-dione contains one molecule (Fig. 1). The isoindoline ring system is almost planar [maximum deviation = 0.020 (2) Å] and makes a dihedral angle of 1.57 (7)° with the benzene ring. The bond distances and bond angles are in good agreement with those in a closely related crystal structure (Jing et al., 2007).

In the crystal structure, molecules intramolecula O5—H5···N2 and C9—H9···O4 hydrogen bonds are observed (Table 1). The packing of the molecules shows stacking when viewed along the b axis (Fig. 2).

Related literature top

Based on the multiple binding sites of acetylcholinesterase (AChE), a series of AChE inhibitors involving phthalimide derivatives have been designed and synthesized, see: Zhao et al. (2009). Phthalimide derivatives have also been developed as LXRa-selective antagonists, see: Motoshima et al. (2009). For the biological activity of Schiff bases, see: Singh et al. (2006); Sithambaram Karthikeyan et al. (2006); Walsh et al. (1996). For a related structure, see: Jing et al. (2007).

Experimental top

Salicylaldehyde (1.221 g, 10 mmol) was dissolved in 20 ml ethanol and added, with continuous stirring, to a hot ethanolic solution (30 ml) containing N-aminophthalimide (1.621 g, 10 mmol). The mixture was further stirred, refluxed for 5 h and allowed to stand overnight. The final yellow product was dissolved in ethanol and a single crystal of the title compound was obtained after slow evaporation of the solvent at room temperature (Yield: 89%; M.p. 465 K).

Refinement top

All H atoms were positioned at calculated positions with O—H = 0.82 Å, Csp2—H = 0.93 Å and refined using a riding model; Uiso(H) = kUeq(attached atom), where k = 1.2 for Csp2 and 1.5 for O.

Structure description top

Based on the multiple binding sites of acetylcholinesterase (AChE), a series of AChE inhibitors involving phthalimide derivatives were designed and synthesized (Zhao et al., 2009). Phthalimide derivatives have also been developed as LXRa-selective antagonists (Motoshima et al., 2009). Azomethine group-containing compounds, typically known as Schiff bases, form a significant class of compounds in medicinal and pharmaceutical chemistry, with several biological applications that include antibacterial (Sithambaram Karthikeyan et al., 2006), antifungal (Singh et al., 2006) and antitumor activity (Walsh et al., 1996).

The asymmetric unit of 2-{[(1E)-(2-hydroxyphenyl)methylene]amino} -1H-isoindole-1,3(2H)-dione contains one molecule (Fig. 1). The isoindoline ring system is almost planar [maximum deviation = 0.020 (2) Å] and makes a dihedral angle of 1.57 (7)° with the benzene ring. The bond distances and bond angles are in good agreement with those in a closely related crystal structure (Jing et al., 2007).

In the crystal structure, molecules intramolecula O5—H5···N2 and C9—H9···O4 hydrogen bonds are observed (Table 1). The packing of the molecules shows stacking when viewed along the b axis (Fig. 2).

Based on the multiple binding sites of acetylcholinesterase (AChE), a series of AChE inhibitors involving phthalimide derivatives have been designed and synthesized, see: Zhao et al. (2009). Phthalimide derivatives have also been developed as LXRa-selective antagonists, see: Motoshima et al. (2009). For the biological activity of Schiff bases, see: Singh et al. (2006); Sithambaram Karthikeyan et al. (2006); Walsh et al. (1996). For a related structure, see: Jing et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the displacement ellipsoids drawn at the 50% probability level. The H atoms are shown as spheres of arbitrary radius. Dashed lines indicate intramolecular hydrogen bonds.
[Figure 2] Fig. 2. A view of the crystal structure down the b axis. Dashed lines indicate intramolecular hydrogen bonds.
2-{[(E)-2-Hydroxybenzylidene]amino}-1H-isoindole- 1,3(2H)-dione top
Crystal data top
C15H10N2O3F(000) = 552
Mr = 266.25Dx = 1.425 Mg m3
Monoclinic, P21/cMelting point: 465 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.0877 (2) ÅCell parameters from 2184 reflections
b = 8.2400 (4) Åθ = 2.7–25.0°
c = 21.2752 (7) ŵ = 0.10 mm1
β = 92.659 (3)°T = 293 K
V = 1241.19 (8) Å3Plate, yellow
Z = 40.22 × 0.15 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2184 independent reflections
Radiation source: fine-focus sealed tube1541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and φ scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 88
Tmin = 0.982, Tmax = 0.988k = 99
11806 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.0801P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2184 reflectionsΔρmax = 0.10 e Å3
182 parametersΔρmin = 0.11 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0088 (16)
Crystal data top
C15H10N2O3V = 1241.19 (8) Å3
Mr = 266.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.0877 (2) ŵ = 0.10 mm1
b = 8.2400 (4) ÅT = 293 K
c = 21.2752 (7) Å0.22 × 0.15 × 0.12 mm
β = 92.659 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2184 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1541 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.988Rint = 0.023
11806 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.10Δρmax = 0.10 e Å3
2184 reflectionsΔρmin = 0.11 e Å3
182 parameters
Special details top

Experimental. IR ν(Nujolmull, cm-1): 1768 and 1725 (C=O), 1617 (HC=N), 3386 (Ph—OH). 1H NMR (DMSO-d6, p.p.m.): 10.67 (s, 1H, Ph—OH), 9.45 (s, 1H, HC=N), 6.92–7.91 (m, 4H, Ar—H). FAB-MS: m/z = 267 [M+1]+, Anal. Calc. for C15H10N2O3; C, 67.67; H, 3.79; N, 10.52; O, 18.03; Found: C, 67.05; H, 3.81; N, 10.68; O, 17.98,; Electronic spectra: 289 nm and 334 nm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.27271 (15)0.27296 (16)0.07498 (5)0.0836 (4)
O40.28488 (17)0.31121 (18)0.02433 (5)0.0877 (4)
O50.00226 (15)0.52524 (17)0.19986 (5)0.0846 (4)
H50.01940.47520.16700.127*
N10.02621 (17)0.31346 (16)0.03847 (5)0.0579 (4)
N20.08319 (18)0.40089 (16)0.09127 (5)0.0591 (4)
C10.3130 (3)0.0248 (2)0.11364 (9)0.0780 (5)
H10.41460.02820.13380.094*
C20.1434 (3)0.0318 (2)0.14198 (8)0.0798 (5)
H20.13200.01620.18120.096*
C30.0112 (3)0.1090 (2)0.11336 (8)0.0739 (5)
H30.12620.11380.13270.089*
C40.0109 (2)0.1786 (2)0.05531 (7)0.0580 (4)
C50.1815 (2)0.1703 (2)0.02662 (7)0.0578 (4)
C60.3351 (2)0.0955 (2)0.05535 (8)0.0716 (5)
H60.45060.09230.03630.086*
C70.1244 (2)0.2722 (2)0.01510 (7)0.0614 (4)
C80.1610 (2)0.2551 (2)0.03459 (7)0.0607 (4)
C90.2541 (2)0.4496 (2)0.09978 (7)0.0610 (4)
H90.34220.42660.07000.073*
C100.3099 (2)0.54030 (19)0.15573 (7)0.0557 (4)
C110.4953 (2)0.5961 (2)0.16350 (8)0.0700 (5)
H110.57980.57480.13240.084*
C120.5558 (3)0.6816 (2)0.21590 (9)0.0783 (5)
H120.68010.71760.22040.094*
C130.4304 (3)0.7134 (2)0.26175 (9)0.0781 (5)
H130.47050.77200.29730.094*
C140.2476 (3)0.6602 (2)0.25587 (8)0.0741 (5)
H140.16480.68230.28740.089*
C150.1854 (2)0.5737 (2)0.20321 (8)0.0610 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0731 (8)0.1092 (11)0.0704 (7)0.0031 (7)0.0216 (6)0.0101 (7)
O40.0713 (8)0.1189 (12)0.0746 (8)0.0043 (7)0.0206 (6)0.0070 (7)
O50.0675 (8)0.1089 (11)0.0789 (8)0.0129 (7)0.0191 (6)0.0184 (7)
N10.0613 (8)0.0631 (9)0.0498 (7)0.0052 (6)0.0078 (6)0.0018 (7)
N20.0640 (9)0.0584 (9)0.0550 (8)0.0062 (7)0.0045 (6)0.0027 (6)
C10.0967 (14)0.0658 (13)0.0705 (11)0.0020 (10)0.0077 (10)0.0015 (10)
C20.1067 (15)0.0726 (14)0.0597 (10)0.0146 (11)0.0006 (10)0.0049 (9)
C30.0871 (12)0.0750 (13)0.0606 (10)0.0132 (10)0.0139 (9)0.0029 (9)
C40.0706 (10)0.0528 (10)0.0510 (8)0.0114 (8)0.0071 (7)0.0108 (8)
C50.0692 (10)0.0525 (10)0.0520 (8)0.0090 (8)0.0047 (7)0.0111 (7)
C60.0745 (11)0.0693 (12)0.0711 (11)0.0009 (9)0.0043 (9)0.0073 (10)
C70.0654 (10)0.0640 (12)0.0558 (9)0.0106 (9)0.0127 (8)0.0093 (8)
C80.0641 (10)0.0632 (12)0.0556 (9)0.0072 (8)0.0105 (8)0.0083 (8)
C90.0626 (10)0.0622 (11)0.0589 (9)0.0106 (8)0.0100 (7)0.0092 (8)
C100.0587 (9)0.0502 (10)0.0581 (9)0.0058 (7)0.0031 (7)0.0097 (7)
C110.0626 (11)0.0696 (13)0.0781 (11)0.0025 (9)0.0079 (8)0.0107 (10)
C120.0713 (11)0.0699 (13)0.0928 (14)0.0089 (9)0.0062 (10)0.0072 (11)
C130.0924 (14)0.0607 (13)0.0797 (12)0.0031 (10)0.0130 (10)0.0018 (10)
C140.0827 (12)0.0714 (13)0.0687 (11)0.0012 (10)0.0076 (9)0.0059 (10)
C150.0612 (10)0.0568 (11)0.0653 (10)0.0005 (8)0.0048 (8)0.0043 (8)
Geometric parameters (Å, º) top
O3—C81.2041 (17)C4—C71.473 (2)
O4—C71.2068 (17)C5—C61.370 (2)
O5—C151.3568 (18)C5—C81.479 (2)
O5—H50.8200C6—H60.9300
N1—N21.3791 (17)C9—C101.445 (2)
N1—C71.4044 (19)C9—H90.9300
N1—C81.4105 (19)C10—C111.395 (2)
N2—C91.2811 (18)C10—C151.399 (2)
C1—C21.371 (2)C11—C121.371 (2)
C1—C61.386 (2)C11—H110.9300
C1—H10.9300C12—C131.375 (2)
C2—C31.384 (2)C12—H120.9300
C2—H20.9300C13—C141.368 (2)
C3—C41.377 (2)C13—H130.9300
C3—H30.9300C14—C151.383 (2)
C4—C51.381 (2)C14—H140.9300
C15—O5—H5109.5N1—C7—C4105.31 (13)
N2—N1—C7130.54 (13)O3—C8—N1124.36 (15)
N2—N1—C8117.71 (11)O3—C8—C5130.20 (15)
C7—N1—C8111.74 (13)N1—C8—C5105.43 (12)
C9—N2—N1121.21 (13)N2—C9—C10119.96 (14)
C2—C1—C6120.94 (17)N2—C9—H9120.0
C2—C1—H1119.5C10—C9—H9120.0
C6—C1—H1119.5C11—C10—C15118.16 (15)
C1—C2—C3121.24 (17)C11—C10—C9119.24 (15)
C1—C2—H2119.4C15—C10—C9122.60 (14)
C3—C2—H2119.4C12—C11—C10121.56 (16)
C4—C3—C2117.71 (16)C12—C11—H11119.2
C4—C3—H3121.1C10—C11—H11119.2
C2—C3—H3121.1C11—C12—C13119.14 (17)
C3—C4—C5120.97 (16)C11—C12—H12120.4
C3—C4—C7129.82 (15)C13—C12—H12120.4
C5—C4—C7109.20 (13)C14—C13—C12120.96 (18)
C6—C5—C4121.26 (15)C14—C13—H13119.5
C6—C5—C8130.43 (14)C12—C13—H13119.5
C4—C5—C8108.30 (14)C13—C14—C15120.29 (17)
C5—C6—C1117.88 (16)C13—C14—H14119.9
C5—C6—H6121.1C15—C14—H14119.9
C1—C6—H6121.1O5—C15—C14117.54 (14)
O4—C7—N1125.03 (16)O5—C15—C10122.57 (15)
O4—C7—C4129.65 (15)C14—C15—C10119.88 (15)
C7—N1—N2—C95.3 (2)C7—N1—C8—O3178.98 (14)
C8—N1—N2—C9175.89 (14)N2—N1—C8—C5178.99 (12)
C6—C1—C2—C30.2 (3)C7—N1—C8—C50.04 (17)
C1—C2—C3—C40.1 (3)C6—C5—C8—O33.4 (3)
C2—C3—C4—C50.4 (2)C4—C5—C8—O3177.93 (16)
C2—C3—C4—C7177.72 (16)C6—C5—C8—N1177.66 (16)
C3—C4—C5—C61.3 (2)C4—C5—C8—N11.02 (17)
C7—C4—C5—C6177.25 (15)N1—N2—C9—C10179.69 (13)
C3—C4—C5—C8179.92 (15)N2—C9—C10—C11178.34 (14)
C7—C4—C5—C81.58 (17)N2—C9—C10—C152.3 (2)
C4—C5—C6—C11.5 (2)C15—C10—C11—C120.1 (2)
C8—C5—C6—C1179.97 (16)C9—C10—C11—C12179.50 (15)
C2—C1—C6—C51.0 (3)C10—C11—C12—C130.2 (3)
N2—N1—C7—O41.0 (3)C11—C12—C13—C140.4 (3)
C8—N1—C7—O4177.88 (15)C12—C13—C14—C150.3 (3)
N2—N1—C7—C4179.74 (14)C13—C14—C15—O5179.50 (15)
C8—N1—C7—C40.87 (17)C13—C14—C15—C100.0 (3)
C3—C4—C7—O41.2 (3)C11—C10—C15—O5179.69 (14)
C5—C4—C7—O4177.15 (17)C9—C10—C15—O50.9 (2)
C3—C4—C7—N1179.85 (16)C11—C10—C15—C140.2 (2)
C5—C4—C7—N11.52 (17)C9—C10—C15—C14179.56 (15)
N2—N1—C8—O32.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N20.821.902.6152 (16)145
C9—H9···O40.932.242.8937 (19)127

Experimental details

Crystal data
Chemical formulaC15H10N2O3
Mr266.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.0877 (2), 8.2400 (4), 21.2752 (7)
β (°) 92.659 (3)
V3)1241.19 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.982, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
11806, 2184, 1541
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.10
No. of reflections2184
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.11

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N20.821.902.6152 (16)145
C9—H9···O40.932.242.8937 (19)127
 

Acknowledgements

The authors thank Professor T. N. Guru Row and Mr Venkatesha R. Hathwar, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for their help with the data collection and the UGC-MRP(S) – 541/09 – 10/KAMY002/UGC/SWRO dated 8.1.2010 for financial assistance.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJing, Z.-L., Li, R.-N. & Zhai, J.-Q. (2007). Acta Cryst. E63, o3002.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMotoshima, K., Noguchi-Yachide, T., Sugita, K., Hashimoto, Y. & Ishikawa, M. (2009). Bioorg. Med. Chem. 17, 5001–5014.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, K., Barwa, M. S. & Tyagi, P. (2006). Eur. J. Med. Chem. 41, 147–153.  Web of Science CrossRef PubMed Google Scholar
First citationSithambaram Karthikeyan, M., Jagadesh Prasad, D., Poojary, B. & Subramanya Bhat, K. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science PubMed Google Scholar
First citationWalsh, O. M., Meegan, M. J., Prendergast, R. M. & Nakib, T. A. (1996). Eur. J. Med. Chem. 31, 989–1000.  CrossRef CAS Web of Science Google Scholar
First citationZhao, Q., Yang, G., Mei, X., Yuan, H. & Ning, J. (2009). Pestic. Biochem. Physiol. 95, 131–134.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds