organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

t-3-Pentyl-r-2,c-6-di­phenyl­piperidin-4-one

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: athiru@vsnl.net

(Received 1 November 2009; accepted 5 November 2009; online 14 November 2009)

In the title mol­ecule, C22H27NO, the piperidine ring adopts a chair conformation, with all substituents equatorial. The dihedral angle between the two phenyl rings is 56.90 (5)°. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds. A C—H⋯π inter­action involving the phenyl ring at the 6-position is also found in the crystal structure.

Related literature

For a related crystal structure, see: Thiruvalluvar et al. (2007[Thiruvalluvar, A., Balamurugan, S., Jayabharathi, J., Manimekalai, A. & Rajarajan, G. (2007). Acta Cryst. E63, o2886.]). For the biological activity ofpiperidines, see: Venketeshperumal et al. (2001[Venketeshperumal, R., Adiraj, M. & Shanmugapandian, P. (2001). Indian Drugs, 38, 167-169.]).

[Scheme 1]

Experimental

Crystal data
  • C22H27NO

  • Mr = 321.45

  • Monoclinic, P 21 /n

  • a = 12.2318 (5) Å

  • b = 5.5879 (2) Å

  • c = 26.9977 (10) Å

  • β = 94.377 (3)°

  • V = 1839.91 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 110 K

  • 0.48 × 0.32 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.937, Tmax = 1.000

  • 16194 measured reflections

  • 6192 independent reflections

  • 4118 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.121

  • S = 0.96

  • 6192 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O4i 1.00 2.59 3.2798 (11) 126
C34—H34BCg1ii 0.99 2.87 3.7809 (12) 154
Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y, -z. Cg1 is the centroid of the C61–C66 ring.

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Piperidones exhibit a wide spectrum of biological activities and form an essential part of the molecular structures of important drugs. Molecular geometry critically influences biological activity. Attention has been focused on structure-activity relationships. Piperidines with crowded groups at C3 and C5 have enhanced biological activity compared to other piperidines (Venketeshperumal et al., 2001).

As part of our research, we have synthesized the title compound and report its crystal structure here. Thiruvalluvar et al., (2007) have reported the crystal structure of a diphenylpiperidin-4-ol derivative, in which the piperidine ring adopts a chair conformation.

In the title molecule, C22H27NO, (Fig.1) the piperidine ring adopts a chair conformation, with all substituents equatorial. The dihedral angle between the two phenyl rings is 56.90 (5)°. Molecules are linked by C6—H6···O4(-x, 1 - y, -z) weak hydrogen bonds. A C34—H34B···π (-x, -y, -z) interaction involving the phenyl ring (C61—C66) is also found in the crystal structure.

Related literature top

For a related crystal structure, see: Thiruvalluvar et al. (2007). For the biological activity ofpiperidines , see: Venketeshperumal et al. (2001). Cg1 is the centroid of the C61–C66 ring.

Experimental top

A mixture of ammonium acetate (38.5 g, 0.5 mol), benzaldehyde (106.12 ml, 1 mol) and 2-octanone (64.10 ml, 0.5 mol) in distilled ethanol was heated to boiling. After cooling the viscous liquid obtained was dissolved in diethyl ether (200 ml) and shaken with 10 ml concentrated hydrochloric acid. The precipitated hydrochloride of the title compound was removed by filtration and washed with 40 ml mixture of ethanol and diethyl ether (1:1) and then with diethyl ether to remove most of the coloured impurities. The base was liberated from an alcoholic solution by adding aqueous ammonia and then diluting with water. It was purified by column chromatography, using an n-hexane-ethyl acetate mixture as the solvent. The yield of the compound was 80%.

Refinement top

The N-bound H atom was located in a difference Fourier map and refined freely; N1—H1 = 0.911 (12) Å. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 - 1.00 Å; Uiso(H) = kUeq(C), where k = 1.5 for methyl and 1.2 for all other H atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the asymmetric unit, showing the atom-numbering scheme and displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the b axis. Dashed lines indicate C—H···O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
t-3-Pentyl-r-2,c-6-diphenylpiperidin-4-one top
Crystal data top
C22H27NOF(000) = 696
Mr = 321.45Dx = 1.160 Mg m3
Monoclinic, P21/nMelting point: 368 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.2318 (5) ÅCell parameters from 5712 reflections
b = 5.5879 (2) Åθ = 4.9–32.7°
c = 26.9977 (10) ŵ = 0.07 mm1
β = 94.377 (3)°T = 110 K
V = 1839.91 (12) Å3Rectangular-plate, colourless
Z = 40.48 × 0.32 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
6192 independent reflections
Radiation source: Enhance (Mo) X-ray Source4118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.5081 pixels mm-1θmax = 32.8°, θmin = 5.0°
ω scansh = 1717
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 88
Tmin = 0.937, Tmax = 1.000l = 3540
16194 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0674P)2]
where P = (Fo2 + 2Fc2)/3
6192 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C22H27NOV = 1839.91 (12) Å3
Mr = 321.45Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.2318 (5) ŵ = 0.07 mm1
b = 5.5879 (2) ÅT = 110 K
c = 26.9977 (10) Å0.48 × 0.32 × 0.12 mm
β = 94.377 (3)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
6192 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
4118 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 1.000Rint = 0.030
16194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.31 e Å3
6192 reflectionsΔρmin = 0.18 e Å3
221 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.02984 (5)0.25856 (13)0.02836 (2)0.0227 (2)
N10.29439 (6)0.34289 (15)0.05803 (3)0.0171 (2)
C20.22093 (7)0.38195 (17)0.09795 (3)0.0165 (2)
C30.12069 (7)0.21283 (18)0.09013 (3)0.0169 (3)
C40.06862 (8)0.23999 (17)0.03724 (3)0.0173 (2)
C50.14663 (8)0.24418 (18)0.00331 (3)0.0192 (3)
C60.24286 (7)0.41460 (18)0.00937 (3)0.0172 (3)
C210.28492 (7)0.34132 (18)0.14743 (3)0.0172 (3)
C220.34717 (8)0.13503 (19)0.15574 (3)0.0207 (3)
C230.40971 (8)0.1003 (2)0.20020 (4)0.0255 (3)
C240.40946 (9)0.2723 (2)0.23750 (4)0.0291 (3)
C250.34617 (9)0.4751 (2)0.23009 (4)0.0293 (3)
C260.28428 (8)0.51060 (19)0.18526 (4)0.0225 (3)
C310.03717 (8)0.24628 (18)0.12901 (4)0.0201 (3)
C320.03780 (8)0.0314 (2)0.13360 (4)0.0221 (3)
C330.12480 (8)0.06791 (19)0.17050 (4)0.0219 (3)
C340.20306 (9)0.1429 (2)0.17217 (4)0.0299 (3)
C350.29164 (9)0.1088 (3)0.20818 (4)0.0348 (4)
C610.32404 (7)0.40532 (18)0.03020 (3)0.0173 (3)
C620.32447 (9)0.58540 (19)0.06565 (4)0.0248 (3)
C630.39528 (9)0.5724 (2)0.10367 (4)0.0294 (3)
C640.46508 (8)0.3801 (2)0.10661 (4)0.0264 (3)
C650.46548 (9)0.1999 (2)0.07135 (4)0.0276 (3)
C660.39528 (8)0.2136 (2)0.03327 (4)0.0241 (3)
H10.3572 (10)0.428 (2)0.0651 (4)0.021 (3)*
H20.194590.551390.096390.0197*
H30.148870.045180.093520.0203*
H5A0.106770.295580.034810.0230*
H5B0.175100.080710.008190.0230*
H60.214260.581560.011670.0206*
H220.346860.016080.130590.0249*
H230.452620.040590.205200.0306*
H240.452690.249940.267900.0349*
H250.344790.591330.255720.0351*
H260.241270.651410.180440.0270*
H31A0.076990.277220.161690.0242*
H31B0.008270.388780.120120.0242*
H32A0.007450.109250.144060.0266*
H32B0.074770.004350.100530.0266*
H33A0.088070.093140.204050.0263*
H33B0.167390.214030.161290.0263*
H34A0.160330.288300.181790.0359*
H34B0.238590.169580.138440.0359*
H35A0.338800.250680.207500.0522*
H35B0.335840.032160.198380.0522*
H35C0.257320.085740.241840.0522*
H620.276300.718020.063990.0298*
H630.395410.696750.127670.0352*
H640.512770.371210.132720.0317*
H650.513580.067230.073190.0331*
H660.396120.090090.009050.0289*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0151 (3)0.0264 (4)0.0265 (4)0.0013 (3)0.0007 (3)0.0036 (3)
N10.0131 (4)0.0236 (4)0.0147 (3)0.0032 (3)0.0021 (3)0.0007 (3)
C20.0157 (4)0.0180 (4)0.0160 (4)0.0013 (4)0.0035 (3)0.0019 (3)
C30.0142 (4)0.0196 (5)0.0173 (4)0.0018 (4)0.0031 (3)0.0017 (4)
C40.0157 (4)0.0148 (4)0.0213 (4)0.0026 (4)0.0013 (3)0.0008 (3)
C50.0168 (4)0.0238 (5)0.0170 (4)0.0019 (4)0.0012 (3)0.0021 (4)
C60.0160 (4)0.0189 (5)0.0168 (4)0.0000 (4)0.0018 (3)0.0002 (3)
C210.0135 (4)0.0226 (5)0.0160 (4)0.0051 (4)0.0038 (3)0.0017 (4)
C220.0178 (4)0.0252 (5)0.0196 (4)0.0017 (4)0.0041 (3)0.0013 (4)
C230.0180 (5)0.0330 (6)0.0255 (5)0.0004 (4)0.0010 (4)0.0041 (4)
C240.0237 (5)0.0440 (7)0.0192 (5)0.0096 (5)0.0015 (4)0.0018 (5)
C250.0319 (6)0.0363 (6)0.0198 (5)0.0100 (5)0.0025 (4)0.0072 (4)
C260.0232 (5)0.0236 (5)0.0211 (5)0.0044 (4)0.0051 (4)0.0040 (4)
C310.0170 (4)0.0247 (5)0.0193 (4)0.0027 (4)0.0053 (3)0.0037 (4)
C320.0209 (5)0.0265 (5)0.0197 (5)0.0039 (4)0.0060 (4)0.0012 (4)
C330.0182 (4)0.0283 (5)0.0198 (4)0.0014 (4)0.0050 (3)0.0008 (4)
C340.0253 (5)0.0393 (7)0.0260 (5)0.0101 (5)0.0072 (4)0.0004 (5)
C350.0249 (5)0.0461 (8)0.0347 (6)0.0062 (5)0.0101 (5)0.0083 (5)
C610.0150 (4)0.0216 (5)0.0153 (4)0.0044 (4)0.0011 (3)0.0013 (3)
C620.0281 (5)0.0227 (5)0.0240 (5)0.0010 (4)0.0044 (4)0.0030 (4)
C630.0345 (6)0.0324 (6)0.0219 (5)0.0099 (5)0.0071 (4)0.0057 (4)
C640.0204 (5)0.0401 (7)0.0193 (5)0.0113 (5)0.0056 (4)0.0045 (4)
C650.0208 (5)0.0364 (6)0.0263 (5)0.0020 (5)0.0066 (4)0.0025 (5)
C660.0238 (5)0.0275 (5)0.0216 (5)0.0024 (4)0.0059 (4)0.0039 (4)
Geometric parameters (Å, º) top
O4—C41.2143 (12)C2—H21.0000
N1—C21.4712 (11)C3—H31.0000
N1—C61.4688 (12)C5—H5A0.9900
N1—H10.911 (12)C5—H5B0.9900
C2—C31.5497 (13)C6—H61.0000
C2—C211.5130 (12)C22—H220.9500
C3—C311.5310 (13)C23—H230.9500
C3—C41.5260 (12)C24—H240.9500
C4—C51.5063 (13)C25—H250.9500
C5—C61.5323 (13)C26—H260.9500
C6—C611.5139 (12)C31—H31A0.9900
C21—C221.3903 (14)C31—H31B0.9900
C21—C261.3925 (14)C32—H32A0.9900
C22—C231.3869 (14)C32—H32B0.9900
C23—C241.3922 (16)C33—H33A0.9900
C24—C251.3784 (16)C33—H33B0.9900
C25—C261.3919 (15)C34—H34A0.9900
C31—C321.5216 (15)C34—H34B0.9900
C32—C331.5259 (15)C35—H35A0.9800
C33—C341.5207 (15)C35—H35B0.9800
C34—C351.5219 (16)C35—H35C0.9800
C61—C661.3874 (14)C62—H620.9500
C61—C621.3890 (14)C63—H630.9500
C62—C631.3946 (15)C64—H640.9500
C63—C641.3785 (15)C65—H650.9500
C64—C651.3854 (16)C66—H660.9500
C65—C661.3910 (15)
O4···C323.1202 (12)H5A···O4i2.6700
O4···C6i3.2798 (11)H5A···H32Bii2.4200
O4···C4i3.3294 (11)H5B···C662.9200
O4···O4i3.2139 (10)H5B···O4ii2.6300
O4···C4ii3.3158 (11)H6···H22.3200
O4···C5ii3.2004 (12)H6···H622.3600
O4···C5i3.1736 (12)H6···O4i2.5900
O4···H32B2.5300H22···N12.7200
O4···H31B2.5800H22···C33.1000
O4···H5Ai2.6700H22···H32.5500
O4···H5Bii2.6300H22···H65ix2.4400
O4···H6i2.5900H23···C25vi3.1000
N1···H222.7200H24···H32Aiv2.5200
N1···H662.6800H25···H31Aiv2.5800
C4···O4i3.3294 (11)H26···C22vii3.0900
C4···O4ii3.3158 (11)H26···H22.3600
C5···O4ii3.2004 (12)H26···C24iv3.0600
C5···O4i3.1736 (12)H31A···C212.6300
C6···O4i3.2798 (11)H31A···C262.8800
C24···C26iii3.5857 (15)H31A···H25iii2.5800
C26···C313.5949 (14)H31B···O42.5800
C26···C24iv3.5857 (15)H31B···H33B2.5100
C31···C263.5949 (14)H32A···H32.4400
C32···O43.1202 (12)H32A···H34A2.5600
C3···H223.1000H32A···H24iii2.5200
C4···H32B2.8800H32B···O42.5300
C5···H32Bii3.0200H32B···C42.8800
C21···H64v3.0000H32B···H34B2.5000
C21···H31A2.6300H32B···C5ii3.0200
C22···H26vi3.0900H32B···H5Aii2.4200
C22···H32.8900H33A···H35C2.5800
C22···H12.955 (11)H33B···H31B2.5100
C24···H26iii3.0600H33B···H35B2.5700
C25···H23vii3.1000H34A···H32A2.5600
C26···H64v3.0200H34B···H32B2.5000
C26···H31A2.8800H34B···C63ii3.0600
C35···H35Cviii3.0300H34B···C64ii3.0700
C63···H34Bii3.0600H35A···H35Cviii2.5500
C64···H1v2.600 (12)H35B···H33B2.5700
C64···H34Bii3.0700H35B···H63i2.5000
C65···H1v3.000 (12)H35C···H33A2.5800
C66···H12.982 (11)H35C···C35x3.0300
C66···H5B2.9200H35C···H35Ax2.5500
H1···C222.955 (11)H62···H62.3600
H1···C662.982 (11)H63···H35Bi2.5000
H1···C64v2.600 (12)H64···C21v3.0000
H1···C65v3.000 (12)H64···C26v3.0200
H1···H64v2.5800H64···H1v2.5800
H2···H62.3200H65···H22ix2.4400
H2···H262.3600H65···H66ix2.5600
H3···C222.8900H66···N12.6800
H3···H222.5500H66···H65ix2.5600
H3···H32A2.4400
C2—N1—C6111.74 (7)C5—C6—H6109.00
C6—N1—H1110.0 (7)C61—C6—H6109.00
C2—N1—H1108.8 (7)C21—C22—H22120.00
N1—C2—C21108.71 (7)C23—C22—H22120.00
N1—C2—C3109.32 (7)C22—C23—H23120.00
C3—C2—C21112.30 (7)C24—C23—H23120.00
C4—C3—C31112.13 (8)C23—C24—H24120.00
C2—C3—C4109.65 (7)C25—C24—H24120.00
C2—C3—C31113.24 (7)C24—C25—H25120.00
O4—C4—C5121.93 (7)C26—C25—H25120.00
O4—C4—C3122.01 (8)C21—C26—H26120.00
C3—C4—C5116.06 (8)C25—C26—H26120.00
C4—C5—C6111.45 (7)C3—C31—H31A109.00
N1—C6—C5107.47 (7)C3—C31—H31B109.00
C5—C6—C61110.80 (7)C32—C31—H31A109.00
N1—C6—C61111.22 (7)C32—C31—H31B109.00
C2—C21—C26120.94 (9)H31A—C31—H31B108.00
C2—C21—C22120.46 (8)C31—C32—H32A109.00
C22—C21—C26118.59 (8)C31—C32—H32B109.00
C21—C22—C23120.99 (9)C33—C32—H32A109.00
C22—C23—C24119.86 (10)C33—C32—H32B109.00
C23—C24—C25119.66 (10)H32A—C32—H32B108.00
C24—C25—C26120.37 (10)C32—C33—H33A109.00
C21—C26—C25120.52 (9)C32—C33—H33B109.00
C3—C31—C32113.41 (8)C34—C33—H33A109.00
C31—C32—C33113.72 (9)C34—C33—H33B109.00
C32—C33—C34112.81 (9)H33A—C33—H33B108.00
C33—C34—C35113.73 (10)C33—C34—H34A109.00
C6—C61—C62119.91 (9)C33—C34—H34B109.00
C62—C61—C66118.87 (9)C35—C34—H34A109.00
C6—C61—C66121.16 (9)C35—C34—H34B109.00
C61—C62—C63120.31 (10)H34A—C34—H34B108.00
C62—C63—C64120.34 (10)C34—C35—H35A109.00
C63—C64—C65119.78 (10)C34—C35—H35B109.00
C64—C65—C66119.86 (10)C34—C35—H35C109.00
C61—C66—C65120.84 (10)H35A—C35—H35B109.00
N1—C2—H2109.00H35A—C35—H35C109.00
C3—C2—H2109.00H35B—C35—H35C109.00
C21—C2—H2109.00C61—C62—H62120.00
C2—C3—H3107.00C63—C62—H62120.00
C4—C3—H3107.00C62—C63—H63120.00
C31—C3—H3107.00C64—C63—H63120.00
C4—C5—H5A109.00C63—C64—H64120.00
C4—C5—H5B109.00C65—C64—H64120.00
C6—C5—H5A109.00C64—C65—H65120.00
C6—C5—H5B109.00C66—C65—H65120.00
H5A—C5—H5B108.00C61—C66—H66120.00
N1—C6—H6109.00C65—C66—H66120.00
C6—N1—C2—C365.82 (9)N1—C6—C61—C6644.07 (12)
C6—N1—C2—C21171.28 (8)C5—C6—C61—C62101.57 (10)
C2—N1—C6—C566.24 (9)C5—C6—C61—C6675.40 (11)
C2—N1—C6—C61172.32 (8)C2—C21—C22—C23177.34 (9)
N1—C2—C3—C451.99 (10)C26—C21—C22—C231.64 (14)
N1—C2—C3—C31178.04 (8)C2—C21—C26—C25177.96 (9)
C21—C2—C3—C4172.73 (7)C22—C21—C26—C251.02 (14)
C21—C2—C3—C3161.21 (10)C21—C22—C23—C240.85 (15)
N1—C2—C21—C2249.98 (11)C22—C23—C24—C250.58 (16)
N1—C2—C21—C26128.98 (9)C23—C24—C25—C261.19 (16)
C3—C2—C21—C2271.12 (11)C24—C25—C26—C210.38 (16)
C3—C2—C21—C26109.92 (10)C3—C31—C32—C33177.25 (8)
C2—C3—C4—O4134.43 (9)C31—C32—C33—C34176.50 (9)
C2—C3—C4—C545.15 (11)C32—C33—C34—C35179.13 (9)
C31—C3—C4—O47.74 (13)C6—C61—C62—C63176.86 (9)
C31—C3—C4—C5171.84 (8)C66—C61—C62—C630.17 (15)
C2—C3—C31—C32159.31 (8)C6—C61—C66—C65176.46 (9)
C4—C3—C31—C3275.97 (11)C62—C61—C66—C650.54 (15)
O4—C4—C5—C6132.23 (9)C61—C62—C63—C640.37 (16)
C3—C4—C5—C647.35 (11)C62—C63—C64—C650.55 (16)
C4—C5—C6—N154.81 (10)C63—C64—C65—C660.18 (16)
C4—C5—C6—C61176.51 (8)C64—C65—C66—C610.37 (16)
N1—C6—C61—C62138.96 (9)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1, y+1, z; (vi) x, y1, z; (vii) x, y+1, z; (viii) x1/2, y1/2, z+1/2; (ix) x+1, y, z; (x) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4i1.002.593.2798 (11)126
C34—H34B···Cg1ii0.992.873.7809 (12)154
Symmetry codes: (i) x, y+1, z; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC22H27NO
Mr321.45
Crystal system, space groupMonoclinic, P21/n
Temperature (K)110
a, b, c (Å)12.2318 (5), 5.5879 (2), 26.9977 (10)
β (°) 94.377 (3)
V3)1839.91 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.48 × 0.32 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.937, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16194, 6192, 4118
Rint0.030
(sin θ/λ)max1)0.763
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.121, 0.96
No. of reflections6192
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O4i1.002.593.2798 (11)126
C34—H34B···Cg1ii0.992.873.7809 (12)154
Symmetry codes: (i) x, y+1, z; (ii) x, y, z.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiruvalluvar, A., Balamurugan, S., Jayabharathi, J., Manimekalai, A. & Rajarajan, G. (2007). Acta Cryst. E63, o2886.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVenketeshperumal, R., Adiraj, M. & Shanmugapandian, P. (2001). Indian Drugs, 38, 167–169.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds