organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Methyl­sulfon­yl)benzaldehyde

aSchool of Life Sciences, ShanDong University of Technology, ZiBo 255049, People's Republic of China, and bSchool of Chemical Engineering, ShanDong University of Technology, ZiBo 255049, People's Republic of China.
*Correspondence e-mail: njuqss@yahoo.com.cn

(Received 31 October 2009; accepted 4 November 2009; online 7 November 2009)

In the crystal of the title compound, C8H8O3S, the mol­ecules are linked into a three-dimensional array by inter­molecular C—H⋯O hydrogen bonds.

Related literature

For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Ma (2008[Ma, D.-S. (2008). Acta Cryst. E64, o2299.]). For synthetic details, see: Rivett et al. (1979[Rivett, D. E., Rosevear, J. & Wilshire, J. F. K. (1979). Aust. J. Chem. 32, 1601-1612.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8O3S

  • Mr = 184.20

  • Monoclinic, P 21 /c

  • a = 6.1280 (12) Å

  • b = 8.0400 (16) Å

  • c = 16.734 (3) Å

  • β = 90.07 (3)°

  • V = 824.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.902, Tmax = 0.933

  • 1643 measured reflections

  • 1495 independent reflections

  • 1310 reflections with I > 2σ(I)

  • Rint = 0.013

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.126

  • S = 1.00

  • 1495 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O3i 0.93 2.57 3.457 (3) 159
C1—H1D⋯O1ii 0.96 2.56 3.518 (3) 176
Symmetry codes: (i) -x-1, -y, -z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound has been of great of interest for many years. It acts as an important precursor for the synthesis of amino alcohols with applications to the synthesis of the antibiotics chloramphenicol, fluoramphenicol and thiamphenicol. Here we report its crystal structure.

In the title compound (Fig. 1), all bond lengths are within normal ranges (Allen et al., 1987) and comparable to the values observed in a closely related compound (Ma, 2008). The C1—S—C2—C3 torsion angle is 75.07 (17)°.

In the crystal structure, molecules are linked through intermolecular C—H···O hydrogen bonds (Table 1; Fig. 2).

Related literature top

For reference bond-length data, see: Allen et al. (1987). For a related structure, see: Ma (2008). For synthetic details, see: Rivett et al. (1979).

Experimental top

The title compound was synthesized according to a literature method (Rivett et al., 1979). 0.1 g of the title compound was dissolved in acetonitrile (20 ml). Single crystals suitable for X-ray diffraction were obtained by spontaneous evaporation of the solvent.

Refinement top

All H atoms were placed in geometrical positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.96 Å, They were treated as riding atoms, with Uiso(H) = kUeq(C), where k = 1.5 for methyl and 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius 1989); cell refinement: CAD-4 Software (Enraf–Nonius 1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound. Dashed lines indicate hydrogen bonds.
4-(Methylsulfonyl)benzaldehyde top
Crystal data top
C8H8O3SF(000) = 384
Mr = 184.20Dx = 1.484 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.1280 (12) ÅCell parameters from 25 reflections
b = 8.0400 (16) Åθ = 9–13°
c = 16.734 (3) ŵ = 0.35 mm1
β = 90.07 (3)°T = 293 K
V = 824.5 (3) Å3Block, yellow
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1310 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Graphite monochromatorθmax = 25.2°, θmin = 2.4°
ω/2θ scansh = 70
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 90
Tmin = 0.902, Tmax = 0.933l = 2020
1643 measured reflections3 standard reflections every 200 reflections
1495 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.1P)2 + 0.095P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1495 reflectionsΔρmax = 0.22 e Å3
110 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (6)
Crystal data top
C8H8O3SV = 824.5 (3) Å3
Mr = 184.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.1280 (12) ŵ = 0.35 mm1
b = 8.0400 (16) ÅT = 293 K
c = 16.734 (3) Å0.30 × 0.20 × 0.20 mm
β = 90.07 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1310 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
Rint = 0.013
Tmin = 0.902, Tmax = 0.9333 standard reflections every 200 reflections
1643 measured reflections intensity decay: 1%
1495 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
1495 reflectionsΔρmin = 0.26 e Å3
110 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.25890 (8)0.43803 (6)0.17148 (3)0.0397 (3)
O10.1031 (3)0.5283 (2)0.21856 (10)0.0647 (5)
O20.4429 (3)0.5269 (2)0.13956 (10)0.0590 (5)
C10.3533 (4)0.2698 (3)0.22913 (12)0.0479 (5)
H1B0.43080.31110.27490.072*
H1C0.44920.20220.19750.072*
H1D0.23140.20410.24650.072*
C20.1206 (3)0.3429 (2)0.09056 (10)0.0338 (4)
C30.0839 (3)0.2728 (3)0.10317 (12)0.0436 (5)
H3A0.14840.27680.15340.052*
O30.3837 (3)0.0537 (2)0.10080 (11)0.0631 (5)
C40.1897 (3)0.1971 (3)0.04005 (12)0.0427 (5)
H4A0.32560.14820.04770.051*
C50.0929 (3)0.1941 (2)0.03484 (11)0.0373 (5)
C60.1115 (4)0.2644 (3)0.04627 (12)0.0432 (5)
H6A0.17570.26130.09660.052*
C70.2200 (3)0.3388 (2)0.01639 (11)0.0392 (5)
H7A0.35750.38540.00900.047*
C80.2049 (4)0.1147 (3)0.10336 (13)0.0504 (6)
H8A0.13150.11190.15200.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0415 (4)0.0387 (4)0.0387 (4)0.00006 (19)0.0065 (2)0.00429 (18)
O10.0675 (11)0.0680 (11)0.0586 (10)0.0206 (9)0.0087 (9)0.0250 (8)
O20.0628 (10)0.0582 (9)0.0560 (9)0.0261 (8)0.0096 (8)0.0025 (8)
C10.0512 (12)0.0505 (12)0.0421 (11)0.0021 (10)0.0120 (9)0.0027 (9)
C20.0330 (9)0.0330 (9)0.0352 (9)0.0010 (7)0.0039 (7)0.0013 (7)
C30.0365 (10)0.0567 (12)0.0374 (10)0.0024 (9)0.0051 (8)0.0022 (9)
O30.0617 (11)0.0626 (10)0.0649 (11)0.0178 (8)0.0167 (8)0.0050 (8)
C40.0331 (10)0.0461 (11)0.0488 (11)0.0050 (8)0.0015 (8)0.0001 (8)
C50.0398 (10)0.0323 (9)0.0396 (10)0.0018 (8)0.0072 (8)0.0008 (7)
C60.0472 (11)0.0486 (11)0.0338 (10)0.0028 (9)0.0041 (8)0.0009 (8)
C70.0352 (10)0.0432 (10)0.0391 (10)0.0045 (8)0.0005 (8)0.0030 (8)
C80.0595 (14)0.0469 (12)0.0448 (11)0.0042 (11)0.0090 (10)0.0014 (9)
Geometric parameters (Å, º) top
S—O11.4355 (17)C3—H3A0.9300
S—O21.4385 (17)O3—C81.201 (3)
S—C11.759 (2)C4—C51.387 (3)
S—C21.7703 (18)C4—H4A0.9300
C1—H1B0.9600C5—C61.388 (3)
C1—H1C0.9600C5—C81.480 (3)
C1—H1D0.9600C6—C71.377 (3)
C2—C71.384 (3)C6—H6A0.9300
C2—C31.390 (3)C7—H7A0.9300
C3—C41.380 (3)C8—H8A0.9300
O1—S—O2118.34 (12)C2—C3—H3A120.5
O1—S—C1107.85 (11)C3—C4—C5119.86 (18)
O2—S—C1109.17 (11)C3—C4—H4A120.1
O1—S—C2108.66 (10)C5—C4—H4A120.1
O2—S—C2107.77 (9)C4—C5—C6120.28 (18)
C1—S—C2104.13 (9)C4—C5—C8120.61 (18)
S—C1—H1B109.5C6—C5—C8119.11 (19)
S—C1—H1C109.5C7—C6—C5120.46 (18)
H1B—C1—H1C109.5C7—C6—H6A119.8
S—C1—H1D109.5C5—C6—H6A119.8
H1B—C1—H1D109.5C6—C7—C2118.71 (17)
H1C—C1—H1D109.5C6—C7—H7A120.6
C7—C2—C3121.62 (17)C2—C7—H7A120.6
C7—C2—S119.04 (14)O3—C8—C5124.8 (2)
C3—C2—S119.34 (14)O3—C8—H8A117.6
C4—C3—C2119.05 (18)C5—C8—H8A117.6
C4—C3—H3A120.5
O1—S—C2—C7140.91 (17)C3—C4—C5—C61.1 (3)
O2—S—C2—C711.52 (19)C3—C4—C5—C8179.47 (18)
C1—S—C2—C7104.34 (17)C4—C5—C6—C70.4 (3)
O1—S—C2—C339.78 (18)C8—C5—C6—C7179.85 (18)
O2—S—C2—C3169.16 (16)C5—C6—C7—C20.4 (3)
C1—S—C2—C374.97 (17)C3—C2—C7—C60.6 (3)
C7—C2—C3—C40.1 (3)S—C2—C7—C6179.91 (14)
S—C2—C3—C4179.23 (15)C4—C5—C8—O32.4 (3)
C2—C3—C4—C50.9 (3)C6—C5—C8—O3178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O3i0.932.573.457 (3)159
C1—H1D···O1ii0.962.563.518 (3)176
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H8O3S
Mr184.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.1280 (12), 8.0400 (16), 16.734 (3)
β (°) 90.07 (3)
V3)824.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.902, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
1643, 1495, 1310
Rint0.013
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.126, 1.00
No. of reflections1495
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.26

Computer programs: CAD-4 Software (Enraf–Nonius 1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O3i0.932.573.457 (3)159.3
C1—H1D···O1ii0.962.563.518 (3)175.6
Symmetry codes: (i) x1, y, z; (ii) x, y1/2, z+1/2.
 

Acknowledgements

This project was sponsored by ShanDong Province Science & Technology Innovation Foundation (People's Republic of China).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMa, D.-S. (2008). Acta Cryst. E64, o2299.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRivett, D. E., Rosevear, J. & Wilshire, J. F. K. (1979). Aust. J. Chem. 32, 1601–1612.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds