organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Acetyl-4-(4-meth­oxy­phen­yl)-6-methyl-3,4-di­hydro­pyrimidine-2(1H)-thione

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, bDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: athiru@vsnl.net

(Received 30 October 2009; accepted 4 November 2009; online 7 November 2009)

In the title mol­ecule, C14H16N2O2S, the heterocyclic ring adopts an envelope conformation with the plane through the five coplanar atoms making a dihedral angle of 88.99 (4)° with the benzene ring, which adopts an axial orientation. The thionyl, acetyl and methyl groups all have equatorial orientations. Inter­molecular N—H⋯S, N—H⋯O, C—H⋯O and C—H⋯S hydrogen bonds are found in the crystal structure.

Related literature

For related crystal structures and their chemical and biological applications, see: Anuradha et al. (2008[Anuradha, N., Thiruvalluvar, A., Pandiarajan, K., Chitra, S. & Butcher, R. J. (2008). Acta Cryst. E64, o2474-o2475.], 2009[Anuradha, N., Thiruvalluvar, A., Pandiarajan, K., Chitra, S. & Butcher, R. J. (2009). Acta Cryst. E65, o564-o565.]); Chitra et al. (2009[Chitra, S., Pandiarajan, K., Anuradha, N. & Thiruvalluvar, A. (2009). Acta Cryst. E65, o23.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2O2S

  • Mr = 276.36

  • Monoclinic, P 21 /n

  • a = 12.0415 (2) Å

  • b = 6.2219 (1) Å

  • c = 18.0192 (3) Å

  • β = 100.901 (1)°

  • V = 1325.66 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.17 mm−1

  • T = 110 K

  • 0.53 × 0.13 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.418, Tmax = 1.000

  • 5263 measured reflections

  • 2616 independent reflections

  • 2447 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 1.09

  • 2616 reflections

  • 183 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2i 0.87 (2) 2.61 (2) 3.464 (1) 169.3 (18)
N3—H3⋯O14ii 0.85 (2) 2.15 (2) 2.985 (2) 170 (2)
C16—H16B⋯O15iii 0.98 2.46 3.4377 (17) 176
C42—H42⋯O15iv 0.95 2.42 3.310 (2) 156
C61—H61B⋯S2i 0.98 2.80 3.7190 (14) 157
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x, y+1, z.

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our investigations of dihydropyrimidine derivatives to compare their biological activity, we have undertaken the X-ray crystal structure analysis of the title compound. The crystal structures of three very closely related compounds have recently been reported [Anuradha et al., (2008, 2009); Chitra et al., (2009]; these studies have also reported their chemical and biological applications.

In the title molecule, C14H16N2O2S, (Fig. 1), the heterocyclic ring adopts an envelope conformation with the plane through the five coplanar atoms (N1,C2,N3,C5,C6) making a dihedral angle of 88.99 (4)° with the benzene ring, which adopts an axial orientation. The thionyl, acetyl and methyl groups all have equatorial orientations. Intermolecular N1—H1···S2(2 - x, 1 - y, 1 - z), N3—H3···O14(1 - x, -y, 1 - z), C16—H16B···O15(3/2 - x, 1/2 + y, 1/2 - z), C42—H42···O15(x, 1 + y, z) and C61—H61B···S2(2 - x, 1 - y, 1 - z) hydrogen bonds are found in the crystal structure.

Related literature top

For related crystal structures and their chemical and biological applications, see: Anuradha et al. (2008, 2009); Chitra et al. (2009).

Experimental top

A solution of acetylacetone (1.001 g, 0.01 mol), 4-methoxybenzaldehyde (1.202 g, 0.01 mol) and thiourea (1.14 g, 0.015 mol) was heated under reflux in the presence of calcium fluoride (0.078 g, 0.001 mol) for 3 h (monitored by TLC). After completion of the reaction, the reaction mixture was cooled to room temperature and poured into crushed ice. The crude product containing also the catalyst was collected by filtration on a Buchner funnel. The mixture of the product and the catalyst was digested in methanol (40 ml). The undissolved catalyst was removed by filtration. The crude product was obtained by evaporation of the methanol and further purified by recrystallization from hot ethanol to afford the pure title compound. Yield 90% (1.2 g).

Refinement top

The two N-bound H atoms were located in a difference Fourier map and refined freely; N1—H1 = 0.87 (2) Å and N3—H3 = 0.85 (2) Å. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 - 1.00 Å ; Uiso(H) = kUeq(C), where k = 1.5 for methyl and 1.2 for all other H atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the b axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
5-Acetyl-4-(4-methoxyphenyl)-6-methyl-3,4-dihydropyrimidine-2(1H)-thione top
Crystal data top
C14H16N2O2SF(000) = 584
Mr = 276.36Dx = 1.385 Mg m3
Monoclinic, P21/nMelting point: 469.5 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54184 Å
a = 12.0415 (2) ÅCell parameters from 4545 reflections
b = 6.2219 (1) Åθ = 4.9–74.1°
c = 18.0192 (3) ŵ = 2.17 mm1
β = 100.901 (1)°T = 110 K
V = 1325.66 (4) Å3Needle, colorless
Z = 40.53 × 0.13 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2616 independent reflections
Radiation source: fine-focus sealed tube2447 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 10.5081 pixels mm-1θmax = 74.1°, θmin = 4.9°
ω scansh = 1215
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 77
Tmin = 0.418, Tmax = 1.000l = 2122
5263 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0764P)2 + 0.4468P]
where P = (Fo2 + 2Fc2)/3
2616 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H16N2O2SV = 1325.66 (4) Å3
Mr = 276.36Z = 4
Monoclinic, P21/nCu Kα radiation
a = 12.0415 (2) ŵ = 2.17 mm1
b = 6.2219 (1) ÅT = 110 K
c = 18.0192 (3) Å0.53 × 0.13 × 0.10 mm
β = 100.901 (1)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2616 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2447 reflections with I > 2σ(I)
Tmin = 0.418, Tmax = 1.000Rint = 0.020
5263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.44 e Å3
2616 reflectionsΔρmin = 0.28 e Å3
183 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.88945 (3)0.40406 (6)0.57843 (2)0.0167 (1)
O140.29443 (9)0.06284 (18)0.34383 (6)0.0192 (3)
O150.74168 (10)0.43229 (18)0.35876 (6)0.0240 (3)
N10.90803 (10)0.2225 (2)0.44765 (7)0.0155 (3)
N30.80719 (10)0.0321 (2)0.52096 (7)0.0151 (3)
C20.86586 (11)0.2080 (2)0.51219 (8)0.0139 (4)
C40.75819 (12)0.1161 (2)0.45957 (8)0.0140 (4)
C50.82669 (12)0.1056 (2)0.39675 (8)0.0140 (4)
C60.89493 (12)0.0647 (2)0.39170 (8)0.0139 (4)
C140.26371 (13)0.2480 (3)0.29726 (9)0.0237 (4)
C150.80594 (12)0.2907 (2)0.34489 (8)0.0158 (4)
C160.85846 (12)0.3124 (2)0.27577 (8)0.0181 (4)
C410.63430 (12)0.0628 (2)0.43028 (8)0.0148 (4)
C420.60296 (12)0.1390 (3)0.40073 (8)0.0162 (4)
C430.49062 (12)0.1883 (2)0.37094 (8)0.0169 (4)
C440.40836 (12)0.0309 (3)0.37140 (8)0.0159 (4)
C450.43784 (12)0.1707 (3)0.40213 (8)0.0185 (4)
C460.55023 (12)0.2172 (2)0.43155 (8)0.0172 (4)
C610.96218 (13)0.1116 (2)0.33106 (8)0.0178 (4)
H10.9539 (17)0.328 (3)0.4448 (11)0.022 (5)*
H30.7815 (18)0.021 (4)0.5615 (12)0.028 (5)*
H40.762990.265650.480250.0167*
H14A0.309230.252720.257590.0356*
H14B0.183370.239870.274040.0356*
H14C0.277500.378140.328270.0356*
H16A0.839890.453710.252700.0271*
H16B0.828910.199690.239370.0271*
H16C0.940750.297970.290240.0271*
H420.659400.245700.400830.0194*
H430.470360.326830.350650.0202*
H450.381170.276420.403000.0222*
H460.570230.354850.452710.0206*
H61A0.912140.106240.281420.0267*
H61B0.995950.255030.339160.0267*
H61C1.022180.004140.333140.0267*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0187 (2)0.0159 (2)0.0155 (2)0.0015 (1)0.0030 (1)0.0042 (1)
O140.0145 (5)0.0235 (6)0.0196 (5)0.0007 (4)0.0030 (4)0.0031 (4)
O150.0333 (7)0.0176 (6)0.0225 (5)0.0084 (4)0.0087 (5)0.0039 (4)
N10.0175 (6)0.0134 (6)0.0161 (6)0.0030 (5)0.0042 (5)0.0007 (5)
N30.0162 (6)0.0175 (6)0.0118 (5)0.0020 (5)0.0034 (5)0.0011 (5)
C20.0127 (6)0.0139 (7)0.0140 (6)0.0025 (5)0.0003 (5)0.0006 (5)
C40.0164 (7)0.0112 (6)0.0139 (6)0.0026 (5)0.0020 (5)0.0002 (5)
C50.0152 (7)0.0135 (7)0.0128 (6)0.0016 (5)0.0014 (5)0.0003 (5)
C60.0136 (7)0.0140 (7)0.0135 (6)0.0014 (5)0.0012 (5)0.0007 (5)
C140.0191 (7)0.0262 (8)0.0253 (8)0.0031 (6)0.0028 (6)0.0052 (7)
C150.0184 (7)0.0129 (7)0.0149 (6)0.0013 (5)0.0002 (5)0.0003 (5)
C160.0222 (7)0.0162 (7)0.0154 (6)0.0001 (5)0.0025 (5)0.0029 (5)
C410.0168 (7)0.0167 (7)0.0110 (6)0.0015 (5)0.0030 (5)0.0012 (5)
C420.0173 (7)0.0166 (7)0.0151 (6)0.0042 (5)0.0042 (5)0.0004 (6)
C430.0193 (7)0.0161 (7)0.0159 (6)0.0000 (5)0.0048 (5)0.0016 (5)
C440.0147 (7)0.0205 (7)0.0128 (6)0.0008 (5)0.0032 (5)0.0014 (5)
C450.0176 (7)0.0186 (8)0.0200 (7)0.0056 (6)0.0051 (5)0.0008 (6)
C460.0198 (7)0.0143 (7)0.0178 (7)0.0021 (5)0.0046 (5)0.0001 (5)
C610.0204 (7)0.0170 (7)0.0172 (7)0.0037 (5)0.0067 (6)0.0014 (5)
Geometric parameters (Å, º) top
S2—C21.6927 (14)C42—C431.392 (2)
O14—C141.432 (2)C43—C441.394 (2)
O14—C441.3822 (18)C44—C451.390 (3)
O15—C151.2290 (18)C45—C461.387 (2)
N1—C21.3571 (19)C4—H41.0000
N1—C61.3947 (18)C14—H14A0.9800
N3—C21.3282 (18)C14—H14B0.9800
N3—C41.4749 (18)C14—H14C0.9800
N1—H10.87 (2)C16—H16A0.9800
N3—H30.85 (2)C16—H16B0.9800
C4—C411.522 (2)C16—H16C0.9800
C4—C51.523 (2)C42—H420.9500
C5—C61.3544 (19)C43—H430.9500
C5—C151.4744 (19)C45—H450.9500
C6—C611.507 (2)C46—H460.9500
C15—C161.506 (2)C61—H61A0.9800
C41—C461.3989 (19)C61—H61B0.9800
C41—C421.388 (2)C61—H61C0.9800
S2···N1i3.4641 (13)C43···H14C2.8000
S2···C16ii3.6641 (15)C43···H14A2.7200
S2···H4iii2.9400C44···H3vi2.80 (2)
S2···H1i2.61 (2)C45···H3vi2.99 (2)
S2···H14Civ3.1600C61···H16B2.8400
S2···H16Cii2.9000C61···H16C2.6500
S2···H61Bi2.8000H1···H61B2.1100
S2···H61Cii3.0800H1···S2i2.61 (2)
O14···C14v3.181 (2)H3···O14vi2.15 (2)
O14···N3vi2.9849 (16)H3···C44vi2.80 (2)
O15···N1vii3.1588 (17)H3···C45vi2.99 (2)
O15···C42vii3.310 (2)H4···S2vii2.9400
O15···C463.1575 (18)H4···O152.3900
O15···C413.0411 (18)H4···H462.3500
O14···H3vi2.15 (2)H14A···C432.7200
O14···H14Av2.7900H14A···H432.3600
O15···H42.3900H14A···O14ix2.7900
O15···H42vii2.4200H14C···C432.8000
O15···H16Bviii2.4600H14C···H432.3000
O15···H61Aviii2.8500H14C···S2iv3.1600
N1···O15iii3.1588 (17)H16A···C15viii3.0700
N1···S2i3.4641 (13)H16A···C42viii3.0300
N3···O14vi2.9849 (16)H16A···H16Bviii2.5700
N3···H422.8600H16B···C612.8400
C2···C423.440 (2)H16B···H61A2.2200
C2···C6ii3.5055 (19)H16B···O15x2.4600
C6···C423.580 (2)H16B···C42viii2.9700
C6···C2ii3.5055 (19)H16B···H16Ax2.5700
C14···C14v3.532 (3)H16B···H42viii2.5800
C14···C14ix3.532 (3)H16C···C63.0200
C14···O14ix3.181 (2)H16C···C612.6500
C16···C43viii3.480 (2)H16C···H61A2.5400
C16···S2ii3.6641 (15)H16C···H61C2.1900
C16···C613.0069 (18)H16C···S2ii2.9000
C16···C42viii3.314 (2)H42···O15iii2.4200
C41···O153.0411 (18)H42···N32.8600
C42···C63.580 (2)H42···C22.8900
C42···O15iii3.310 (2)H42···C52.9800
C42···C16x3.314 (2)H42···C63.0800
C42···C23.440 (2)H42···H16Bx2.5800
C43···C16x3.480 (2)H43···C142.5400
C46···O153.1575 (18)H43···H14A2.3600
C61···C163.0069 (18)H43···H14C2.3000
C2···H422.8900H46···H42.3500
C5···H422.9800H61A···C153.1000
C6···H16C3.0200H61A···C162.6800
C6···H423.0800H61A···H16B2.2200
C14···H432.5400H61A···H16C2.5400
C15···H16Ax3.0700H61A···O15x2.8500
C15···H61A3.1000H61B···H12.1100
C16···H61C2.8400H61B···S2i2.8000
C16···H61A2.6800H61C···C162.8400
C42···H16Bx2.9700H61C···H16C2.1900
C42···H16Ax3.0300H61C···S2ii3.0800
C14—O14—C44117.07 (12)C41—C46—C45120.48 (13)
C2—N1—C6124.27 (12)N3—C4—H4108.00
C2—N3—C4124.91 (12)C5—C4—H4108.00
C2—N1—H1116.6 (13)C41—C4—H4108.00
C6—N1—H1118.5 (13)O14—C14—H14A109.00
C2—N3—H3117.3 (16)O14—C14—H14B109.00
C4—N3—H3115.8 (16)O14—C14—H14C109.00
S2—C2—N3122.14 (11)H14A—C14—H14B109.00
N1—C2—N3116.77 (12)H14A—C14—H14C109.00
S2—C2—N1121.08 (10)H14B—C14—H14C109.00
N3—C4—C5109.55 (11)C15—C16—H16A109.00
N3—C4—C41110.53 (11)C15—C16—H16B109.00
C5—C4—C41111.47 (12)C15—C16—H16C109.00
C4—C5—C15112.76 (11)H16A—C16—H16B109.00
C6—C5—C15126.92 (13)H16A—C16—H16C109.00
C4—C5—C6120.28 (12)H16B—C16—H16C109.00
N1—C6—C5119.29 (13)C41—C42—H42119.00
N1—C6—C61112.65 (11)C43—C42—H42119.00
C5—C6—C61128.06 (12)C42—C43—H43121.00
C5—C15—C16123.16 (12)C44—C43—H43121.00
O15—C15—C5117.96 (13)C44—C45—H45120.00
O15—C15—C16118.88 (12)C46—C45—H45120.00
C4—C41—C46120.64 (11)C41—C46—H46120.00
C42—C41—C46118.84 (13)C45—C46—H46120.00
C4—C41—C42120.51 (12)C6—C61—H61A109.00
C41—C42—C43121.41 (14)C6—C61—H61B109.00
C42—C43—C44118.86 (14)C6—C61—H61C109.00
O14—C44—C43123.70 (15)H61A—C61—H61B109.00
C43—C44—C45120.54 (14)H61A—C61—H61C109.00
O14—C44—C45115.74 (14)H61B—C61—H61C109.00
C44—C45—C46119.84 (14)
C14—O14—C44—C4314.8 (2)C4—C5—C6—N14.6 (2)
C14—O14—C44—C45166.54 (13)C4—C5—C6—C61175.22 (13)
C6—N1—C2—S2178.02 (11)C15—C5—C6—N1177.58 (13)
C6—N1—C2—N31.0 (2)C15—C5—C6—C612.6 (2)
C2—N1—C6—C57.1 (2)C4—C5—C15—O152.64 (19)
C2—N1—C6—C61173.10 (13)C4—C5—C15—C16176.60 (12)
C4—N3—C2—S2163.27 (11)C6—C5—C15—O15179.36 (14)
C4—N3—C2—N117.7 (2)C6—C5—C15—C161.4 (2)
C2—N3—C4—C526.71 (18)C4—C41—C42—C43177.44 (13)
C2—N3—C4—C4196.51 (16)C46—C41—C42—C431.6 (2)
N3—C4—C5—C619.06 (18)C4—C41—C46—C45177.50 (13)
N3—C4—C5—C15162.80 (11)C42—C41—C46—C451.5 (2)
C41—C4—C5—C6103.60 (15)C41—C42—C43—C440.3 (2)
C41—C4—C5—C1574.54 (14)C42—C43—C44—O14179.52 (13)
N3—C4—C41—C4259.07 (17)C42—C43—C44—C451.0 (2)
N3—C4—C41—C46121.95 (14)O14—C44—C45—C46179.68 (13)
C5—C4—C41—C4263.03 (16)C43—C44—C45—C461.0 (2)
C5—C4—C41—C46115.95 (14)C44—C45—C46—C410.2 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x+1/2, y1/2, z+1/2; (vi) x+1, y, z+1; (vii) x, y1, z; (viii) x+3/2, y1/2, z+1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x+3/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S2i0.87 (2)2.61 (2)3.464 (1)169.3 (18)
N3—H3···O14vi0.85 (2)2.15 (2)2.985 (2)170 (2)
C16—H16B···O15x0.982.463.4377 (17)176
C42—H42···O15iii0.952.423.310 (2)156
C61—H61B···S2i0.982.803.7190 (14)157
Symmetry codes: (i) x+2, y+1, z+1; (iii) x, y+1, z; (vi) x+1, y, z+1; (x) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H16N2O2S
Mr276.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)110
a, b, c (Å)12.0415 (2), 6.2219 (1), 18.0192 (3)
β (°) 100.901 (1)
V3)1325.66 (4)
Z4
Radiation typeCu Kα
µ (mm1)2.17
Crystal size (mm)0.53 × 0.13 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.418, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5263, 2616, 2447
Rint0.020
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.09
No. of reflections2616
No. of parameters183
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.28

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S2i0.87 (2)2.61 (2)3.464 (1)169.3 (18)
N3—H3···O14ii0.85 (2)2.15 (2)2.985 (2)170 (2)
C16—H16B···O15iii0.982.463.4377 (17)176
C42—H42···O15iv0.952.423.310 (2)156
C61—H61B···S2i0.982.803.7190 (14)157
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1; (iii) x+3/2, y+1/2, z+1/2; (iv) x, y+1, z.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAnuradha, N., Thiruvalluvar, A., Pandiarajan, K., Chitra, S. & Butcher, R. J. (2008). Acta Cryst. E64, o2474–o2475.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAnuradha, N., Thiruvalluvar, A., Pandiarajan, K., Chitra, S. & Butcher, R. J. (2009). Acta Cryst. E65, o564–o565.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChitra, S., Pandiarajan, K., Anuradha, N. & Thiruvalluvar, A. (2009). Acta Cryst. E65, o23.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds