organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5Z,7Z)-6,8-Di­methyl-9H-tetra­zolo[1,5-b][1,2,4]triazepine

aState Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
*Correspondence e-mail: duzhiming430@sohu.com

(Received 12 October 2009; accepted 23 October 2009; online 28 October 2009)

The mol­ecule of the title compound, C6H8N6, is approximately planar, with a maximum deviation from planarity of 0.099 (1) Å. In the crystal, mol­ecules are linked to each other via pairs of N—H⋯N hydrogen bonding, forming inversion dimers. The crystal structure is further stabilized by ππ stacking inter­actions, with a centroid–centroid distance of 3.419 (1) Å.

Related literature

For the preparation of the title compound, see: Gaponnik & Karavai (1984[Gaponnik, P. N. & Karavai, V. P. (1984). Khim. Geterotsikl. Soedin. 12, 1683-1686.]). For applications of fused tetra­zole ring compounds, see: Taha 2007[Taha, M. A. M. (2007). Monatsh. Chem. 138, 505-509.]; Zbigniew et al. (2007[Zbigniew, K., Mariusz, M. & Andrzej, R. (2007). J. Mol. Struct. 829, 22-28.]); Galvez-Ruiz et al. (2005[Galvez-Ruiz, J. C., Holl, G., Karaghiosoff, K., Klapötke, T. M., Lohnwitz, K., Mayer, P., Noth, H., Polborn, K., Rohbogner, C. J., Suter, M. & Weigand, J. J. (2005). Inorg. Chem. 44, 4237-4253.]); Klapötke & Sabaté (2008[Klapötke, T. M. & Sabaté, C. M. (2008). Chem. Mater. 20, 1750-1763.]). For related structures, see: Taha (2005[Taha, M. A. M. (2005). J. Indian Chem. Soc. 82, 172-174.]); He et al. (2009a[He, C.-L., Du, Z.-M., Tang, Z.-Q., Cong, X.-M. & Meng, L.-Q. (2009a). Acta Cryst. E65, o1760.],b[He, C.-L., Du, Z.-M., Tang, Z.-Q., Cong, X.-M. & Meng, L.-Q. (2009b). Acta Cryst. E65, o1902.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8N6

  • Mr = 164.18

  • Monoclinic, P 21 /c

  • a = 3.9184 (8) Å

  • b = 13.584 (3) Å

  • c = 13.767 (3) Å

  • β = 96.274 (3)°

  • V = 728.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 93 K

  • 0.47 × 0.33 × 0.13 mm

Data collection
  • Rigaku Saturn 724+ diffractometer

  • Absorption correction: none

  • 5029 measured reflections

  • 1647 independent reflections

  • 1445 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.082

  • S = 1.00

  • 1647 reflections

  • 119 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5N⋯N4i 0.920 (19) 1.999 (19) 2.9156 (17) 173.5 (15)
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Compounds based on the tetrazole ring have generated much interest (Taha 2005). On the one hand, fused tetrazole derivatives play an important role in many biological activities (Taha 2007; Zbigniew et al.,2007); on the other hand, nitrogen-rich compounds, in particular those containing the tetrazole ring, have great potential for energetic applications (Klapötke & Sabaté 2008); Galvez-Ruiz et al.2005). The title compound was first prepared by Gaponnik & Karavai (1984), but its crystal structure has hitherto not been reported. Here, we present the crystal structure of the title compound.

The molecular structure is shown in Fig.1. The molecule of the title compound assumes an approximately planar structure. The maximum deviation from planarity is 0.099 (1) Å for atom C3. Bond distances and angles are similar to the corresponding distances and angles reported for related compounds (He et al.2009a; He et al.2009b).

In the crystal structure, molecules are linked to each other via N—H···N hydrogen bonding (Table 1), forming a dimer structure. Intermolecular π-π interactions with a centroid···centroid distance of 3.419 (1) Å (Table 2), further help to stabilize the crystal structure. The crystal packing of the title compound is shown in Fig. 2, viewed down the a axis.

Related literature top

For the preparation of the title compound, see: Gaponnik & Karavai (1984). For applications of fused tetrazole ring compounds, see: Taha 2007; Zbigniew et al. (2007); Galvez-Ruiz et al. (2005); Klapötke & Sabaté (2008). For related structures, see: Taha (2005); He et al. (2009a,b).

Experimental top

The title compound was obtained according to the literature method (Gaponnik & Karavai, 1984). The purity of the compound was checked by determining its melting point, 477–479 K. Single crystals suitable for X-ray crystal structure determination were obtained by slow evaporation of an acetone solution at room temperature over two days.

Refinement top

The H atom directly attached to the triazepine ring and that bonded to N were located in difference Fourier maps and refined freely. Methyl H atoms were placed in calculated positions, with C—H = 0.98 Å and refined as riding; Uiso(H) = 1.2Ueq(C).

Structure description top

Compounds based on the tetrazole ring have generated much interest (Taha 2005). On the one hand, fused tetrazole derivatives play an important role in many biological activities (Taha 2007; Zbigniew et al.,2007); on the other hand, nitrogen-rich compounds, in particular those containing the tetrazole ring, have great potential for energetic applications (Klapötke & Sabaté 2008); Galvez-Ruiz et al.2005). The title compound was first prepared by Gaponnik & Karavai (1984), but its crystal structure has hitherto not been reported. Here, we present the crystal structure of the title compound.

The molecular structure is shown in Fig.1. The molecule of the title compound assumes an approximately planar structure. The maximum deviation from planarity is 0.099 (1) Å for atom C3. Bond distances and angles are similar to the corresponding distances and angles reported for related compounds (He et al.2009a; He et al.2009b).

In the crystal structure, molecules are linked to each other via N—H···N hydrogen bonding (Table 1), forming a dimer structure. Intermolecular π-π interactions with a centroid···centroid distance of 3.419 (1) Å (Table 2), further help to stabilize the crystal structure. The crystal packing of the title compound is shown in Fig. 2, viewed down the a axis.

For the preparation of the title compound, see: Gaponnik & Karavai (1984). For applications of fused tetrazole ring compounds, see: Taha 2007; Zbigniew et al. (2007); Galvez-Ruiz et al. (2005); Klapötke & Sabaté (2008). For related structures, see: Taha (2005); He et al. (2009a,b).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of the title compound, viewed along the a-axis, showing the formation of dimers via N—H···N hydrogen bonds (dashed lines).
(5Z,7Z)-6,8-Dimethyl-9H- tetrazolo[1,5-b][1,2,4]triazepine top
Crystal data top
C6H8N6F(000) = 344
Mr = 164.18Dx = 1.497 Mg m3
Monoclinic, P21/cMelting point: 477 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 3.9184 (8) ÅCell parameters from 2263 reflections
b = 13.584 (3) Åθ = 3.3–27.5°
c = 13.767 (3) ŵ = 0.11 mm1
β = 96.274 (3)°T = 93 K
V = 728.4 (3) Å3Chunk, red
Z = 40.47 × 0.33 × 0.13 mm
Data collection top
Rigaku Saturn 724+
diffractometer
1445 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.019
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
Detector resolution: 28.5714 pixels mm-1h = 45
multi–scank = 1717
5029 measured reflectionsl = 1117
1647 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.031P)2 + 0.36P]
where P = (Fo2 + 2Fc2)/3
1647 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C6H8N6V = 728.4 (3) Å3
Mr = 164.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 3.9184 (8) ŵ = 0.11 mm1
b = 13.584 (3) ÅT = 93 K
c = 13.767 (3) Å0.47 × 0.33 × 0.13 mm
β = 96.274 (3)°
Data collection top
Rigaku Saturn 724+
diffractometer
1445 reflections with I > 2σ(I)
5029 measured reflectionsRint = 0.019
1647 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.26 e Å3
1647 reflectionsΔρmin = 0.22 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4467 (3)0.24707 (7)0.45448 (7)0.0165 (2)
N20.5870 (3)0.24983 (8)0.36816 (7)0.0208 (2)
N30.6547 (3)0.16030 (8)0.34635 (8)0.0223 (3)
N40.5650 (3)0.09674 (8)0.41698 (7)0.0195 (2)
N50.3238 (3)0.11503 (8)0.56546 (8)0.0207 (3)
N60.3868 (3)0.34046 (7)0.49433 (7)0.0176 (2)
C10.4389 (3)0.15238 (9)0.48318 (8)0.0163 (3)
C20.1660 (3)0.16746 (9)0.63408 (8)0.0165 (3)
C30.1175 (3)0.26544 (9)0.63462 (9)0.0180 (3)
C40.2395 (3)0.34313 (9)0.57359 (9)0.0165 (3)
C50.0598 (3)0.10241 (9)0.71313 (9)0.0202 (3)
H5A0.25950.08190.75480.024*
H5B0.05690.04560.68440.024*
H5C0.09140.13800.75090.024*
C60.1945 (3)0.44529 (9)0.61191 (9)0.0206 (3)
H6A0.29200.49200.57050.025*
H6B0.30840.45030.67710.025*
H6C0.04570.45880.61260.025*
H30.006 (4)0.2905 (11)0.6876 (11)0.025 (4)*
H5N0.342 (4)0.0478 (14)0.5724 (12)0.036 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0214 (5)0.0138 (5)0.0148 (5)0.0006 (4)0.0043 (4)0.0002 (4)
N20.0285 (6)0.0182 (5)0.0167 (5)0.0010 (4)0.0074 (4)0.0004 (4)
N30.0309 (6)0.0180 (5)0.0191 (5)0.0013 (5)0.0078 (4)0.0014 (4)
N40.0261 (6)0.0167 (5)0.0166 (5)0.0007 (4)0.0062 (4)0.0005 (4)
N50.0315 (6)0.0130 (5)0.0193 (5)0.0016 (4)0.0106 (5)0.0019 (4)
N60.0230 (5)0.0110 (5)0.0189 (5)0.0009 (4)0.0030 (4)0.0018 (4)
C10.0177 (6)0.0151 (6)0.0161 (6)0.0000 (5)0.0013 (4)0.0005 (4)
C20.0174 (6)0.0168 (6)0.0153 (5)0.0009 (5)0.0021 (4)0.0007 (4)
C30.0196 (6)0.0181 (6)0.0168 (6)0.0000 (5)0.0050 (5)0.0007 (5)
C40.0163 (6)0.0147 (6)0.0181 (6)0.0004 (4)0.0002 (5)0.0002 (4)
C50.0240 (6)0.0174 (6)0.0202 (6)0.0003 (5)0.0072 (5)0.0024 (5)
C60.0246 (6)0.0155 (6)0.0224 (6)0.0011 (5)0.0055 (5)0.0020 (5)
Geometric parameters (Å, º) top
N1—C11.3469 (15)C2—C31.3446 (17)
N1—N21.3635 (14)C2—C51.4958 (16)
N1—N61.4119 (14)C3—C41.4615 (17)
N2—N31.2874 (15)C3—H30.953 (15)
N3—N41.3745 (14)C4—C61.5018 (16)
N4—C11.3207 (15)C5—H5A0.9600
N5—C11.3623 (15)C5—H5B0.9600
N5—C21.3820 (15)C5—H5C0.9600
N5—H5N0.920 (18)C6—H6A0.9600
N6—C41.2897 (16)C6—H6B0.9600
C1—N1—N2107.83 (10)C2—C3—H3115.8 (9)
C1—N1—N6137.23 (10)C4—C3—H3112.8 (9)
N2—N1—N6114.45 (9)N6—C4—C3132.13 (11)
N3—N2—N1106.88 (10)N6—C4—C6113.82 (10)
N2—N3—N4110.69 (10)C3—C4—C6114.02 (11)
C1—N4—N3105.82 (10)C2—C5—H5A109.5
C1—N5—C2126.17 (11)C2—C5—H5B109.5
C1—N5—H5N115.3 (10)H5A—C5—H5B109.5
C2—N5—H5N118.4 (10)C2—C5—H5C109.5
C4—N6—N1117.58 (10)H5A—C5—H5C109.5
N4—C1—N1108.78 (10)H5B—C5—H5C109.5
N4—C1—N5122.92 (11)C4—C6—H6A109.5
N1—C1—N5128.29 (11)C4—C6—H6B109.5
C3—C2—N5126.01 (11)H6A—C6—H6B109.5
C3—C2—C5122.01 (11)C4—C6—H6C109.5
N5—C2—C5111.95 (11)H6A—C6—H6C109.5
C2—C3—C4131.03 (12)H6B—C6—H6C109.5
C1—N1—N2—N30.80 (13)N6—N1—C1—N58.2 (2)
N6—N1—N2—N3174.17 (10)C2—N5—C1—N4174.90 (12)
N1—N2—N3—N40.47 (14)C2—N5—C1—N15.0 (2)
N2—N3—N4—C10.04 (14)C1—N5—C2—C34.3 (2)
C1—N1—N6—C412.5 (2)C1—N5—C2—C5177.67 (12)
N2—N1—N6—C4176.81 (10)N5—C2—C3—C47.1 (2)
N3—N4—C1—N10.55 (13)C5—C2—C3—C4170.75 (12)
N3—N4—C1—N5179.54 (11)N1—N6—C4—C30.64 (19)
N2—N1—C1—N40.84 (14)N1—N6—C4—C6178.52 (10)
N6—N1—C1—N4171.93 (13)C2—C3—C4—N610.9 (2)
N2—N1—C1—N5179.24 (12)C2—C3—C4—C6167.02 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···N4i0.920 (19)1.999 (19)2.9156 (17)173.5 (15)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H8N6
Mr164.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)93
a, b, c (Å)3.9184 (8), 13.584 (3), 13.767 (3)
β (°) 96.274 (3)
V3)728.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.47 × 0.33 × 0.13
Data collection
DiffractometerRigaku Saturn 724+
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5029, 1647, 1445
Rint0.019
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.082, 1.00
No. of reflections1647
No. of parameters119
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.22

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···N4i0.920 (19)1.999 (19)2.9156 (17)173.5 (15)
Symmetry code: (i) x+1, y, z+1.
π-π Stacking interactions(Å, °) top
CgiCgjCgi···CgjαCgi_perpCgj_perp
Cg1Cg2i3.419 (1)2.833.3843.390
Symmetry code:(i)1+x, y, z; Cg1, Cg2 are the centroids of the five- and seven-membered rings, respectively. α is the dihedral angle between ring planes and Cgi_perp is the perpendicular distance of Cgi on ring j, Cgj_perp is the perpendicular distance of Cgj on ring i.
 

Acknowledgements

This work was supported financially by the State Key Laboratory of Explosion Science and Technology of the Beijing Institute of Technology, China (No. ZDKT08–01).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGalvez-Ruiz, J. C., Holl, G., Karaghiosoff, K., Klapötke, T. M., Lohnwitz, K., Mayer, P., Noth, H., Polborn, K., Rohbogner, C. J., Suter, M. & Weigand, J. J. (2005). Inorg. Chem. 44, 4237–4253.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGaponnik, P. N. & Karavai, V. P. (1984). Khim. Geterotsikl. Soedin. 12, 1683–1686.  Google Scholar
First citationHe, C.-L., Du, Z.-M., Tang, Z.-Q., Cong, X.-M. & Meng, L.-Q. (2009a). Acta Cryst. E65, o1760.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, C.-L., Du, Z.-M., Tang, Z.-Q., Cong, X.-M. & Meng, L.-Q. (2009b). Acta Cryst. E65, o1902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKlapötke, T. M. & Sabaté, C. M. (2008). Chem. Mater. 20, 1750–1763.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaha, M. A. M. (2005). J. Indian Chem. Soc. 82, 172–174.  CAS Google Scholar
First citationTaha, M. A. M. (2007). Monatsh. Chem. 138, 505–509.  Web of Science CrossRef CAS Google Scholar
First citationZbigniew, K., Mariusz, M. & Andrzej, R. (2007). J. Mol. Struct. 829, 22–28.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds