organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl trans-rac-2-hexyl-1-oxo-3-(2-pyrid­yl)-1,2,3,4-tetra­hydroiso­quinoline-4-carboxyl­ate

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bFaculty of Chemistry, University of Sofia, 1 James Bourchier blvd., 1164 Sofia, Bulgaria, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 9 September 2008; accepted 10 September 2008; online 13 September 2008)

The title compound, C22H26N2O3, was synthesized by esterification of trans-rac-2-hexyl-1-oxo-3-(2-pyrid­yl)-1,2,3,4-tetra­hydro­isoquinoline-4-carboxylic acid in the presence of H2SO4 in methanol. The dihedral angle between the benzene and pyridine rings is 84.46 (17)°. The piperidine ring adopts a screw-boat conformation. In the crystal, inversion dimers linked by two C—H⋯O bonds occur.

Related literature

For background on potential applications of this family of compounds and the synthesis, see: Kandinska et al. (2006[Kandinska, M. I., Kozekov, I. D. & Palamareva, M. D. (2006). Molecules, 11, 403-414.], 2007[Kandinska, M. I., Todorov, I. S., Shivachev, B. & Bogdanov, M. G. (2007). Acta Cryst. E63, o2544-o2546.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C22H26N2O3

  • Mr = 366.45

  • Orthorhombic, P b c a

  • a = 8.8404 (2) Å

  • b = 15.6719 (5) Å

  • c = 29.1488 (10) Å

  • V = 4038.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.69 × 0.63 × 0.57 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.947, Tmax = 0.956

  • 30845 measured reflections

  • 3735 independent reflections

  • 2647 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.089

  • wR(F2) = 0.279

  • S = 1.07

  • 3735 reflections

  • 238 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.93 2.54 3.460 (5) 169
Symmetry code: (i) -x+2, -y+2, -z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound was synthesized as part of a research project to find precursors for the production of new tetrahydroquinolone derivatives with potential biological activity (Kandinska et al., 2006; Kandinska et al., 2007).

The molecular structure is shown in Fig.1. The bond lengths and angles are in normal ranges (Allen et al., 1987). The dihedral angle between the benzene and pyridine rings is 84.46 (17) °. The piperidine ring adopts a screw boat conformation and its puckering parameters (Cremer & Pople, 1975) are QT = 0.465 (3) Å, θ = 114.9 (4)° and ϕ = 93.7 (4) °.

The crystal structure is stabilized by intermolecular C—H···O hydrogen bonds (Table 1 and Fig. 2).

Related literature top

For the synthesis, see: Kandinska et al. (2007). For the search for precursors for the production of new tetrahydroquinolone derivatives with potential biological activity, see: Kandinska et al. (2006, 2007). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

The title compound was synthesized by esterification of trans-rac-2-hexyl-1-oxo-3-(pyridin-2-yl)-1,2,3,4-tetrahydroisoquinoline-4-carboxylic acid (3.81 g, 0.011 mol) (Kandinska et al., 2007) in the presence of H2SO4 (1.7 ml, 0.032 mol) in methanol. After working up the reaction mixture, the title compound crystallized as white crystals from ethyl acetate (yield 3.56 g, 90%; m.p. 357–359 K). Analysis, calculated for C22H26N2O3 (366.45): C 72.11, H 7.15%; found: C 72.35, H7.08%. The product was further characterized by 1H NMR and IR spectra.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93 - 0.97 Å, and with Uiso(H) =1.2 or 1.5Ueq(carrier atom). Atoms C19, C20 and C21 in the hexyl group appear to have unresolved disorder, so atom C21 was refined isotropically and the distances C19—C20 and C20—C21 were restrained by SHELXL DFIX instructions to a value of 1.530 Å (Allen et al., 1987). Probably due to the poor crystal quality, the observed and calculated structure factors showed rather large disagreement. Hence, to improve the R factor, 81 reflections were suppressed in the refinement process.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with the atom-numbering scheme and displacement ellipsoids drawn at the 20% probability level. H atoms are represented by spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the packing and hydrogen bonding (dashed lines) of the title compound, viewed down the a-axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
trans-rac-Methyl 2-hexyl-1-oxo-3-(2-pyridyl)-1,2,3,4-tetrahydro- isoquinoline-4-carboxylate top
Crystal data top
C22H26N2O3F(000) = 1568
Mr = 366.45Dx = 1.205 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 35910 reflections
a = 8.8404 (2) Åθ = 1.3–26.1°
b = 15.6719 (5) ŵ = 0.08 mm1
c = 29.1488 (10) ÅT = 293 K
V = 4038.5 (2) Å3Block, colourless
Z = 80.69 × 0.63 × 0.57 mm
Data collection top
STOE IPDS 2
diffractometer
3735 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2647 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.078
Detector resolution: 6.67 pixels mm-1θmax = 25.7°, θmin = 1.4°
ω scansh = 1010
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1818
Tmin = 0.947, Tmax = 0.956l = 3435
30845 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.089Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.279H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1761P)2 + 0.794P]
where P = (Fo2 + 2Fc2)/3
3735 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.71 e Å3
2 restraintsΔρmin = 0.58 e Å3
Crystal data top
C22H26N2O3V = 4038.5 (2) Å3
Mr = 366.45Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.8404 (2) ŵ = 0.08 mm1
b = 15.6719 (5) ÅT = 293 K
c = 29.1488 (10) Å0.69 × 0.63 × 0.57 mm
Data collection top
STOE IPDS 2
diffractometer
3735 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2647 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.956Rint = 0.078
30845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0892 restraints
wR(F2) = 0.279H-atom parameters constrained
S = 1.07Δρmax = 0.71 e Å3
3735 reflectionsΔρmin = 0.58 e Å3
238 parameters
Special details top

Experimental. Single crystals were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature. IR (CHCl3) 1600 cm-1 (ArH), 1660 cm-1 (C=O), 1740 cm-1 (C=O). 1HNMR (250 MHz, CDCl3) δ (p.p.m.) = 0.83–0.86 (m, 3H, -CH3), 1.18–1.35 (m, 6H, -CH2-), 1.58–1.67 (m,2H, -CH2-), 2.81–2.88 (m,1H, N—CH2a), 3.70 (s, 3H, -OCH3), 4.20–4.28 (m, 1H, N—CH2b), 4.42 (s, 1H, -OOC-CH), 5.32 (s, 1H, Pyr-CH, 6.90–6.98 (m, 1H, Ph-H), 7.08–7.19 (m, 2H, Ph-H, Pyr-H), 7.25–7.30 (m, 2H, Pyr-H), 7.36–7.47 (m, 1H, Ph-H), 7.87 (dd, 1H, J = 2.0 and 10.0 Hz, Ph-H),8.08 (dm, 1H,J = 4.0 Hz, Pyr-H).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6287 (3)1.0146 (2)0.67997 (10)0.0918 (11)
O21.0639 (3)0.9186 (2)0.56576 (14)0.1041 (13)
O30.8206 (3)0.89875 (15)0.55212 (11)0.0811 (10)
N10.8646 (3)1.03830 (17)0.65188 (9)0.0595 (9)
N21.0890 (3)1.19495 (18)0.58718 (10)0.0654 (10)
C10.7102 (4)1.0356 (2)0.64749 (13)0.0661 (11)
C20.6468 (4)1.05917 (18)0.60251 (12)0.0574 (10)
C30.4909 (4)1.0776 (2)0.59856 (16)0.0749 (14)
C40.4295 (4)1.0982 (2)0.55687 (17)0.0791 (14)
C50.5176 (4)1.1012 (2)0.51854 (16)0.0760 (14)
C60.6711 (4)1.0827 (2)0.52161 (13)0.0638 (11)
C70.7356 (3)1.06194 (18)0.56354 (11)0.0534 (9)
C80.9013 (3)1.04072 (19)0.56832 (11)0.0539 (9)
C90.9606 (3)1.07082 (18)0.61483 (11)0.0532 (9)
C100.9825 (3)1.16633 (19)0.61558 (11)0.0536 (9)
C110.9063 (4)1.2211 (2)0.64487 (14)0.0703 (11)
C120.9425 (5)1.3067 (3)0.64457 (16)0.0840 (16)
C131.0519 (6)1.3364 (3)0.61556 (17)0.0883 (16)
C141.1231 (5)1.2765 (3)0.58783 (16)0.0837 (14)
C150.9396 (4)0.9465 (2)0.56223 (12)0.0612 (11)
C160.8489 (6)0.8081 (3)0.54473 (19)0.101 (2)
C170.9382 (5)1.0220 (3)0.69588 (14)0.0853 (16)
C181.0400 (6)0.9436 (4)0.6965 (2)0.118 (3)
C190.9589 (8)0.8632 (4)0.6907 (3)0.131 (3)
C201.0378 (9)0.7692 (6)0.6833 (3)0.169 (4)
C211.1265 (7)0.7497 (4)0.7199 (2)0.1150*
C221.2046 (6)0.6616 (4)0.7108 (2)0.121 (3)
H30.429501.075700.624500.0900*
H40.326701.110200.554700.0950*
H50.475101.115600.490400.0910*
H60.730901.084300.495400.0770*
H80.955901.072500.544600.0650*
H91.060701.045100.618900.0640*
H110.831801.200400.664500.0840*
H120.892401.344100.664100.1010*
H131.077501.393900.614400.1060*
H141.199901.295400.568500.1000*
H16A0.755400.779800.537800.1520*
H16B0.892100.783700.572000.1520*
H16C0.917900.801000.519600.1520*
H17A0.860801.015100.719200.1020*
H17B0.998201.071500.704100.1020*
H18A1.114300.948900.672200.1420*
H18B1.094300.942100.725400.1420*
H19A0.892100.871500.664700.1570*
H19B0.894100.857700.717400.1570*
H20A0.959900.726100.679800.2030*
H20B1.098500.769700.655600.2030*
H21A1.065600.746600.747500.1380*
H21B1.202600.793500.724100.1380*
H22A1.257700.643700.737800.1810*
H22B1.274700.667100.685800.1810*
H22C1.129100.619900.703100.1810*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0917 (19)0.100 (2)0.0837 (19)0.0117 (16)0.0350 (16)0.0091 (15)
O20.0659 (16)0.0784 (19)0.168 (3)0.0230 (14)0.0148 (18)0.0227 (19)
O30.0846 (17)0.0428 (12)0.116 (2)0.0089 (11)0.0072 (15)0.0134 (13)
N10.0660 (16)0.0560 (14)0.0564 (15)0.0008 (12)0.0121 (13)0.0018 (11)
N20.0578 (15)0.0609 (16)0.0776 (19)0.0082 (12)0.0063 (14)0.0064 (14)
C10.072 (2)0.0522 (17)0.074 (2)0.0050 (15)0.0258 (18)0.0059 (15)
C20.0563 (17)0.0419 (15)0.074 (2)0.0001 (12)0.0123 (16)0.0089 (13)
C30.0576 (19)0.063 (2)0.104 (3)0.0012 (16)0.023 (2)0.0148 (19)
C40.0562 (19)0.060 (2)0.121 (3)0.0047 (16)0.005 (2)0.016 (2)
C50.066 (2)0.065 (2)0.097 (3)0.0047 (17)0.013 (2)0.0094 (19)
C60.0626 (19)0.0539 (17)0.075 (2)0.0047 (14)0.0025 (16)0.0060 (15)
C70.0533 (16)0.0406 (13)0.0662 (19)0.0012 (12)0.0055 (14)0.0086 (12)
C80.0525 (16)0.0470 (15)0.0622 (18)0.0033 (12)0.0157 (14)0.0038 (13)
C90.0506 (15)0.0482 (15)0.0608 (17)0.0027 (12)0.0096 (14)0.0010 (13)
C100.0471 (15)0.0548 (16)0.0588 (17)0.0004 (13)0.0032 (13)0.0013 (13)
C110.072 (2)0.0538 (18)0.085 (2)0.0046 (16)0.0101 (18)0.0083 (16)
C120.091 (3)0.061 (2)0.100 (3)0.008 (2)0.000 (2)0.016 (2)
C130.101 (3)0.053 (2)0.111 (3)0.010 (2)0.020 (3)0.000 (2)
C140.081 (2)0.069 (2)0.101 (3)0.020 (2)0.001 (2)0.013 (2)
C150.065 (2)0.0516 (17)0.067 (2)0.0106 (15)0.0176 (16)0.0061 (14)
C160.123 (4)0.047 (2)0.133 (4)0.011 (2)0.006 (3)0.021 (2)
C170.099 (3)0.092 (3)0.065 (2)0.014 (2)0.007 (2)0.005 (2)
C180.116 (4)0.134 (5)0.104 (4)0.021 (4)0.004 (3)0.048 (3)
C190.154 (6)0.099 (4)0.140 (5)0.034 (4)0.026 (4)0.021 (4)
C200.146 (6)0.212 (9)0.148 (6)0.029 (6)0.012 (5)0.072 (6)
C220.106 (4)0.139 (5)0.117 (4)0.042 (3)0.010 (3)0.034 (4)
Geometric parameters (Å, º) top
O1—C11.234 (5)C21—C221.566 (9)
O2—C151.187 (4)C3—H30.9300
O3—C151.324 (4)C4—H40.9300
O3—C161.459 (5)C5—H50.9300
N1—C11.372 (4)C6—H60.9300
N1—C91.465 (4)C8—H80.9800
N1—C171.461 (5)C9—H90.9800
N2—C101.332 (4)C11—H110.9300
N2—C141.313 (5)C12—H120.9300
C1—C21.473 (5)C13—H130.9300
C2—C31.413 (5)C14—H140.9300
C2—C71.382 (5)C16—H16A0.9600
C3—C41.370 (6)C16—H16B0.9600
C4—C51.363 (6)C16—H16C0.9600
C5—C61.391 (5)C17—H17A0.9700
C6—C71.387 (5)C17—H17B0.9700
C7—C81.509 (4)C18—H18A0.9700
C8—C91.528 (4)C18—H18B0.9700
C8—C151.525 (4)C19—H19A0.9700
C9—C101.510 (4)C19—H19B0.9700
C10—C111.386 (5)C20—H20A0.9700
C11—C121.379 (6)C20—H20B0.9700
C12—C131.366 (7)C21—H21A0.9700
C13—C141.390 (7)C21—H21B0.9700
C17—C181.523 (8)C22—H22A0.9600
C18—C191.460 (9)C22—H22B0.9600
C19—C201.644 (11)C22—H22C0.9600
C20—C211.359 (10)
O3···C63.294 (4)H5···O3v2.9000
O3···C23.292 (4)H6···H82.4600
O1···H17A2.3500H6···O2iv2.5400
O1···H32.5800H8···N22.5700
O1···H22Ci2.8900H8···H62.4600
O1···H12ii2.7200H9···O22.5200
O2···H16B2.6100H9···C182.7700
O2···H92.5200H9···H17B2.5800
O2···H14iii2.8500H9···H18A2.2200
O2···H16C2.6200H11···N12.5800
O2···H6iv2.5400H11···C12.8400
O3···H5v2.9000H11···C173.0900
N1···H112.5800H12···O1i2.7200
N1···H19A2.6500H12···H19Ai2.5500
N2···H4vi2.6600H13···C3i2.9800
N2···H82.5700H14···O2vii2.8500
C1···C113.386 (5)H16B···O22.6100
C1···C153.498 (5)H16C···O22.6200
C2···C103.431 (4)H17A···O12.3500
C2···O33.292 (4)H17A···H19B2.4800
C5···C16i3.534 (6)H17A···H22Aix2.5900
C5···C5v3.366 (5)H17B···C102.9800
C5···C6v3.530 (5)H17B···C113.0200
C6···O33.294 (4)H17B···H92.5800
C6···C5v3.530 (5)H17B···C22vii2.9900
C10···C23.431 (4)H17B···H22Bvii2.5600
C11···C173.468 (6)H18A···C92.8800
C11···C13.386 (5)H18A···H92.2200
C15···C13.498 (5)H18B···C213.0300
C16···C5ii3.534 (6)H18B···H21B2.5200
C17···C113.468 (6)H19A···N12.6500
C1···H19A3.0700H19A···C13.0700
C1···H112.8400H19A···H12ii2.5500
C3···H13ii2.9800H19B···H17A2.4800
C9···H18A2.8800H19B···H21A2.4700
C10···H22Bvii2.9700H20A···H22C2.3400
C10···H17B2.9800H20B···H22B2.4100
C11···H17B3.0200H21A···H19B2.4700
C17···H113.0900H21B···C182.8700
C18···H92.7700H21B···H18B2.5200
C18···H21B2.8700H22A···H17Ax2.5900
C21···H18B3.0300H22B···H20B2.4100
C22···H3ii3.0900H22B···C10iii2.9700
C22···H17Biii2.9900H22B···H17Biii2.5600
H3···O12.5800H22C···H20A2.3400
H3···C22i3.0900H22C···O1ii2.8900
H3···H22Ci2.4500H22C···H3ii2.4500
H4···N2viii2.6600
C15—O3—C16116.6 (3)C15—C8—H8108.00
C1—N1—C9121.2 (3)N1—C9—H9107.00
C1—N1—C17121.3 (3)C8—C9—H9107.00
C9—N1—C17116.8 (3)C10—C9—H9107.00
C10—N2—C14118.8 (3)C10—C11—H11120.00
O1—C1—N1121.2 (3)C12—C11—H11120.00
O1—C1—C2121.8 (3)C11—C12—H12120.00
N1—C1—C2117.0 (3)C13—C12—H12120.00
C1—C2—C3119.7 (3)C12—C13—H13122.00
C1—C2—C7121.6 (3)C14—C13—H13122.00
C3—C2—C7118.7 (3)N2—C14—H14118.00
C2—C3—C4120.5 (4)C13—C14—H14118.00
C3—C4—C5120.6 (3)O3—C16—H16A109.00
C4—C5—C6119.9 (4)O3—C16—H16B109.00
C5—C6—C7120.4 (3)O3—C16—H16C110.00
C2—C7—C6119.9 (3)H16A—C16—H16B109.00
C2—C7—C8118.0 (3)H16A—C16—H16C109.00
C6—C7—C8122.2 (3)H16B—C16—H16C109.00
C7—C8—C9110.3 (2)N1—C17—H17A109.00
C7—C8—C15114.7 (2)N1—C17—H17B109.00
C9—C8—C15109.0 (2)C18—C17—H17A109.00
N1—C9—C8110.4 (2)C18—C17—H17B109.00
N1—C9—C10114.1 (2)H17A—C17—H17B108.00
C8—C9—C10111.3 (3)C17—C18—H18A109.00
N2—C10—C9114.6 (3)C17—C18—H18B109.00
N2—C10—C11121.2 (3)C19—C18—H18A109.00
C9—C10—C11124.1 (3)C19—C18—H18B109.00
C10—C11—C12119.1 (3)H18A—C18—H18B108.00
C11—C12—C13120.0 (4)C18—C19—H19A106.00
C12—C13—C14116.8 (4)C18—C19—H19B106.00
N2—C14—C13124.2 (4)C20—C19—H19A106.00
O2—C15—O3123.1 (3)C20—C19—H19B106.00
O2—C15—C8123.5 (3)H19A—C19—H19B106.00
O3—C15—C8113.4 (3)C19—C20—H20A110.00
N1—C17—C18114.5 (4)C19—C20—H20B110.00
C17—C18—C19113.9 (5)C21—C20—H20A110.00
C18—C19—C20125.5 (6)C21—C20—H20B110.00
C19—C20—C21110.1 (7)H20A—C20—H20B108.00
C20—C21—C22108.6 (6)C20—C21—H21A110.00
C2—C3—H3120.00C20—C21—H21B110.00
C4—C3—H3120.00C22—C21—H21A110.00
C3—C4—H4120.00C22—C21—H21B110.00
C5—C4—H4120.00H21A—C21—H21B108.00
C4—C5—H5120.00C21—C22—H22A110.00
C6—C5—H5120.00C21—C22—H22B109.00
C5—C6—H6120.00C21—C22—H22C109.00
C7—C6—H6120.00H22A—C22—H22B109.00
C7—C8—H8108.00H22A—C22—H22C109.00
C9—C8—H8107.00H22B—C22—H22C109.00
C16—O3—C15—O20.7 (6)C5—C6—C7—C8179.5 (3)
C16—O3—C15—C8178.6 (3)C5—C6—C7—C20.3 (5)
C9—N1—C1—O1174.2 (3)C6—C7—C8—C1589.5 (4)
C17—N1—C1—C2175.6 (3)C2—C7—C8—C933.9 (4)
C9—N1—C17—C1872.9 (4)C6—C7—C8—C9146.9 (3)
C17—N1—C9—C1084.3 (3)C2—C7—C8—C1589.7 (3)
C17—N1—C1—O14.1 (5)C7—C8—C9—N152.2 (3)
C9—N1—C1—C25.6 (4)C9—C8—C15—O254.3 (5)
C1—N1—C17—C18116.7 (4)C9—C8—C15—O3126.4 (3)
C1—N1—C9—C1086.2 (3)C15—C8—C9—C10157.7 (2)
C1—N1—C9—C840.0 (4)C7—C8—C15—O2178.5 (4)
C17—N1—C9—C8149.5 (3)C7—C8—C15—O32.2 (4)
C14—N2—C10—C111.1 (5)C7—C8—C9—C1075.5 (3)
C14—N2—C10—C9175.4 (3)C15—C8—C9—N174.6 (3)
C10—N2—C14—C131.9 (6)N1—C9—C10—C117.2 (4)
N1—C1—C2—C716.6 (4)C8—C9—C10—N265.2 (3)
O1—C1—C2—C314.9 (5)C8—C9—C10—C11118.5 (3)
N1—C1—C2—C3164.9 (3)N1—C9—C10—N2169.1 (3)
O1—C1—C2—C7163.6 (3)N2—C10—C11—C120.3 (5)
C3—C2—C7—C8179.1 (3)C9—C10—C11—C12175.9 (3)
C3—C2—C7—C60.1 (4)C10—C11—C12—C130.2 (6)
C1—C2—C7—C6178.7 (3)C11—C12—C13—C140.8 (7)
C1—C2—C7—C80.5 (4)C12—C13—C14—N21.8 (7)
C7—C2—C3—C40.3 (5)N1—C17—C18—C1966.1 (6)
C1—C2—C3—C4178.9 (3)C17—C18—C19—C20171.8 (6)
C2—C3—C4—C50.1 (5)C18—C19—C20—C2160.3 (10)
C3—C4—C5—C60.4 (5)C19—C20—C21—C22177.8 (5)
C4—C5—C6—C70.6 (5)
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+3/2, y1/2, z; (iii) x+5/2, y1/2, z; (iv) x+2, y+2, z+1; (v) x+1, y+2, z+1; (vi) x+1, y, z; (vii) x+5/2, y+1/2, z; (viii) x1, y, z; (ix) x+2, y+1/2, z+3/2; (x) x+2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2iv0.932.543.460 (5)169
C8—H8···N20.982.572.983 (4)105
C9—H9···O20.982.522.928 (4)105
C11—H11···N10.932.582.896 (4)100
C17—H17A···O10.972.352.778 (5)106
Symmetry code: (iv) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC22H26N2O3
Mr366.45
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)8.8404 (2), 15.6719 (5), 29.1488 (10)
V3)4038.5 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.69 × 0.63 × 0.57
Data collection
DiffractometerSTOE IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.947, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
30845, 3735, 2647
Rint0.078
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.089, 0.279, 1.07
No. of reflections3735
No. of parameters238
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.58

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.932.543.460 (5)169
Symmetry code: (i) x+2, y+2, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKandinska, M. I., Kozekov, I. D. & Palamareva, M. D. (2006). Molecules, 11, 403–414.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKandinska, M. I., Todorov, I. S., Shivachev, B. & Bogdanov, M. G. (2007). Acta Cryst. E63, o2544–o2546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds