organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7,8,9,10-Tetra­hydro­cyclo­hepta­[b]indol-6(5H)-one

aDepartment of Chemistry, Bharathiar University, Coimbatore 641 046, Tamilnadu, India, bPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamilnadu, India, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: athiru@vsnl.net

(Received 30 July 2008; accepted 31 July 2008; online 6 August 2008)

In the title mol­ecule, C13H13NO, the dihedral angle between the benzene and pyrrole rings is 1.05 (5)°. The cyclo­heptene ring adopts a slightly distorted boat conformation. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds form centrosymmetric dimers. A C—H⋯π inter­action, involving the benzene ring, is also found in the structure.

Related literature

For a related structure, see: Sridharan et al. (2008[Sridharan, M., Prasad, K. J. R., Ngendahimana, A. & Zeller, M. (2008). Acta Cryst. E64, o1207.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13NO

  • Mr = 199.24

  • Monoclinic, P 21 /c

  • a = 14.0914 (4) Å

  • b = 8.0883 (2) Å

  • c = 9.2503 (3) Å

  • β = 108.937 (3)°

  • V = 997.24 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 200 (2) K

  • 0.56 × 0.38 × 0.31 mm

Data collection
  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.985, Tmax = 1.000 (expected range = 0.960–0.974)

  • 15925 measured reflections

  • 4127 independent reflections

  • 3036 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.145

  • S = 1.01

  • 4127 reflections

  • 140 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O6i 0.891 (16) 1.976 (16) 2.8188 (11) 157.3 (13)
C10—H10ACgii 0.99 2.90 3.7087 (10) 139
Symmetry codes: (i) -x, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg is the centroid of the benzene ring.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Sridharan et al. (2008) have reported the crystal structure of 7,8,9,10-tetrahydro-2-methylcyclohepta[b]indol-6(5H)-one, in which the cycloheptene ring adopts a slightly distorted envelope conformation. The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. The dihedral angle between the benzene ring and the pyrrole ring is 1.05 (5)°. The cycloheptene ring adopts a slightly distorted boat conformation. Intermolecular N5—H5···O6 (-x, -y, 1 - z) hydrogen bonds form centrosymmetric dimers in the crystal structure (Fig. 2). A C—H···π interaction, involving the benzene ring, is also found in the structure.

Related literature top

For a related structure, see: Sridharan et al. (2008).

Experimental top

A solution of 2-(2-(4-phenyl)hydrazono)cycloheptanone (0.216 g, 0.001 mol) in a mixture of acetic acid (20 ml) and concentrated hydrochloric acid (5 ml) was refluxed on an oil bath pre-heated to 398–403 K for 2 h. The reaction was monitored by TLC. After the completion of reaction the contents were cooled and poured into ice water with stirring. The separated brown solid was filtered and purified by passing through a column of silica gel and eluting with petroleum ether-ethyl acetate (95:5 v/v) mixture to yield the title compound (0.129 g, 61%). The product thus obtained was recrystallized using ethanol.

Refinement top

The H atom bonded to N5 was located in a difference Fourier map and refined isotropically [N5—H5 = 0.891 (16) Å]. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are represented by spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed down the b axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
7,8,9,10-Tetrahydrocyclohepta[b]indol-6(5H)-one top
Crystal data top
C13H13NOF(000) = 424
Mr = 199.24Dx = 1.327 Mg m3
Monoclinic, P21/cMelting point: 425(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.0914 (4) ÅCell parameters from 7034 reflections
b = 8.0883 (2) Åθ = 5.0–34.8°
c = 9.2503 (3) ŵ = 0.08 mm1
β = 108.937 (3)°T = 200 K
V = 997.24 (5) Å3Chunk, pale-yellow
Z = 40.56 × 0.38 × 0.31 mm
Data collection top
Oxford Diffraction R Gemini
diffractometer
4127 independent reflections
Radiation source: fine-focus sealed tube3036 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.5081 pixels mm-1θmax = 34.9°, θmin = 5.0°
ϕ and ω scansh = 2222
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1212
Tmin = 0.985, Tmax = 1.000l = 1114
15925 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.097P)2]
where P = (Fo2 + 2Fc2)/3
4127 reflections(Δ/σ)max = 0.001
140 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C13H13NOV = 997.24 (5) Å3
Mr = 199.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.0914 (4) ŵ = 0.08 mm1
b = 8.0883 (2) ÅT = 200 K
c = 9.2503 (3) Å0.56 × 0.38 × 0.31 mm
β = 108.937 (3)°
Data collection top
Oxford Diffraction R Gemini
diffractometer
4127 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
3036 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 1.000Rint = 0.023
15925 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.31 e Å3
4127 reflectionsΔρmin = 0.35 e Å3
140 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O60.00855 (5)0.08244 (11)0.30591 (9)0.0440 (2)
N50.15340 (5)0.04196 (9)0.54651 (8)0.0256 (2)
C10.42047 (7)0.01523 (11)0.66953 (11)0.0298 (2)
C20.44834 (7)0.08626 (12)0.81195 (11)0.0343 (3)
C30.37614 (7)0.14708 (12)0.87403 (11)0.0332 (3)
C40.27498 (7)0.13868 (10)0.79473 (10)0.0284 (2)
C4A0.24673 (6)0.06767 (10)0.64909 (9)0.0232 (2)
C5A0.16322 (6)0.03677 (10)0.41960 (10)0.0242 (2)
C60.07608 (6)0.08971 (11)0.29509 (10)0.0280 (2)
C70.09234 (7)0.15126 (12)0.15191 (11)0.0321 (3)
C80.16098 (8)0.03791 (13)0.09678 (11)0.0349 (3)
C90.27357 (7)0.06922 (12)0.16778 (11)0.0312 (2)
C100.30600 (6)0.14407 (11)0.32855 (10)0.0293 (2)
C10A0.26382 (6)0.05963 (10)0.43769 (10)0.0235 (2)
C10B0.31807 (6)0.00584 (10)0.58454 (10)0.0235 (2)
H10.469630.026830.629200.0357*
H20.517530.094560.869700.0412*
H30.397820.195110.973110.0398*
H40.226500.179340.837110.0340*
H50.0970 (11)0.0616 (16)0.5673 (16)0.049 (4)*
H7A0.026620.160530.070220.0385*
H7B0.122330.263140.170840.0385*
H8A0.142770.049680.015460.0419*
H8B0.147230.078000.118110.0419*
H9A0.309340.036930.171930.0375*
H9B0.295030.144420.099810.0375*
H10A0.285420.261650.320520.0351*
H10B0.380140.140720.371100.0351*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.0248 (3)0.0711 (5)0.0371 (4)0.0026 (3)0.0116 (3)0.0130 (4)
N50.0247 (3)0.0298 (3)0.0240 (3)0.0015 (3)0.0102 (3)0.0031 (3)
C10.0252 (4)0.0355 (4)0.0284 (4)0.0014 (3)0.0084 (3)0.0035 (3)
C20.0296 (4)0.0410 (5)0.0283 (4)0.0012 (4)0.0038 (3)0.0013 (4)
C30.0391 (5)0.0331 (4)0.0239 (4)0.0006 (3)0.0055 (3)0.0021 (3)
C40.0358 (4)0.0266 (4)0.0231 (4)0.0022 (3)0.0101 (3)0.0008 (3)
C4A0.0262 (3)0.0217 (3)0.0224 (4)0.0004 (3)0.0088 (3)0.0016 (3)
C5A0.0252 (4)0.0256 (3)0.0229 (4)0.0003 (3)0.0094 (3)0.0017 (3)
C60.0262 (4)0.0316 (4)0.0268 (4)0.0006 (3)0.0096 (3)0.0035 (3)
C70.0308 (4)0.0386 (5)0.0270 (4)0.0031 (3)0.0097 (3)0.0091 (3)
C80.0370 (5)0.0436 (5)0.0250 (4)0.0005 (4)0.0113 (4)0.0009 (4)
C90.0358 (4)0.0367 (4)0.0261 (4)0.0016 (3)0.0168 (3)0.0049 (3)
C100.0295 (4)0.0326 (4)0.0289 (4)0.0038 (3)0.0139 (3)0.0023 (3)
C10A0.0257 (4)0.0240 (3)0.0230 (4)0.0010 (3)0.0109 (3)0.0006 (3)
C10B0.0247 (3)0.0238 (3)0.0226 (4)0.0007 (3)0.0087 (3)0.0024 (3)
Geometric parameters (Å, º) top
O6—C61.2301 (12)C9—C101.5316 (13)
N5—C4A1.3650 (11)C10—C10A1.4928 (12)
N5—C5A1.3814 (11)C10A—C10B1.4269 (12)
N5—H50.891 (16)C1—H10.9500
C1—C10B1.4035 (14)C2—H20.9500
C1—C21.3726 (14)C3—H30.9500
C2—C31.4093 (14)C4—H40.9500
C3—C41.3770 (14)C7—H7A0.9900
C4—C4A1.3983 (12)C7—H7B0.9900
C4A—C10B1.4166 (12)C8—H8A0.9900
C5A—C61.4491 (12)C8—H8B0.9900
C5A—C10A1.3849 (13)C9—H9A0.9900
C6—C71.5005 (13)C9—H9B0.9900
C7—C81.5350 (15)C10—H10A0.9900
C8—C91.5285 (15)C10—H10B0.9900
O6···N52.8066 (11)H2···H9Bvii2.6000
O6···N5i2.8188 (11)H3···C1v2.9200
O6···H52.661 (14)H3···C10Bv2.9900
O6···H5i1.976 (16)H5···O62.661 (14)
N5···O62.8066 (11)H5···O6i1.976 (16)
N5···O6i2.8188 (11)H5···H7Bii2.5800
N5···H7Bii2.6300H7A···C8vi3.0500
C2···C2iii3.5893 (14)H7A···H8Bvi2.5900
C1···H10B2.9200H7B···C102.7000
C1···H3iv2.9200H7B···C10A3.1000
C3···H2iii3.0600H7B···H10A2.2700
C4···H8Bv3.0400H7B···N5viii2.6300
C4···H9Av2.9600H7B···C4Aviii3.0700
C4···H10Aii3.0600H7B···C5Aviii3.0400
C4A···H7Bii3.0700H7B···H5viii2.5800
C4A···H10Aii2.8900H8B···C5A2.8800
C5A···H8B2.8800H8B···C10A3.0900
C5A···H7Bii3.0400H8B···H7Avi2.5900
C7···H10A2.8100H8B···C4iv3.0400
C8···H7Avi3.0500H9A···C4iv2.9600
C9···H2vii3.0800H9B···H2vii2.6000
C10···H7B2.7000H9B···C10viii3.0800
C10···H9Bii3.0800H9B···C10Aviii2.7800
C10A···H7B3.1000H9B···C10Bviii2.9500
C10A···H8B3.0900H10A···C72.8100
C10A···H9Bii2.7800H10A···H7B2.2700
C10B···H3iv2.9900H10A···C4viii3.0600
C10B···H9Bii2.9500H10A···C4Aviii2.8900
C10B···H10Aii3.0900H10A···C10Bviii3.0900
H1···H10B2.4900H10B···C12.9200
H1···H10Bvii2.5100H10B···H12.4900
H2···C3iii3.0600H10B···H1vii2.5100
H2···C9vii3.0800
C4A—N5—C5A108.75 (7)C10B—C1—H1121.00
C4A—N5—H5123.3 (9)C1—C2—H2119.00
C5A—N5—H5127.5 (9)C3—C2—H2119.00
C2—C1—C10B118.83 (9)C2—C3—H3119.00
C1—C2—C3121.18 (9)C4—C3—H3119.00
C2—C3—C4121.68 (9)C3—C4—H4121.00
C3—C4—C4A117.09 (9)C4A—C4—H4121.00
N5—C4A—C4129.88 (8)C6—C7—H7A109.00
N5—C4A—C10B107.98 (7)C6—C7—H7B109.00
C4—C4A—C10B122.14 (8)C8—C7—H7A109.00
N5—C5A—C6121.26 (8)C8—C7—H7B109.00
C6—C5A—C10A128.81 (8)H7A—C7—H7B108.00
N5—C5A—C10A109.86 (8)C7—C8—H8A108.00
O6—C6—C7121.16 (8)C7—C8—H8B108.00
C5A—C6—C7117.83 (8)C9—C8—H8A108.00
O6—C6—C5A121.00 (8)C9—C8—H8B108.00
C6—C7—C8112.85 (8)H8A—C8—H8B107.00
C7—C8—C9115.87 (8)C8—C9—H9A109.00
C8—C9—C10115.07 (8)C8—C9—H9B108.00
C9—C10—C10A114.65 (8)C10—C9—H9A109.00
C5A—C10A—C10B106.06 (8)C10—C9—H9B109.00
C10—C10A—C10B127.28 (8)H9A—C9—H9B108.00
C5A—C10A—C10126.58 (8)C9—C10—H10A109.00
C4A—C10B—C10A107.34 (8)C9—C10—H10B109.00
C1—C10B—C4A119.08 (8)C10A—C10—H10A109.00
C1—C10B—C10A133.56 (8)C10A—C10—H10B109.00
C2—C1—H1121.00H10A—C10—H10B108.00
C5A—N5—C4A—C4178.26 (8)C10A—C5A—C6—O6168.79 (9)
C5A—N5—C4A—C10B0.94 (9)C10A—C5A—C6—C712.09 (14)
C4A—N5—C5A—C6176.03 (8)N5—C5A—C10A—C10178.13 (8)
C4A—N5—C5A—C10A1.30 (10)N5—C5A—C10A—C10B1.11 (9)
C2—C1—C10B—C10A179.18 (9)C6—C5A—C10A—C101.05 (15)
C2—C1—C10B—C4A0.89 (13)C6—C5A—C10A—C10B175.96 (8)
C10B—C1—C2—C30.89 (14)O6—C6—C7—C8132.19 (10)
C1—C2—C3—C40.30 (15)C5A—C6—C7—C846.93 (11)
C2—C3—C4—C4A0.29 (13)C6—C7—C8—C985.91 (11)
C3—C4—C4A—C10B0.27 (12)C7—C8—C9—C1027.65 (12)
C3—C4—C4A—N5179.36 (9)C8—C9—C10—C10A48.32 (11)
N5—C4A—C10B—C1178.95 (8)C9—C10—C10A—C5A57.72 (12)
C4—C4A—C10B—C10A179.02 (8)C9—C10—C10A—C10B125.89 (9)
N5—C4A—C10B—C10A0.25 (9)C5A—C10A—C10B—C1177.91 (9)
C4—C4A—C10B—C10.32 (12)C5A—C10A—C10B—C4A0.53 (9)
N5—C5A—C6—O67.99 (13)C10—C10A—C10B—C10.92 (16)
N5—C5A—C6—C7171.13 (8)C10—C10A—C10B—C4A177.51 (8)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+2; (iv) x, y1/2, z1/2; (v) x, y1/2, z+1/2; (vi) x, y, z; (vii) x+1, y, z+1; (viii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O6i0.891 (16)1.976 (16)2.8188 (11)157.3 (13)
C10—H10A···Cgviii0.992.903.7087 (10)139
Symmetry codes: (i) x, y, z+1; (viii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H13NO
Mr199.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)14.0914 (4), 8.0883 (2), 9.2503 (3)
β (°) 108.937 (3)
V3)997.24 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.56 × 0.38 × 0.31
Data collection
DiffractometerOxford Diffraction R Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.985, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15925, 4127, 3036
Rint0.023
(sin θ/λ)max1)0.806
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.145, 1.01
No. of reflections4127
No. of parameters140
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.35

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O6i0.891 (16)1.976 (16)2.8188 (11)157.3 (13)
C10—H10A···Cgii0.992.903.7087 (10)139
Symmetry codes: (i) x, y, z+1; (ii) x, y+1/2, z1/2.
 

Acknowledgements

MS thanks the UGC, New Delhi, India, for the award of a research fellowship. KJR acknowledges the UGC, New Delhi, India, for the award of Major Research Project Grant No. F.No.31–122/2005. AT thanks the UGC, India, for the award of a Minor Research Project [File No. MRP-2355/06(UGC-SERO), Link No. 2355, 10/01/2007]. RJB acknowledges the NSF-MRI program for funding to purchase the X-ray CCD diffractometer.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridharan, M., Prasad, K. J. R., Ngendahimana, A. & Zeller, M. (2008). Acta Cryst. E64, o1207.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds