organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-[4-(Methyl­sulfan­yl)phen­yl]-3-phenyl­prop-2-en-1-one

aPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, and cDepartment of Chemistry, National Institute of Technology Karnataka, Surathkal, Srinivasnagar 575 025, India
*Correspondence e-mail: athiru@vsnl.net

(Received 5 June 2008; accepted 7 June 2008; online 13 June 2008)

In the title mol­ecule, C16H14OS, the dihedral angle between the phenyl and benzene rings is 3.81 (15)°. The H atoms of the central enone group are trans. The propenone unit makes dihedral angles of 11.73 (18) and 11.62 (17)° with the benzene and phenyl rings, respectively. The crystal structure is stabilized by weak C—H⋯O and C—H⋯π inter­actions.

Related literature

For related crystal structures, see Sathiya Moorthi et al. (2005[Sathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Santhi, R. & Fun, H.-K. (2005). Acta Cryst. E61, o3514-o3516.]); Moorthi et al. (2005[Moorthi, S. S., Chinnakali, K., Nanjundan, S., Unnithan, C. S., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o483-o485.]); Thiruvalluvar et al. (2007a[Thiruvalluvar, A., Subramanyam, M., Butcher, R. J., Adhikari, A. V. & Wagle, S. (2007a). Acta Cryst. E63, o4536.],b[Thiruvalluvar, A., Subramanyam, M., Butcher, R. J., Adhikari, A. V. & Karabasanagouda, T. (2007b). Acta Cryst. E63, o4716.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14OS

  • Mr = 254.34

  • Orthorhombic, P 21 21 21

  • a = 5.6106 (4) Å

  • b = 7.6239 (7) Å

  • c = 30.477 (2) Å

  • V = 1303.64 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 200 (2) K

  • 0.49 × 0.18 × 0.15 mm

Data collection
  • Oxford Diffraction Gemini R diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.849, Tmax = 1.000 (expected range = 0.820–0.966)

  • 8924 measured reflections

  • 4060 independent reflections

  • 3180 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.077

  • wR(F2) = 0.181

  • S = 1.11

  • 4060 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1314 Friedel pairs

  • Flack parameter: 0.11 (16)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1 0.95 2.42 2.781 (4) 102
C12—H12⋯Cg1i 0.95 2.99 3.704 (3) 133
C15—H15⋯Cg1ii 0.95 2.89 3.488 (3) 122
C25—H25⋯Cg2iii 0.95 2.90 3.562 (3) 127
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]. Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound (Fig. 1) has been analysed as part of our crystallographic studies on chalcones (Thiruvalluvar et al. 2007a,b). The dihedral angle between the phenyl and benzene rings is 3.81 (15)°; the two rings are essentially coplanar. The H atoms of the central enone group are trans. The propenone unit makes dihedral angles of 11.73 (18)° and 11.62 (17)° with the benzene and phenyl rings, respectively.

The crystal structure is stabilized by a weak C3—H3···O1 intramolecular interaction. Furthermore, C12—H12···π, C15—H15···π and C25—H25···π interactions are also found. In similar structures, such as 1-(4-aminophenyl)-3-(3-bromophenyl)-prop-2-en-1-one (Sathiya Moorthi, et al. 2005) and 1-(4-bromophenyl)-3-(3-hydroxy phenyl)prop-2-en-1-one (Moorthi, et al. 2005), the dihedral angles between the two rings are 9.6 (1)° and 10.2 (2)°, respectively.

Related literature top

For related crystal structures, see Sathiya Moorthi, et al. (2005); Moorthi, et al. (2005); Thiruvalluvar, et al. (2007a,b). Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.

Experimental top

Benzaldehyde (2.12 g, 0.02 mol) in ethanol (22 ml) was mixed with 4'-(methylthio)acetophenone (3.32 g, 0.02 mol) in 40 ml ethanol and the mixture was treated with 10 ml of 10% sodium hydroxide solution at 283 K and stirred at 303–305 K for 8 h. The precipitate obtained was filtered, washed with chilled ethanol and dried. Pale yellow rods of the title compound were grown from toluene by slow evaporation. The yield of the isolated product was 3.4 g (70%).

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 and 0.98 Å for Csp2 and methyl C, respectively; Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H. There was some minor non-merohedral twinning, resulting in Fo2 being consistently larger than Fc2. The 37 most affected reflections were omitted.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are represented by spheres of arbitrary radius.
(E)-1-[4-(Methylsulfanyl)phenyl]-3-phenylprop-2-en-1-one top
Crystal data top
C16H14OSDx = 1.296 Mg m3
Mr = 254.34Melting point: 396(1) K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3999 reflections
a = 5.6106 (4) Åθ = 4.7–32.4°
b = 7.6239 (7) ŵ = 0.23 mm1
c = 30.477 (2) ÅT = 200 K
V = 1303.64 (17) Å3Needle, colourless
Z = 40.49 × 0.18 × 0.15 mm
F(000) = 536
Data collection top
Oxford Diffraction Gemini
diffractometer
4060 independent reflections
Radiation source: fine-focus sealed tube3180 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 10.5081 pixels mm-1θmax = 32.5°, θmin = 4.7°
ϕ and ω scansh = 68
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1110
Tmin = 0.849, Tmax = 1.000l = 4538
8924 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.077H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + (0.0605P)2 + 1.4543P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
4060 reflectionsΔρmax = 0.69 e Å3
163 parametersΔρmin = 0.38 e Å3
0 restraintsAbsolute structure: Flack (1983), 1314 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (16)
Crystal data top
C16H14OSV = 1303.64 (17) Å3
Mr = 254.34Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.6106 (4) ŵ = 0.23 mm1
b = 7.6239 (7) ÅT = 200 K
c = 30.477 (2) Å0.49 × 0.18 × 0.15 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
4060 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
3180 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 1.000Rint = 0.069
8924 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.077H-atom parameters constrained
wR(F2) = 0.182Δρmax = 0.69 e Å3
S = 1.11Δρmin = 0.38 e Å3
4060 reflectionsAbsolute structure: Flack (1983), 1314 Friedel pairs
163 parametersAbsolute structure parameter: 0.11 (16)
0 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S40.48075 (18)0.98501 (13)0.09063 (3)0.0418 (3)
O10.8645 (4)1.0222 (4)0.11787 (7)0.0411 (8)
C10.6679 (5)0.9800 (4)0.10480 (9)0.0284 (8)
C20.4803 (6)0.9187 (4)0.13565 (9)0.0300 (8)
C30.5318 (6)0.8989 (4)0.17807 (9)0.0273 (8)
C40.7257 (8)1.0997 (6)0.11513 (11)0.0481 (13)
C110.3725 (6)0.8391 (4)0.21292 (9)0.0269 (8)
C120.4425 (5)0.8603 (4)0.25687 (9)0.0284 (8)
C130.2984 (7)0.8019 (5)0.29078 (10)0.0349 (10)
C140.0835 (7)0.7219 (5)0.28169 (11)0.0374 (10)
C150.0098 (7)0.6998 (4)0.23848 (10)0.0335 (9)
C160.1525 (6)0.7588 (4)0.20435 (10)0.0306 (9)
C210.6093 (5)0.9893 (4)0.05707 (9)0.0239 (7)
C220.7753 (5)1.0701 (4)0.02917 (10)0.0285 (8)
C230.7412 (6)1.0748 (4)0.01573 (10)0.0296 (8)
C240.5389 (6)0.9955 (4)0.03416 (9)0.0281 (8)
C250.3704 (5)0.9185 (4)0.00654 (10)0.0293 (8)
C260.4044 (6)0.9151 (4)0.03850 (10)0.0300 (8)
H20.324420.893740.125180.0360*
H30.690180.926870.186610.0328*
H4A0.707021.099970.147100.0720*
H4B0.875271.041050.107340.0720*
H4C0.728781.220760.104340.0720*
H120.590230.915230.263410.0340*
H130.347670.817040.320360.0419*
H140.014520.681750.305040.0449*
H150.138080.644310.232330.0402*
H160.100640.744590.174890.0367*
H220.913771.122620.041380.0341*
H230.854421.131490.034070.0356*
H250.230770.867680.018750.0351*
H260.288020.862250.056870.0360*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S40.0460 (5)0.0497 (5)0.0297 (3)0.0035 (5)0.0048 (3)0.0008 (3)
O10.0278 (12)0.0601 (17)0.0353 (11)0.0141 (13)0.0040 (9)0.0017 (11)
C10.0259 (14)0.0295 (15)0.0297 (12)0.0040 (13)0.0011 (10)0.0007 (11)
C20.0243 (14)0.0349 (15)0.0308 (12)0.0088 (13)0.0007 (11)0.0004 (11)
C30.0215 (14)0.0254 (13)0.0350 (13)0.0010 (12)0.0022 (11)0.0006 (11)
C40.051 (2)0.059 (3)0.0342 (16)0.005 (2)0.0029 (15)0.0084 (17)
C110.0248 (14)0.0252 (14)0.0307 (13)0.0026 (12)0.0026 (11)0.0010 (11)
C120.0218 (15)0.0295 (15)0.0338 (14)0.0040 (11)0.0026 (11)0.0009 (11)
C130.0377 (18)0.0378 (18)0.0293 (14)0.0044 (15)0.0003 (13)0.0019 (12)
C140.0379 (19)0.0348 (18)0.0396 (17)0.0129 (14)0.0114 (13)0.0081 (14)
C150.0303 (16)0.0246 (14)0.0456 (16)0.0027 (14)0.0050 (14)0.0008 (11)
C160.0262 (15)0.0323 (16)0.0332 (14)0.0015 (13)0.0002 (12)0.0002 (12)
C210.0210 (12)0.0210 (12)0.0297 (12)0.0003 (11)0.0004 (9)0.0002 (11)
C220.0213 (13)0.0300 (15)0.0341 (14)0.0069 (12)0.0002 (11)0.0004 (12)
C230.0255 (14)0.0295 (15)0.0339 (14)0.0023 (12)0.0034 (11)0.0025 (12)
C240.0326 (15)0.0220 (12)0.0297 (12)0.0040 (13)0.0023 (10)0.0004 (11)
C250.0202 (13)0.0319 (15)0.0357 (14)0.0070 (12)0.0032 (11)0.0034 (12)
C260.0258 (15)0.0316 (15)0.0327 (14)0.0035 (13)0.0022 (11)0.0001 (12)
Geometric parameters (Å, º) top
S4—C41.792 (4)C24—C251.395 (4)
S4—C241.754 (3)C25—C261.386 (4)
O1—C11.216 (4)C2—H20.9500
C1—C21.487 (4)C3—H30.9500
C1—C211.493 (4)C4—H4A0.9800
C2—C31.333 (4)C4—H4B0.9800
C3—C111.461 (4)C4—H4C0.9800
C11—C121.405 (4)C12—H120.9500
C11—C161.402 (5)C13—H130.9500
C12—C131.386 (4)C14—H140.9500
C13—C141.379 (5)C15—H150.9500
C14—C151.391 (5)C16—H160.9500
C15—C161.388 (5)C22—H220.9500
C21—C221.404 (4)C23—H230.9500
C21—C261.401 (4)C25—H250.9500
C22—C231.382 (4)C26—H260.9500
C23—C241.403 (5)
S4···H16i3.1800H2···C262.6800
O1···H2ii2.7700H2···H162.2700
O1···H32.4200H2···H262.1100
O1···H222.4700H3···O12.4200
O1···H4Ciii2.8600H3···C15ii2.9500
O1···H14iv2.7800H3···C16ii2.9400
C3···C13iv3.354 (5)H3···H122.4100
C3···C14iv3.497 (5)H3···C13iv2.9400
C3···C15ii3.590 (5)H3···C14iv2.7600
C12···C15ii3.456 (5)H4A···C14x3.0300
C13···C3v3.354 (5)H4A···H14x2.4600
C14···C3v3.497 (5)H4B···C232.9000
C15···C12vi3.456 (5)H4B···H232.3400
C15···C3vi3.590 (5)H4C···C232.9200
C2···H162.7800H4C···H232.3600
C2···H262.6700H4C···O1ix2.8600
C4···H232.5900H12···C15ii2.9700
C12···H15vii2.7800H12···H32.4100
C12···H15ii2.9700H14···H4Aviii2.4600
C13···H15vii2.8500H14···O1v2.7800
C13···H3v2.9400H15···C12vi2.9700
C14···H3v2.7600H15···C12xi2.7800
C14···H4Aviii3.0300H15···C13xi2.8500
C15···H3vi2.9500H16···C22.7800
C15···H12vi2.9700H16···H22.2700
C16···H22.7900H16···S4xii3.1800
C16···H3vi2.9400H22···O12.4700
C21···H25i3.0400H22···C23iii3.0500
C23···H4B2.9000H22···C24iii3.0000
C23···H4C2.9200H23···C42.5900
C23···H22ix3.0500H23···H4B2.3400
C24···H22ix3.0000H23···H4C2.3600
C25···H25i3.0700H25···C21xii3.0400
C26···H22.6800H25···C25xii3.0700
C26···H25i2.8900H25···C26xii2.8900
H2···O1vi2.7700H26···C22.6700
H2···C162.7900H26···H22.1100
C4—S4—C24104.13 (16)C2—C3—H3116.00
O1—C1—C2121.2 (3)C11—C3—H3116.00
O1—C1—C21120.4 (3)S4—C4—H4A109.00
C2—C1—C21118.4 (2)S4—C4—H4B109.00
C1—C2—C3119.7 (3)S4—C4—H4C109.00
C2—C3—C11127.4 (3)H4A—C4—H4B109.00
C3—C11—C12119.1 (3)H4A—C4—H4C109.00
C3—C11—C16122.6 (3)H4B—C4—H4C109.00
C12—C11—C16118.3 (3)C11—C12—H12120.00
C11—C12—C13120.7 (3)C13—C12—H12120.00
C12—C13—C14120.2 (3)C12—C13—H13120.00
C13—C14—C15120.3 (3)C14—C13—H13120.00
C14—C15—C16119.9 (3)C13—C14—H14120.00
C11—C16—C15120.7 (3)C15—C14—H14120.00
C1—C21—C22117.7 (3)C14—C15—H15120.00
C1—C21—C26123.7 (3)C16—C15—H15120.00
C22—C21—C26118.5 (3)C11—C16—H16120.00
C21—C22—C23121.3 (3)C15—C16—H16120.00
C22—C23—C24119.8 (3)C21—C22—H22119.00
S4—C24—C23124.3 (2)C23—C22—H22119.00
S4—C24—C25116.5 (2)C22—C23—H23120.00
C23—C24—C25119.2 (3)C24—C23—H23120.00
C24—C25—C26120.8 (3)C24—C25—H25120.00
C21—C26—C25120.4 (3)C26—C25—H25120.00
C1—C2—H2120.00C21—C26—H26120.00
C3—C2—H2120.00C25—C26—H26120.00
C4—S4—C24—C231.6 (3)C11—C12—C13—C140.0 (5)
C4—S4—C24—C25178.6 (3)C12—C13—C14—C150.2 (6)
O1—C1—C2—C34.2 (5)C13—C14—C15—C160.2 (5)
C21—C1—C2—C3176.0 (3)C14—C15—C16—C110.7 (5)
O1—C1—C21—C228.6 (4)C1—C21—C22—C23176.1 (3)
O1—C1—C21—C26168.4 (3)C26—C21—C22—C231.0 (5)
C2—C1—C21—C22171.3 (3)C1—C21—C26—C25175.5 (3)
C2—C1—C21—C2611.8 (4)C22—C21—C26—C251.4 (5)
C1—C2—C3—C11179.5 (3)C21—C22—C23—C240.9 (5)
C2—C3—C11—C12167.1 (3)C22—C23—C24—S4177.5 (2)
C2—C3—C11—C1613.8 (5)C22—C23—C24—C252.4 (5)
C3—C11—C12—C13178.7 (3)S4—C24—C25—C26177.9 (2)
C16—C11—C12—C130.5 (5)C23—C24—C25—C261.9 (5)
C3—C11—C16—C15178.3 (3)C24—C25—C26—C210.0 (5)
C12—C11—C16—C150.9 (5)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1, y, z; (iii) x+1/2, y+5/2, z; (iv) x+1, y+1/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x1, y, z; (vii) x, y+1/2, z+1/2; (viii) x+1/2, y+2, z+1/2; (ix) x1/2, y+5/2, z; (x) x+1/2, y+2, z1/2; (xi) x, y1/2, z+1/2; (xii) x1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.952.422.781 (4)102
C12—H12···Cg1iv0.952.993.704 (3)133
C15—H15···Cg1xi0.952.893.488 (3)122
C25—H25···Cg2xii0.952.903.562 (3)127
Symmetry codes: (iv) x+1, y+1/2, z+1/2; (xi) x, y1/2, z+1/2; (xii) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC16H14OS
Mr254.34
Crystal system, space groupOrthorhombic, P212121
Temperature (K)200
a, b, c (Å)5.6106 (4), 7.6239 (7), 30.477 (2)
V3)1303.64 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.49 × 0.18 × 0.15
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.849, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8924, 4060, 3180
Rint0.069
(sin θ/λ)max1)0.755
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.182, 1.11
No. of reflections4060
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.38
Absolute structureFlack (1983), 1314 Friedel pairs
Absolute structure parameter0.11 (16)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O10.952.422.781 (4)102
C12—H12···Cg1i0.952.993.704 (3)133
C15—H15···Cg1ii0.952.893.488 (3)122
C25—H25···Cg2iii0.952.903.562 (3)127
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x1/2, y+3/2, z.
 

Acknowledgements

RJB acknowledges the NSF–MRI program for funding to purchase the X-ray CCD diffractometer. AT thanks the UGC, India, for the award of a Minor Research Project [File No. MRP-2355/06(UGC-SERO), Link No. 2355, 10/01/2007].

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMoorthi, S. S., Chinnakali, K., Nanjundan, S., Unnithan, C. S., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o483–o485.  CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSathiya Moorthi, S., Chinnakali, K., Nanjundan, S., Santhi, R. & Fun, H.-K. (2005). Acta Cryst. E61, o3514–o3516.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThiruvalluvar, A., Subramanyam, M., Butcher, R. J., Adhikari, A. V. & Karabasanagouda, T. (2007b). Acta Cryst. E63, o4716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThiruvalluvar, A., Subramanyam, M., Butcher, R. J., Adhikari, A. V. & Wagle, S. (2007a). Acta Cryst. E63, o4536.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds