metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(2-hydrazino-1,10-phenanthroline)nitratocopper(II) nitrate

aDepartment of Chemistry, Dezhou University, Dezhou Shandong 253023, People's Republic of China, and bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: hongliangl1968@yahoo.com.cn

(Received 16 May 2008; accepted 22 May 2008; online 30 May 2008)

In the title mononuclear complex, [Cu(NO3)(C12H10N4)(H2O)]NO3, the CuII ion assumes a distorted square-pyramidal geometry. There is a ππ stacking inter­action between the five-membered ring containing the Cu atom and a pyridine ring of a neighboring complex [centroid–centroid distance = 3.567 (2) Å and a perpendicular distance of 3.394 Å]. The crystal structure also contains inter­molecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, linking cations and anions. In addition, there is a short inter­molecular contact [2.784 (6) Å] between an O atom of the coordinated nitrate group and its symmetry-related atom.

Related literature

For related structures, see: Liu et al. (2008[Liu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58-m60.]); Lewis et al. (1980[Lewis, J. & O'Donoghue, T. D. (1980). J. Chem. Soc. Dalton Trans. pp. 736-742.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)(C12H10N4)(H2O)]NO3

  • Mr = 415.82

  • Monoclinic, P 21 /n

  • a = 8.7175 (8) Å

  • b = 10.7746 (10) Å

  • c = 16.4725 (16) Å

  • β = 97.175 (2)°

  • V = 1535.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 298 (2) K

  • 0.50 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.525, Tmax = 0.843

  • 8857 measured reflections

  • 3329 independent reflections

  • 2735 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.112

  • S = 1.03

  • 3329 reflections

  • 235 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6i 0.86 2.18 2.936 (4) 146
N1—H1⋯O7i 0.86 2.54 3.181 (4) 132
N2—H2A⋯O3ii 0.90 2.22 3.111 (4) 169
N2—H2B⋯O7iii 0.90 2.17 3.055 (4) 168
O1—H9⋯O5iii 0.84 1.98 2.818 (3) 175
O1—H9⋯O7iii 0.84 2.58 3.185 (3) 130
O1—H13⋯O6iv 0.85 1.99 2.821 (3) 167
C2—H2⋯O6i 0.93 2.56 3.253 (4) 132
C3—H3⋯O1v 0.93 2.48 3.280 (4) 144
C11—H11⋯O4vi 0.93 2.43 3.118 (5) 131
Symmetry codes: (i) x-1, y, z-1; (ii) -x+1, -y, -z; (iii) -x+1, -y, -z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x, -y+1, -z; (vi) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Derivatives of 1,10-phenanthroline play an important role in modern coordination chemistry (Liu et al., 2008), and although complexes with 2,9-dihydrazino-1,10-phenanthroline as ligand have been published (Lewis et al., 1980), to the best of our knowledge, no crystal structure of the title complex has been published.

Fig. 1 shows the structure, revealing that the Cu atom is in a distorted square-pyramidal environment, with atom O1 in the apical position. There is a single π-π stacking interaction involving symmetry-related 1,10-phenanthroline ligands, the relevant distances being Cg1···Cg2v = 3.567 (2) Å and Cg1···Cg2vperp = 3.394 Å and α = 3.76° [symmetry code: (v) -x, 1 - y, -z; Cg1 and Cg2 are the centroids of the Cu1/N5/N6/C8/C9 ring and N6/C7/C8/C10-C12 ring, respectively; Cg1···Cg21perp is the perpendicular distance from ring Cg1 to ring Cg2i; α is the dihedral angle between ring plane Cg1 and ring plane Cg2i]. There exists a short contact [2.784 (6) Å] between atom O3 and its symmetry-related atom O3ii [symmetry code: (ii) 1-x,-y,-z], as shown in Fig. 2 (double dashed lines). In addition, the crystal structure contains classical N—H..O and O—H···O hydrogen bonds, also non-classical C—H···O hydrogen bonds, as shown in Table 1 and Fig. 2. The π-π stacking interaction, the short contact between atom O3 and its symmetry-related atom O3ii and the hydrogen bonds stabilize the crystal structure.

Related literature top

For related structures, see: Liu et al. (2008); Lewis et al. (1980).

Experimental top

10 ml methanol solution of 2-hydrazino-1,10-phenanthroline (0.0105 g, 0.0576 mmol) was added to 5 ml aqueous solution of Cu(NO3)2.3H2O (0.0390 g, 0.161 mmol) and the mixture was stirred for a few minutes. Deep-green single crystals were obtained after the filtrate had been allowed to stand at room temperature for two weeks.

Refinement top

Oxygen-bound H atoms were located in a difference Fourier map, then placed in calculated positions with O—H = 0.84 and 0.85 Å and refined as riding with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 Å and N—H = 0.86 and 0.90 Å, and refined as riding with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Structure of the title complex with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing in the crystal structure. Short contacts between atom O3 and its symmetry-related atoms are shown as double dashed lines and hydrogen bonds as dashed lines.
Aqua(2-hydrazino-1,10-phenanthroline)nitratocopper(II) nitrate top
Crystal data top
[Cu(NO3)(C12H10N4)(H2O)]NO3F(000) = 844
Mr = 415.82Dx = 1.799 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2442 reflections
a = 8.7175 (8) Åθ = 2.3–24.6°
b = 10.7746 (10) ŵ = 1.48 mm1
c = 16.4725 (16) ÅT = 298 K
β = 97.175 (2)°Block, green
V = 1535.1 (2) Å30.50 × 0.20 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3329 independent reflections
Radiation source: fine-focus sealed tube2735 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 27.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.525, Tmax = 0.843k = 1313
8857 measured reflectionsl = 1220
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.058P)2 + 0.4576P]
where P = (Fo2 + 2Fc2)/3
3329 reflections(Δ/σ)max = 0.002
235 parametersΔρmax = 0.70 e Å3
3 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cu(NO3)(C12H10N4)(H2O)]NO3V = 1535.1 (2) Å3
Mr = 415.82Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7175 (8) ŵ = 1.48 mm1
b = 10.7746 (10) ÅT = 298 K
c = 16.4725 (16) Å0.50 × 0.20 × 0.12 mm
β = 97.175 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3329 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2735 reflections with I > 2σ(I)
Tmin = 0.525, Tmax = 0.843Rint = 0.034
8857 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.70 e Å3
3329 reflectionsΔρmin = 0.33 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1553 (4)0.3275 (3)0.07122 (17)0.0395 (7)
C20.0545 (4)0.3975 (3)0.12818 (19)0.0478 (8)
H20.00800.35810.17040.057*
C30.0507 (4)0.5226 (3)0.1201 (2)0.0492 (8)
H30.01590.56890.15680.059*
C40.1460 (4)0.5839 (3)0.05691 (19)0.0441 (8)
C50.1525 (5)0.7152 (3)0.0411 (2)0.0539 (9)
H50.08860.76830.07450.065*
C60.2498 (4)0.7624 (3)0.0215 (2)0.0541 (9)
H60.25040.84770.03020.065*
C70.3518 (4)0.6866 (3)0.0746 (2)0.0459 (8)
C80.3481 (3)0.5572 (3)0.06060 (17)0.0377 (7)
C90.2440 (3)0.5098 (3)0.00470 (18)0.0364 (6)
C100.5401 (4)0.5172 (3)0.1667 (2)0.0462 (8)
H100.60580.46200.19740.055*
C110.5497 (4)0.6440 (3)0.1859 (2)0.0550 (9)
H110.61900.67130.22970.066*
C120.4578 (5)0.7272 (3)0.1405 (2)0.0548 (9)
H120.46530.81130.15330.066*
Cu10.37741 (4)0.29261 (3)0.06801 (2)0.03598 (14)
N10.1698 (3)0.2036 (2)0.07207 (16)0.0478 (7)
H10.12110.15870.11010.057*
N20.2703 (3)0.1510 (2)0.00644 (15)0.0432 (6)
H2A0.34270.10450.02650.052*
H2B0.21600.10140.02350.052*
N30.5836 (3)0.1007 (3)0.13379 (17)0.0499 (7)
N40.8613 (3)0.0304 (2)0.83090 (17)0.0472 (7)
N50.2458 (3)0.3843 (2)0.01228 (14)0.0362 (5)
N60.4397 (3)0.4735 (2)0.10578 (15)0.0376 (5)
O10.2264 (3)0.27432 (18)0.16726 (12)0.0440 (5)
H90.22730.19800.17840.066*
H130.27170.31280.20830.066*
O20.5464 (3)0.21509 (19)0.13917 (15)0.0516 (6)
O30.5139 (4)0.0349 (2)0.08196 (18)0.0770 (9)
O40.6890 (4)0.0598 (3)0.1787 (2)0.1068 (13)
O50.7508 (3)0.0211 (2)0.79020 (18)0.0735 (8)
O60.9063 (3)0.1324 (2)0.80827 (14)0.0610 (7)
O70.9290 (3)0.0178 (2)0.89371 (16)0.0627 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0392 (17)0.0383 (16)0.0423 (17)0.0019 (13)0.0106 (13)0.0020 (13)
C20.0441 (19)0.052 (2)0.0457 (18)0.0053 (15)0.0008 (14)0.0062 (15)
C30.0418 (19)0.057 (2)0.0492 (19)0.0118 (16)0.0085 (15)0.0152 (16)
C40.0469 (19)0.0369 (16)0.0527 (19)0.0104 (14)0.0224 (15)0.0106 (13)
C50.063 (2)0.0395 (18)0.062 (2)0.0131 (16)0.0210 (18)0.0150 (16)
C60.071 (3)0.0282 (16)0.069 (2)0.0072 (16)0.034 (2)0.0047 (15)
C70.058 (2)0.0293 (15)0.056 (2)0.0025 (14)0.0284 (17)0.0018 (13)
C80.0413 (17)0.0320 (15)0.0436 (16)0.0005 (12)0.0199 (13)0.0007 (12)
C90.0404 (17)0.0297 (14)0.0416 (16)0.0044 (12)0.0149 (13)0.0045 (12)
C100.0457 (19)0.0491 (18)0.0451 (17)0.0050 (15)0.0115 (14)0.0034 (14)
C110.060 (2)0.054 (2)0.053 (2)0.0171 (18)0.0127 (17)0.0129 (17)
C120.070 (3)0.0332 (17)0.066 (2)0.0128 (16)0.0264 (19)0.0120 (15)
Cu10.0392 (2)0.0291 (2)0.0397 (2)0.00421 (14)0.00535 (15)0.00074 (14)
N10.0554 (17)0.0373 (14)0.0479 (16)0.0027 (12)0.0051 (13)0.0059 (11)
N20.0515 (17)0.0317 (13)0.0464 (14)0.0037 (11)0.0065 (12)0.0001 (11)
N30.0537 (18)0.0477 (16)0.0474 (15)0.0124 (14)0.0022 (13)0.0019 (13)
N40.0568 (18)0.0386 (14)0.0483 (16)0.0009 (13)0.0148 (13)0.0022 (12)
N50.0394 (14)0.0306 (12)0.0390 (13)0.0036 (10)0.0061 (10)0.0011 (10)
N60.0409 (14)0.0326 (12)0.0412 (13)0.0001 (11)0.0132 (11)0.0014 (11)
O10.0505 (14)0.0375 (11)0.0447 (12)0.0008 (9)0.0091 (10)0.0001 (9)
O20.0519 (15)0.0406 (12)0.0600 (14)0.0120 (10)0.0020 (11)0.0063 (10)
O30.095 (2)0.0483 (14)0.0791 (19)0.0180 (14)0.0225 (16)0.0118 (14)
O40.108 (3)0.077 (2)0.119 (3)0.042 (2)0.051 (2)0.0025 (19)
O50.0673 (18)0.0551 (15)0.092 (2)0.0193 (14)0.0152 (15)0.0131 (14)
O60.0885 (19)0.0425 (13)0.0500 (13)0.0200 (13)0.0008 (12)0.0065 (11)
O70.0719 (18)0.0546 (15)0.0601 (15)0.0045 (13)0.0018 (13)0.0167 (12)
Geometric parameters (Å, º) top
C1—N51.322 (4)C11—C121.362 (5)
C1—N11.341 (4)C11—H110.9300
C1—C21.420 (4)C12—H120.9300
C2—C31.356 (5)Cu1—N51.914 (2)
C2—H20.9300Cu1—O21.952 (2)
C3—C41.412 (5)Cu1—N62.097 (2)
C3—H30.9300Cu1—N22.102 (2)
C4—C91.387 (4)Cu1—O12.232 (2)
C4—C51.437 (5)N1—N21.422 (3)
C5—C61.351 (5)N1—H10.8600
C5—H50.9300N2—H2A0.9000
C6—C71.425 (5)N2—H2B0.9000
C6—H60.9300N3—O41.190 (4)
C7—C121.405 (5)N3—O31.213 (4)
C7—C81.412 (4)N3—O21.280 (3)
C8—N61.363 (4)N4—O51.234 (3)
C8—C91.413 (4)N4—O71.239 (3)
C9—N51.358 (4)N4—O61.240 (3)
C10—N61.332 (4)O1—H90.8422
C10—C111.402 (5)O1—H130.8485
C10—H100.9300
N5—C1—N1114.9 (3)N5—Cu1—O2168.02 (11)
N5—C1—C2120.2 (3)N5—Cu1—N680.55 (10)
N1—C1—C2125.0 (3)O2—Cu1—N694.10 (9)
C3—C2—C1118.9 (3)N5—Cu1—N277.72 (10)
C3—C2—H2120.5O2—Cu1—N2106.66 (9)
C1—C2—H2120.5N6—Cu1—N2158.07 (10)
C2—C3—C4121.3 (3)N5—Cu1—O1101.19 (9)
C2—C3—H3119.4O2—Cu1—O189.57 (10)
C4—C3—H3119.4N6—Cu1—O191.11 (8)
C9—C4—C3116.6 (3)N2—Cu1—O195.94 (9)
C9—C4—C5116.6 (3)C1—N1—N2116.0 (2)
C3—C4—C5126.9 (3)C1—N1—H1122.0
C6—C5—C4121.0 (3)N2—N1—H1122.0
C6—C5—H5119.5N1—N2—Cu1109.92 (17)
C4—C5—H5119.5N1—N2—H2A109.7
C5—C6—C7122.5 (3)Cu1—N2—H2A109.7
C5—C6—H6118.8N1—N2—H2B109.7
C7—C6—H6118.8Cu1—N2—H2B109.7
C12—C7—C8115.7 (3)H2A—N2—H2B108.2
C12—C7—C6126.6 (3)O4—N3—O3120.0 (3)
C8—C7—C6117.8 (3)O4—N3—O2119.7 (3)
N6—C8—C7124.3 (3)O3—N3—O2120.2 (3)
N6—C8—C9117.0 (3)O5—N4—O7121.6 (3)
C7—C8—C9118.7 (3)O5—N4—O6119.3 (3)
N5—C9—C4122.0 (3)O7—N4—O6119.1 (3)
N5—C9—C8114.6 (3)C1—N5—C9121.1 (3)
C4—C9—C8123.4 (3)C1—N5—Cu1121.3 (2)
N6—C10—C11121.9 (3)C9—N5—Cu1117.6 (2)
N6—C10—H10119.0C10—N6—C8117.6 (3)
C11—C10—H10119.0C10—N6—Cu1132.3 (2)
C12—C11—C10120.2 (3)C8—N6—Cu1109.92 (19)
C12—C11—H11119.9Cu1—O1—H9104.8
C10—C11—H11119.9Cu1—O1—H13106.4
C11—C12—C7120.2 (3)H9—O1—H13108.2
C11—C12—H12119.9N3—O2—Cu1123.3 (2)
C7—C12—H12119.9
N5—C1—C2—C31.2 (5)N1—C1—N5—Cu13.2 (4)
N1—C1—C2—C3179.7 (3)C2—C1—N5—Cu1177.6 (2)
C1—C2—C3—C40.7 (5)C4—C9—N5—C11.2 (4)
C2—C3—C4—C90.7 (5)C8—C9—N5—C1179.4 (3)
C2—C3—C4—C5179.4 (3)C4—C9—N5—Cu1176.2 (2)
C9—C4—C5—C60.2 (5)C8—C9—N5—Cu13.2 (3)
C3—C4—C5—C6179.7 (3)O2—Cu1—N5—C1113.5 (5)
C4—C5—C6—C70.5 (5)N6—Cu1—N5—C1177.7 (2)
C5—C6—C7—C12179.3 (3)N2—Cu1—N5—C10.7 (2)
C5—C6—C7—C80.5 (5)O1—Cu1—N5—C193.0 (2)
C12—C7—C8—N60.5 (4)O2—Cu1—N5—C969.0 (5)
C6—C7—C8—N6179.3 (3)N6—Cu1—N5—C94.8 (2)
C12—C7—C8—C9180.0 (3)N2—Cu1—N5—C9178.2 (2)
C6—C7—C8—C90.2 (4)O1—Cu1—N5—C984.5 (2)
C3—C4—C9—N51.7 (4)C11—C10—N6—C81.7 (5)
C5—C4—C9—N5178.4 (3)C11—C10—N6—Cu1172.6 (2)
C3—C4—C9—C8179.0 (3)C7—C8—N6—C100.6 (4)
C5—C4—C9—C80.9 (4)C9—C8—N6—C10178.9 (3)
N6—C8—C9—N52.0 (4)C7—C8—N6—Cu1174.9 (2)
C7—C8—C9—N5178.4 (3)C9—C8—N6—Cu15.5 (3)
N6—C8—C9—C4178.6 (3)N5—Cu1—N6—C10179.9 (3)
C7—C8—C9—C40.9 (4)O2—Cu1—N6—C1010.7 (3)
N6—C10—C11—C121.8 (5)N2—Cu1—N6—C10172.0 (3)
C10—C11—C12—C70.6 (5)O1—Cu1—N6—C1079.0 (3)
C8—C7—C12—C110.5 (5)N5—Cu1—N6—C85.51 (18)
C6—C7—C12—C11179.3 (3)O2—Cu1—N6—C8174.71 (19)
N5—C1—N1—N24.7 (4)N2—Cu1—N6—C813.3 (4)
C2—C1—N1—N2176.2 (3)O1—Cu1—N6—C895.65 (19)
C1—N1—N2—Cu14.0 (3)O4—N3—O2—Cu1179.2 (3)
N5—Cu1—N2—N11.71 (19)O3—N3—O2—Cu10.9 (5)
O2—Cu1—N2—N1166.8 (2)N5—Cu1—O2—N3105.8 (5)
N6—Cu1—N2—N16.2 (4)N6—Cu1—O2—N3168.8 (3)
O1—Cu1—N2—N1101.9 (2)N2—Cu1—O2—N34.1 (3)
N1—C1—N5—C9179.4 (3)O1—Cu1—O2—N3100.2 (3)
C2—C1—N5—C90.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.862.182.936 (4)146
N1—H1···O7i0.862.543.181 (4)132
N2—H2A···O3ii0.902.223.111 (4)169
N2—H2B···O7iii0.902.173.055 (4)168
O1—H9···O5iii0.841.982.818 (3)175
O1—H9···O7iii0.842.583.185 (3)130
O1—H13···O6iv0.851.992.821 (3)167
C2—H2···O6i0.932.563.253 (4)132
C3—H3···O1v0.932.483.280 (4)144
C11—H11···O4vi0.932.433.118 (5)131
Symmetry codes: (i) x1, y, z1; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x1/2, y+1/2, z1/2; (v) x, y+1, z; (vi) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(NO3)(C12H10N4)(H2O)]NO3
Mr415.82
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.7175 (8), 10.7746 (10), 16.4725 (16)
β (°) 97.175 (2)
V3)1535.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.50 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.525, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
8857, 3329, 2735
Rint0.034
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.112, 1.03
No. of reflections3329
No. of parameters235
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.33

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O6i0.862.182.936 (4)145.9
N1—H1···O7i0.862.543.181 (4)132.1
N2—H2A···O3ii0.902.223.111 (4)169.4
N2—H2B···O7iii0.902.173.055 (4)168.2
O1—H9···O5iii0.841.982.818 (3)174.7
O1—H9···O7iii0.842.583.185 (3)130.2
O1—H13···O6iv0.851.992.821 (3)166.8
C2—H2···O6i0.932.563.253 (4)132.1
C3—H3···O1v0.932.483.280 (4)143.7
C11—H11···O4vi0.932.433.118 (5)131.1
Symmetry codes: (i) x1, y, z1; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x1/2, y+1/2, z1/2; (v) x, y+1, z; (vi) x+3/2, y+1/2, z+1/2.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLewis, J. & O'Donoghue, T. D. (1980). J. Chem. Soc. Dalton Trans. pp. 736–742.  CrossRef Web of Science Google Scholar
First citationLiu, Q. S., Liu, L. D. & Shi, J. M. (2008). Acta Cryst. C64, m58–m60.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds