Download citation
Download citation
link to html
The mol­ecule of the title compound, C26H30N2O4S, adopts a folded conformation, with the sulfonyl-bound benzene ring lying over the pyridinone ring [centroid-to-centroid distance = 3.893 (1) Å], forming a dihedral angle of 23.87 (5)°. The pyrrolidine ring adopts a twist conformation and the dihydro­pyran ring is in a half-chair conformation. The pyrrolidine and dihydro­pyran rings are cis-fused. The sulfonyl group has a distorted tetra­hedral geometry. In the crystal structure, the mol­ecules are linked into a centrosymmetric R22(12) dimer by C—H...O hydrogen bonds. The dimers are cross-linked into a sheet parallel to the bc plane via C—H...π inter­actions involving the benzene ring of the quinolinone ring system. The ethyl group is disordered over two positions; the site-occupancy factors are ca 0.8 and 0.2.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807053263/wn2214sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807053263/wn2214Isup2.hkl
Contains datablock I

CCDC reference: 667484

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • Disorder in main residue
  • R factor = 0.059
  • wR factor = 0.163
  • Data-to-parameter ratio = 21.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT301_ALERT_3_C Main Residue Disorder ......................... 6.00 Perc.
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C2 = ... R PLAT793_ALERT_1_G Check the Absolute Configuration of C3 = ... R PLAT793_ALERT_1_G Check the Absolute Configuration of C4 = ... R PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Some pyranoquinolone derivatives exhibit anti-inflammatory activity (Keenan, 1994; Wasserman 1995). Pyranoquinolone alkaloids exhibit photo-activated antimicrobial activity (Hanawa et al., 2004) and SRS-A antagonist action (Kamikawa et al., 1996). Pyranoquinolinones act as blockers of the voltage-gated potassium channel Kv1.3 (Butenschön et al., 2001). 2H-pyrano[3,2-g]quinolin-2-one derivatives are found to modulate the transcriptional activity of the human androgen receptor (Edwards et al., 1999). We report here the crystal structure of the title compound, a pyranoquinolinone derivative.

Bond lengths and angles in the title molecule (Fig. 1) are comparable to those observed in a related compound, 6,6-dimethyl-4-tosylpyrrolo[3,4-c]pyrano[5,6-c]-1- methylquinolin-2-one hemihydrate (Chinnakali et al., 2007).

The pyrrolidine ring adopts a twist conformation, with the local twofold rotation axis passing through atom N1 and the mid-point of the opposite bond C2—C3; the asymmetry parameter (Duax et al., 1976) ΔC2[C2—C3] is 2.3 (2)°, and the puckering parameters (Cremer & Pople, 1975) are q2 = 0.370 (2) Å and φ = 92.2 (3)°. The tosyl group is attached to the pyrrolidine ring in a biaxial position. The dihydropyran ring is in a half-chair conformation, with a local pseudo-twofold rotation axis running through the midpoints of the C2—C5 and C6—C7 bonds. The puckering parameters Q, θ and φ, and the smallest displacement asymmetry parameter ΔC2[C2—C5] are 0.438 (2) Å, 50.6 (3)°, 87.1 (3)° and 4.6 (3)°, respectively. The pyrrolidine ring is cis-fused to the dihydropyran ring. The quinolinone ring system is planar, with an r.m.s. deviation of 0.030 Å, and atoms O4 and C24 deviating from the mean plane by 0.171 (2) and 0.084 (3) Å, respectively.

As expected, the sulfonyl group has a distorted tetrahedral geometry, with the O1—S1—O2 [119.40 (9)°] angle deviating significantly from the ideal tetrahedral value. The molecule is in a folded conformation, with the sulfonyl-bound benzene ring lying over the pyridinone ring. The centroid-centroid distance [3.893 (1) Å] and the dihedral angle [23.87 (5)°] between the two rings indicate the presence of weak ππ interactions between them.

In the crystal structure, centrosymmetrically related molecules are linked by a pair of C2—H2···O1i hydrogen bonds (Table 1) into a R22(12) dimer. The dimers are linked into a sheet parallel to the bc plane (Fig. 2) via C25A—H25A···π interactions involving the C17–C22 ring (centroid Cg1) of the molecule at (1 - x, -1/2 + y, 1/2 - z).

Related literature top

The structure of the title molecule is quite similar to that of 6,6-dimethyl-4-tosylpyrrolo[3,4-c]pyrano[5,6-c]-1- methylquinolin-2-one (Chinnakali et al., 2007). For biological activities of pyranoquinolinones, see: Butenschön et al. (2001); Edwards et al. (1999); Hanawa et al. (2004); Kamikawa et al. (1996); Keenan (1994); Wasserman (1995). For ring-puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax et al. (1976).

Experimental top

To a solution of 1-methylquinoline-2,4-dione (1 mmol) in dry toluene (20 ml), 2-[N-(3-methylbut-2-enyl)-N-tosylamino]butanal (1 mmol) and a catalytic amount of the base ethylenediamine-N,N'-diacetate (EDDA) were added and the reaction mixture was refluxed for 12 h. After completion of the reaction, the solvent was evaporated under reduced pressure and the crude product was chromatographed using a hexane–ethyl acetate (8:2 v/v) mixture to obtain the title compound. The compound was recrystallized from ethyl acetate solution by slow evaporation.

Refinement top

The ethyl group is disordered over two orientations (C25A,C26A/C25B,C26B) with refined occupancies of 0.760 (5) and 0.240 (5). The corresponding C—C distances in the disordered components were restrained to be equal. H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.98 Å. The Uiso values were set equal to 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups attached to aromatic rings.

Structure description top

Some pyranoquinolone derivatives exhibit anti-inflammatory activity (Keenan, 1994; Wasserman 1995). Pyranoquinolone alkaloids exhibit photo-activated antimicrobial activity (Hanawa et al., 2004) and SRS-A antagonist action (Kamikawa et al., 1996). Pyranoquinolinones act as blockers of the voltage-gated potassium channel Kv1.3 (Butenschön et al., 2001). 2H-pyrano[3,2-g]quinolin-2-one derivatives are found to modulate the transcriptional activity of the human androgen receptor (Edwards et al., 1999). We report here the crystal structure of the title compound, a pyranoquinolinone derivative.

Bond lengths and angles in the title molecule (Fig. 1) are comparable to those observed in a related compound, 6,6-dimethyl-4-tosylpyrrolo[3,4-c]pyrano[5,6-c]-1- methylquinolin-2-one hemihydrate (Chinnakali et al., 2007).

The pyrrolidine ring adopts a twist conformation, with the local twofold rotation axis passing through atom N1 and the mid-point of the opposite bond C2—C3; the asymmetry parameter (Duax et al., 1976) ΔC2[C2—C3] is 2.3 (2)°, and the puckering parameters (Cremer & Pople, 1975) are q2 = 0.370 (2) Å and φ = 92.2 (3)°. The tosyl group is attached to the pyrrolidine ring in a biaxial position. The dihydropyran ring is in a half-chair conformation, with a local pseudo-twofold rotation axis running through the midpoints of the C2—C5 and C6—C7 bonds. The puckering parameters Q, θ and φ, and the smallest displacement asymmetry parameter ΔC2[C2—C5] are 0.438 (2) Å, 50.6 (3)°, 87.1 (3)° and 4.6 (3)°, respectively. The pyrrolidine ring is cis-fused to the dihydropyran ring. The quinolinone ring system is planar, with an r.m.s. deviation of 0.030 Å, and atoms O4 and C24 deviating from the mean plane by 0.171 (2) and 0.084 (3) Å, respectively.

As expected, the sulfonyl group has a distorted tetrahedral geometry, with the O1—S1—O2 [119.40 (9)°] angle deviating significantly from the ideal tetrahedral value. The molecule is in a folded conformation, with the sulfonyl-bound benzene ring lying over the pyridinone ring. The centroid-centroid distance [3.893 (1) Å] and the dihedral angle [23.87 (5)°] between the two rings indicate the presence of weak ππ interactions between them.

In the crystal structure, centrosymmetrically related molecules are linked by a pair of C2—H2···O1i hydrogen bonds (Table 1) into a R22(12) dimer. The dimers are linked into a sheet parallel to the bc plane (Fig. 2) via C25A—H25A···π interactions involving the C17–C22 ring (centroid Cg1) of the molecule at (1 - x, -1/2 + y, 1/2 - z).

The structure of the title molecule is quite similar to that of 6,6-dimethyl-4-tosylpyrrolo[3,4-c]pyrano[5,6-c]-1- methylquinolin-2-one (Chinnakali et al., 2007). For biological activities of pyranoquinolinones, see: Butenschön et al. (2001); Edwards et al. (1999); Hanawa et al. (2004); Kamikawa et al. (1996); Keenan (1994); Wasserman (1995). For ring-puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Duax et al. (1976).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL (Sheldrick, 1998); molecular graphics: SHELXTL (Sheldrick, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 1998) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 80% probability level. Only one disorder component is shown.
[Figure 2] Fig. 2. View of a hydrogen-bonded sheet in the title compound. Dashed and dotted lines indicate C—H···O and C—H···π interactions, respectively. For the sake of clarity, H atoms not involved in the interactions have been omitted. Only one disorder component is shown.
cis-1-Ethyl-4,4,10-trimethyl-2-tosyl-1,2,3,3a,4,11b-hexahydro- 11H-pyrrolo[3,4-c]pyrano[5,6-c]quinolin-11-one top
Crystal data top
C26H30N2O4SF(000) = 992
Mr = 466.58Dx = 1.346 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6924 reflections
a = 10.4111 (2) Åθ = 2.2–28.4°
b = 13.8576 (2) ŵ = 0.18 mm1
c = 18.0460 (3) ÅT = 100 K
β = 117.834 (1)°Block, light yellow
V = 2302.33 (7) Å30.52 × 0.43 × 0.33 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6709 independent reflections
Radiation source: fine-focus sealed tube4846 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Detector resolution: 8.33 pixels mm-1θmax = 30.1°, θmin = 2.0°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1519
Tmin = 0.874, Tmax = 0.944l = 2524
28627 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0874P)2 + 0.4457P]
where P = (Fo2 + 2Fc2)/3
6709 reflections(Δ/σ)max = 0.001
319 parametersΔρmax = 0.85 e Å3
2 restraintsΔρmin = 0.43 e Å3
Crystal data top
C26H30N2O4SV = 2302.33 (7) Å3
Mr = 466.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4111 (2) ŵ = 0.18 mm1
b = 13.8576 (2) ÅT = 100 K
c = 18.0460 (3) Å0.52 × 0.43 × 0.33 mm
β = 117.834 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6709 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4846 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.944Rint = 0.058
28627 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0592 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.03Δρmax = 0.85 e Å3
6709 reflectionsΔρmin = 0.43 e Å3
319 parameters
Special details top

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.21372 (5)0.08412 (3)0.39792 (3)0.02235 (13)
O10.24491 (14)0.04611 (10)0.47870 (8)0.0265 (3)
O20.10426 (14)0.03882 (10)0.32371 (8)0.0309 (3)
O30.60238 (13)0.32271 (10)0.44037 (8)0.0258 (3)
O40.25960 (15)0.22331 (11)0.16712 (8)0.0316 (3)
N10.36407 (16)0.07947 (11)0.39179 (9)0.0225 (3)
N20.25256 (16)0.37742 (12)0.20890 (9)0.0238 (3)
C10.49235 (19)0.12860 (14)0.45792 (11)0.0233 (4)
H1A0.54150.08740.50670.028*
H1B0.46460.18820.47480.028*
C20.5894 (2)0.14873 (14)0.41714 (11)0.0256 (4)
H20.64910.09150.42370.031*
C30.4814 (2)0.16080 (14)0.32352 (11)0.0260 (4)
H30.52950.14510.28960.031*
C40.3652 (2)0.08486 (14)0.30939 (11)0.0292 (4)
H40.27000.10240.26350.035*0.760 (5)
H4B0.27760.12020.27620.035*0.240 (5)
C50.68972 (19)0.23514 (15)0.45482 (12)0.0276 (4)
C60.48668 (18)0.33451 (14)0.36317 (11)0.0224 (4)
C70.42612 (19)0.26299 (14)0.30625 (11)0.0229 (4)
C80.16642 (18)0.20637 (13)0.39735 (11)0.0212 (4)
C90.09429 (19)0.25587 (15)0.32132 (11)0.0252 (4)
H90.06730.22410.27080.030*
C100.06369 (19)0.35297 (15)0.32241 (11)0.0255 (4)
H100.01640.38640.27200.031*
C110.10221 (19)0.40159 (14)0.39735 (12)0.0238 (4)
C120.17227 (18)0.35032 (14)0.47219 (11)0.0233 (4)
H120.19710.38170.52260.028*
C130.20556 (19)0.25356 (14)0.47281 (10)0.0219 (4)
H130.25370.22040.52330.026*
C140.0690 (2)0.50723 (15)0.39761 (13)0.0346 (5)
H14A0.05080.53550.34500.052*
H14B0.15020.53890.44230.052*
H14C0.01540.51470.40570.052*
C150.7767 (2)0.22697 (16)0.54924 (12)0.0322 (5)
H15A0.71180.21790.57280.048*
H15B0.83190.28490.57140.048*
H15C0.84140.17280.56330.048*
C160.7889 (2)0.24952 (18)0.41481 (14)0.0376 (5)
H16A0.85060.30430.43980.056*
H16B0.73110.26040.35580.056*
H16C0.84760.19300.42370.056*
C170.43063 (18)0.43151 (14)0.34636 (11)0.0215 (4)
C180.4934 (2)0.50710 (15)0.40380 (11)0.0259 (4)
H180.57400.49480.45510.031*
C190.4376 (2)0.59907 (15)0.38551 (12)0.0291 (4)
H190.48040.64880.42390.035*
C200.3159 (2)0.61680 (15)0.30867 (12)0.0280 (4)
H200.27660.67860.29650.034*
C210.2532 (2)0.54446 (14)0.25068 (11)0.0261 (4)
H210.17270.55780.19960.031*
C220.30974 (18)0.45094 (14)0.26793 (11)0.0223 (4)
C230.3089 (2)0.28460 (14)0.22321 (11)0.0249 (4)
C240.1320 (2)0.39954 (15)0.12554 (11)0.0283 (4)
H24A0.09970.34120.09340.042*
H24B0.16460.44430.09730.042*
H24C0.05320.42750.13170.042*
C25A0.4228 (3)0.0123 (2)0.29271 (17)0.0268 (7)0.760 (5)
H25A0.43080.00630.24150.032*0.760 (5)
H25B0.51940.02410.33820.032*0.760 (5)
C26A0.3273 (3)0.0979 (2)0.28484 (17)0.0316 (7)0.760 (5)
H26A0.36860.15520.27470.047*0.760 (5)
H26B0.23210.08760.23900.047*0.760 (5)
H26C0.32050.10540.33580.047*0.760 (5)
C25B0.3309 (9)0.0119 (5)0.2635 (4)0.026 (2)0.240 (5)
H25C0.24000.03770.25760.032*0.240 (5)
H25D0.32370.00460.20830.032*0.240 (5)
C26B0.4553 (8)0.0771 (6)0.3171 (5)0.027 (2)0.240 (5)
H26D0.44020.13950.29140.041*0.240 (5)
H26E0.46090.08320.37150.041*0.240 (5)
H26F0.54430.05010.32260.041*0.240 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0256 (2)0.0191 (2)0.0208 (2)0.00014 (17)0.00949 (17)0.00027 (17)
O10.0326 (7)0.0232 (7)0.0264 (7)0.0026 (6)0.0160 (6)0.0050 (5)
O20.0288 (7)0.0279 (8)0.0293 (7)0.0029 (6)0.0080 (6)0.0069 (6)
O30.0232 (6)0.0245 (7)0.0237 (6)0.0032 (5)0.0060 (5)0.0050 (5)
O40.0423 (8)0.0292 (8)0.0215 (6)0.0011 (6)0.0136 (6)0.0016 (6)
N10.0275 (7)0.0218 (8)0.0174 (7)0.0012 (6)0.0099 (6)0.0003 (6)
N20.0244 (7)0.0260 (9)0.0198 (7)0.0011 (6)0.0094 (6)0.0018 (6)
C10.0259 (8)0.0226 (10)0.0200 (8)0.0003 (7)0.0097 (7)0.0018 (7)
C20.0287 (9)0.0242 (10)0.0263 (9)0.0070 (8)0.0149 (8)0.0049 (7)
C30.0319 (9)0.0276 (11)0.0230 (8)0.0069 (8)0.0167 (8)0.0042 (7)
C40.0464 (11)0.0250 (11)0.0200 (8)0.0038 (9)0.0187 (8)0.0016 (7)
C50.0231 (8)0.0275 (11)0.0319 (10)0.0062 (8)0.0126 (8)0.0069 (8)
C60.0207 (8)0.0252 (10)0.0221 (8)0.0005 (7)0.0107 (7)0.0069 (7)
C70.0254 (8)0.0233 (10)0.0234 (8)0.0005 (7)0.0143 (7)0.0038 (7)
C80.0224 (8)0.0195 (9)0.0214 (8)0.0012 (7)0.0099 (7)0.0026 (7)
C90.0249 (9)0.0285 (11)0.0198 (8)0.0033 (8)0.0086 (7)0.0012 (7)
C100.0257 (8)0.0281 (11)0.0225 (8)0.0046 (8)0.0112 (7)0.0077 (7)
C110.0204 (8)0.0239 (10)0.0284 (9)0.0005 (7)0.0125 (7)0.0028 (7)
C120.0243 (8)0.0232 (10)0.0220 (8)0.0009 (7)0.0104 (7)0.0021 (7)
C130.0232 (8)0.0228 (10)0.0179 (8)0.0004 (7)0.0080 (6)0.0017 (7)
C140.0391 (11)0.0237 (11)0.0366 (11)0.0042 (9)0.0141 (9)0.0026 (9)
C150.0256 (9)0.0325 (12)0.0306 (10)0.0044 (8)0.0065 (8)0.0078 (9)
C160.0269 (10)0.0438 (14)0.0459 (12)0.0022 (9)0.0202 (9)0.0074 (10)
C170.0210 (8)0.0219 (10)0.0228 (8)0.0001 (7)0.0113 (7)0.0042 (7)
C180.0246 (8)0.0264 (11)0.0241 (8)0.0014 (8)0.0092 (7)0.0047 (8)
C190.0293 (9)0.0272 (11)0.0278 (9)0.0015 (8)0.0107 (8)0.0019 (8)
C200.0285 (9)0.0242 (10)0.0297 (9)0.0016 (8)0.0122 (8)0.0052 (8)
C210.0238 (8)0.0272 (11)0.0241 (9)0.0020 (8)0.0086 (7)0.0070 (8)
C220.0221 (8)0.0237 (10)0.0226 (8)0.0029 (7)0.0116 (7)0.0024 (7)
C230.0296 (9)0.0259 (10)0.0228 (8)0.0001 (8)0.0153 (7)0.0035 (7)
C240.0256 (9)0.0340 (12)0.0212 (8)0.0024 (8)0.0075 (7)0.0014 (8)
C25A0.0324 (16)0.0238 (16)0.0284 (13)0.0023 (12)0.0176 (13)0.0056 (11)
C26A0.0366 (15)0.0271 (16)0.0337 (14)0.0033 (11)0.0187 (12)0.0077 (11)
C25B0.018 (4)0.039 (5)0.017 (3)0.007 (3)0.004 (3)0.001 (3)
C26B0.034 (4)0.029 (5)0.023 (4)0.003 (4)0.017 (3)0.007 (3)
Geometric parameters (Å, º) top
S1—O21.4356 (13)C12—C131.384 (3)
S1—O11.4374 (13)C12—H120.93
S1—N11.6212 (16)C13—H130.93
S1—C81.7629 (19)C14—H14A0.96
O3—C61.361 (2)C14—H14B0.96
O3—C51.465 (2)C14—H14C0.96
O4—C231.235 (2)C15—H15A0.96
N1—C11.478 (2)C15—H15B0.96
N1—C41.494 (2)C15—H15C0.96
N2—C231.387 (3)C16—H16A0.96
N2—C221.391 (2)C16—H16B0.96
N2—C241.473 (2)C16—H16C0.96
C1—C21.528 (2)C17—C181.402 (3)
C1—H1A0.97C17—C221.413 (2)
C1—H1B0.97C18—C191.375 (3)
C2—C51.524 (3)C18—H180.93
C2—C31.540 (2)C19—C201.395 (3)
C2—H20.98C19—H190.93
C3—C71.505 (3)C20—C211.374 (3)
C3—C41.532 (3)C20—H200.93
C3—H30.98C21—C221.397 (3)
C4—C25B1.527 (7)C21—H210.93
C4—C25A1.559 (3)C24—H24A0.96
C4—H40.98C24—H24B0.96
C4—H4B0.96C24—H24C0.96
C5—C151.515 (3)C25A—C26A1.512 (4)
C5—C161.525 (3)C25A—H25A0.97
C6—C71.353 (3)C25A—H25B0.97
C6—C171.440 (3)C26A—H26A0.96
C7—C231.455 (2)C26A—H26B0.96
C8—C131.389 (2)C26A—H26C0.96
C8—C91.398 (2)C25B—C26B1.503 (8)
C9—C101.385 (3)C25B—H25C0.97
C9—H90.93C25B—H25D0.97
C10—C111.392 (3)C26B—H26D0.96
C10—H100.93C26B—H26E0.96
C11—C121.393 (2)C26B—H26F0.96
C11—C141.505 (3)
O2—S1—O1119.40 (9)C12—C13—H13120.3
O2—S1—N1106.87 (8)C8—C13—H13120.3
O1—S1—N1106.65 (8)C11—C14—H14A109.5
O2—S1—C8108.47 (8)C11—C14—H14B109.5
O1—S1—C8106.76 (8)H14A—C14—H14B109.5
N1—S1—C8108.29 (8)C11—C14—H14C109.5
C6—O3—C5117.44 (14)H14A—C14—H14C109.5
C1—N1—C4110.90 (14)H14B—C14—H14C109.5
C1—N1—S1117.64 (12)C5—C15—H15A109.5
C4—N1—S1121.48 (13)C5—C15—H15B109.5
C23—N2—C22122.96 (15)H15A—C15—H15B109.5
C23—N2—C24117.89 (16)C5—C15—H15C109.5
C22—N2—C24119.06 (16)H15A—C15—H15C109.5
N1—C1—C2104.28 (14)H15B—C15—H15C109.5
N1—C1—H1A110.9C5—C16—H16A109.5
C2—C1—H1A110.9C5—C16—H16B109.5
N1—C1—H1B110.9H16A—C16—H16B109.5
C2—C1—H1B110.9C5—C16—H16C109.5
H1A—C1—H1B108.9H16A—C16—H16C109.5
C5—C2—C1113.45 (16)H16B—C16—H16C109.5
C5—C2—C3113.65 (16)C18—C17—C22119.19 (17)
C1—C2—C3103.88 (14)C18—C17—C6122.58 (16)
C5—C2—H2108.5C22—C17—C6118.21 (17)
C1—C2—H2108.5C19—C18—C17121.08 (17)
C3—C2—H2108.5C19—C18—H18119.5
C7—C3—C4114.57 (16)C17—C18—H18119.5
C7—C3—C2110.00 (16)C18—C19—C20119.16 (19)
C4—C3—C2102.90 (15)C18—C19—H19120.4
C7—C3—H3109.7C20—C19—H19120.4
C4—C3—H3109.7C21—C20—C19121.09 (19)
C2—C3—H3109.7C21—C20—H20119.5
N1—C4—C25B112.8 (3)C19—C20—H20119.5
N1—C4—C3103.94 (14)C20—C21—C22120.41 (17)
C25B—C4—C3131.3 (3)C20—C21—H21119.8
N1—C4—C25A109.35 (17)C22—C21—H21119.8
C3—C4—C25A106.26 (18)N2—C22—C21121.58 (16)
N1—C4—H4112.3N2—C22—C17119.35 (17)
C25B—C4—H482.6C21—C22—C17119.05 (17)
C3—C4—H4112.3O4—C23—N2120.50 (17)
C25A—C4—H4112.3O4—C23—C7122.04 (18)
N1—C4—H4B101.6N2—C23—C7117.46 (17)
C25B—C4—H4B101.3N2—C24—H24A109.5
C3—C4—H4B101.5N2—C24—H24B109.5
C25A—C4—H4B131.3H24A—C24—H24B109.5
O3—C5—C15104.91 (16)N2—C24—H24C109.5
O3—C5—C2109.40 (14)H24A—C24—H24C109.5
C15—C5—C2111.60 (16)H24B—C24—H24C109.5
O3—C5—C16107.99 (16)C26A—C25A—C4113.6 (2)
C15—C5—C16111.17 (16)C26A—C25A—H25A108.8
C2—C5—C16111.47 (17)C4—C25A—H25A108.8
C7—C6—O3124.43 (17)C26A—C25A—H25B108.8
C7—C6—C17121.63 (16)C4—C25A—H25B108.8
O3—C6—C17113.94 (16)H25A—C25A—H25B107.7
C6—C7—C23120.05 (17)C25A—C26A—H26A109.5
C6—C7—C3122.30 (16)C25A—C26A—H26B109.5
C23—C7—C3117.56 (17)H26A—C26A—H26B109.5
C13—C8—C9120.55 (18)C25A—C26A—H26C109.5
C13—C8—S1119.56 (13)H26A—C26A—H26C109.5
C9—C8—S1119.86 (14)H26B—C26A—H26C109.5
C10—C9—C8118.98 (17)C26B—C25B—C4105.4 (5)
C10—C9—H9120.5C26B—C25B—H25C110.7
C8—C9—H9120.5C4—C25B—H25C110.7
C9—C10—C11121.35 (17)C26B—C25B—H25D110.7
C9—C10—H10119.3C4—C25B—H25D110.7
C11—C10—H10119.3H25C—C25B—H25D108.8
C10—C11—C12118.55 (18)C25B—C26B—H26D109.5
C10—C11—C14120.77 (17)C25B—C26B—H26E109.5
C12—C11—C14120.68 (17)H26D—C26B—H26E109.5
C13—C12—C11121.18 (17)C25B—C26B—H26F109.5
C13—C12—H12119.4H26D—C26B—H26F109.5
C11—C12—H12119.4H26E—C26B—H26F109.5
C12—C13—C8119.38 (16)
O2—S1—N1—C1175.21 (13)N1—S1—C8—C1395.57 (15)
O1—S1—N1—C156.03 (15)O2—S1—C8—C933.33 (17)
C8—S1—N1—C158.53 (15)O1—S1—C8—C9163.20 (14)
O2—S1—N1—C432.76 (16)N1—S1—C8—C982.31 (16)
O1—S1—N1—C4161.52 (14)C13—C8—C9—C100.6 (3)
C8—S1—N1—C483.92 (15)S1—C8—C9—C10177.22 (14)
C4—N1—C1—C210.4 (2)C8—C9—C10—C110.5 (3)
S1—N1—C1—C2156.59 (12)C9—C10—C11—C120.3 (3)
N1—C1—C2—C5153.67 (15)C9—C10—C11—C14179.68 (18)
N1—C1—C2—C329.77 (19)C10—C11—C12—C131.1 (3)
C5—C2—C3—C739.1 (2)C14—C11—C12—C13178.91 (17)
C1—C2—C3—C784.63 (18)C11—C12—C13—C81.0 (3)
C5—C2—C3—C4161.64 (15)C9—C8—C13—C120.1 (3)
C1—C2—C3—C437.87 (18)S1—C8—C13—C12177.97 (13)
C1—N1—C4—C25B134.0 (4)C7—C6—C17—C18178.76 (17)
S1—N1—C4—C25B81.3 (4)O3—C6—C17—C181.9 (2)
C1—N1—C4—C313.2 (2)C7—C6—C17—C220.3 (3)
S1—N1—C4—C3131.45 (14)O3—C6—C17—C22179.61 (15)
C1—N1—C4—C25A99.89 (19)C22—C17—C18—C191.1 (3)
S1—N1—C4—C25A115.41 (18)C6—C17—C18—C19179.58 (17)
C7—C3—C4—N188.26 (18)C17—C18—C19—C200.5 (3)
C2—C3—C4—N131.12 (18)C18—C19—C20—C211.3 (3)
C7—C3—C4—C25B133.3 (4)C19—C20—C21—C220.6 (3)
C2—C3—C4—C25B107.3 (4)C23—N2—C22—C21178.04 (16)
C7—C3—C4—C25A156.40 (17)C24—N2—C22—C211.6 (3)
C2—C3—C4—C25A84.23 (18)C23—N2—C22—C170.0 (3)
C6—O3—C5—C15163.06 (15)C24—N2—C22—C17176.48 (16)
C6—O3—C5—C243.2 (2)C20—C21—C22—N2177.01 (17)
C6—O3—C5—C1678.29 (19)C20—C21—C22—C171.1 (3)
C1—C2—C5—O363.18 (19)C18—C17—C22—N2176.24 (16)
C3—C2—C5—O355.21 (19)C6—C17—C22—N22.3 (2)
C1—C2—C5—C1552.5 (2)C18—C17—C22—C211.9 (3)
C3—C2—C5—C15170.86 (16)C6—C17—C22—C21179.59 (16)
C1—C2—C5—C16177.44 (16)C22—N2—C23—O4175.84 (17)
C3—C2—C5—C1664.2 (2)C24—N2—C23—O40.6 (3)
C5—O3—C6—C716.5 (2)C22—N2—C23—C74.6 (2)
C5—O3—C6—C17164.19 (14)C24—N2—C23—C7178.86 (15)
O3—C6—C7—C23175.72 (15)C6—C7—C23—O4173.38 (17)
C17—C6—C7—C235.0 (3)C3—C7—C23—O43.1 (3)
O3—C6—C7—C30.6 (3)C6—C7—C23—N27.1 (3)
C17—C6—C7—C3178.68 (16)C3—C7—C23—N2176.42 (15)
C4—C3—C7—C6126.67 (18)N1—C4—C25A—C26A63.3 (3)
C2—C3—C7—C611.4 (2)C25B—C4—C25A—C26A38.9 (6)
C4—C3—C7—C2356.9 (2)C3—C4—C25A—C26A174.9 (2)
C2—C3—C7—C23172.27 (15)N1—C4—C25B—C26B65.5 (6)
O2—S1—C8—C13148.80 (14)C3—C4—C25B—C26B70.1 (6)
O1—S1—C8—C1318.93 (17)C25A—C4—C25B—C26B24.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.982.483.282 (2)139
C4—H4···O40.982.382.974 (2)118
C25A—H25A···Cg1ii0.972.873.706 (3)145
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H30N2O4S
Mr466.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.4111 (2), 13.8576 (2), 18.0460 (3)
β (°) 117.834 (1)
V3)2302.33 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.52 × 0.43 × 0.33
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.874, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
28627, 6709, 4846
Rint0.058
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.163, 1.03
No. of reflections6709
No. of parameters319
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.43

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 1998) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.982.483.282 (2)139
C4—H4···O40.982.382.974 (2)118
C25A—H25A···Cg1ii0.972.873.706 (3)145
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds