Download citation
Download citation
link to html
A tandem aza-Wittig reaction of ethyl 3-triphenyl­phospho­ranylideneamino-4-cyano-1-phenyl-1H-pyrrole-2-carboxyl­ate with 4-chloro­phenyl isocyanate and diisobutyl­amine produced the title compound, C27H28ClN5O. In the mol­ecule, the angles between the fused-ring system and the two benzene rings are 51.66 (2) and 65.79 (2)°. Intra­molecular C—H...N hydrogen bonds determine the conformation of the mol­ecule. The packing of the mol­ecules in the crystal structure is governed mainly by inter­molecular C—H...N hydrogen-bonding inter­actions. There are no π–π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807028383/wn2151sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807028383/wn2151Isup2.hkl
Contains datablock I

CCDC reference: 654934

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.005 Å
  • Disorder in main residue
  • R factor = 0.064
  • wR factor = 0.169
  • Data-to-parameter ratio = 14.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C21 PLAT301_ALERT_3_C Main Residue Disorder ......................... 8.00 Perc. PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 5 PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C8 - C11 ... 1.42 Ang. PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 19 C7 -C8 -C11 -N2 156.00 9.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 20 C9 -C8 -C11 -N2 -22.00 9.00 1.555 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 43.40 Deg. C21' -C20 -C21 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 37.80 Deg. C20 -C21 -H20C 1.555 1.555 1.555
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 7
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 11 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Derivatives of pyrimidinone are attracting increasing attention in the synthetic chemistry community because of the important role played by such systems in many natural products, also in antibiotics and drugs (Kondo et al., 1986; Bayomi et al., 1986; Ding et al., 2004). In recent years, we have been engaged in the preparation of derivatives of heterocycles using the aza-Wittig reaction. Some related X-ray crystal structure reports for pyrimidinone derivatives have been published (Zheng et al., 2006; Hu et al., 2005; Xu et al., 2005). Here, the structure of the title compound, which may be used as a new precursor for obtaining bioactive molecules, is reported (Fig. 1). The bond lengths and angles are unexceptional. Rings A (atoms N1/C7/C8/C9/C10), B (C9/C10/C12/N3/C13/N4), C (C1—C6), D (C14—C19) are, of course, planar and the dihedral angles between them are A/B = 2.80 (14)°, A/C = 51.66 (2)°, B/D = 65.79 (2)°. C21, C22, C23 and attached hydrogen atoms are disordered over two sites, with refined occupancies of 0.654 (8) and 0.346 (8). Intramolecular C—H···N hydrogen bonds determine the conformation of the molecule. As can be seen from the packing diagram (Fig. 2), intermolecular C—H···N hydrogen bonds (Table 1) link the molecules. There are no π-π interactions.

Related literature top

Related biological activity is described by Kondo et al. (1986) and pharmaceutical activity is described by Bayomi et al. (1986). For related literature, see: Ding et al. (2004); Hu et al. (2005); Xu et al. (2005); Zheng et al. (2006).

Experimental top

To a solution of ethyl 3-triphenylphosphoranylideneamino- 4-cyano-1-phenyl-1H-pyrrole-2-carboxylate(1.55 g, 3 mmol) in anhydrous dichloromethane (15 ml) was added p-chlorophenyl isocyanate (0.46 g, 3 mmol) under dry nitrogen at room temperature. The reaction mixture was left unstirred for 3 h at room temperature and then the solvent was removed under reduced pressure; diethyl ether-petroleum ether (1:2 v/v, 20 ml) was added to precipitate triphenylphosphine oxide. After filtration, the solution of the carbodiimide (3 mmol) was added to a solution of diisobutylamine (3 mmol) in anhydrous dichloromethane (15 ml). After stirring the reaction mixture for 6 h, the solvent was removed under reduced pressure and the residue was recrystallized from ethanol to give the title compound, in a yield of 94%. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from a mixed solvent of ethanol and dichloromethane (1:1 v/v) at room temperature.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, Uiso=1.2Ueq (C) for Csp2, C—H = 0.98 Å, Uiso = 1.2Ueq (C) for CH, C—H = 0.97 Å, Uiso = 1.2Ueq (C) for CH2, C—H = 0.96 Å, Uiso = 1.5Ueq (C) for CH3.

Structure description top

Derivatives of pyrimidinone are attracting increasing attention in the synthetic chemistry community because of the important role played by such systems in many natural products, also in antibiotics and drugs (Kondo et al., 1986; Bayomi et al., 1986; Ding et al., 2004). In recent years, we have been engaged in the preparation of derivatives of heterocycles using the aza-Wittig reaction. Some related X-ray crystal structure reports for pyrimidinone derivatives have been published (Zheng et al., 2006; Hu et al., 2005; Xu et al., 2005). Here, the structure of the title compound, which may be used as a new precursor for obtaining bioactive molecules, is reported (Fig. 1). The bond lengths and angles are unexceptional. Rings A (atoms N1/C7/C8/C9/C10), B (C9/C10/C12/N3/C13/N4), C (C1—C6), D (C14—C19) are, of course, planar and the dihedral angles between them are A/B = 2.80 (14)°, A/C = 51.66 (2)°, B/D = 65.79 (2)°. C21, C22, C23 and attached hydrogen atoms are disordered over two sites, with refined occupancies of 0.654 (8) and 0.346 (8). Intramolecular C—H···N hydrogen bonds determine the conformation of the molecule. As can be seen from the packing diagram (Fig. 2), intermolecular C—H···N hydrogen bonds (Table 1) link the molecules. There are no π-π interactions.

Related biological activity is described by Kondo et al. (1986) and pharmaceutical activity is described by Bayomi et al. (1986). For related literature, see: Ding et al. (2004); Hu et al. (2005); Xu et al. (2005); Zheng et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labeling scheme. Only the major disorder component is shown.
[Figure 2] Fig. 2. The packing in the crystal structure, showing the C—H···N hydrogen bonds as dashed lines. Only the major disorder component is shown.
3-(4-Chlorophenyl)-2-(diisobutylamino)-4-oxo-5-phenyl-4,5-dihydro- 3H-pyrrolo[3,2-d]pyrimidine-7-carbonitrile top
Crystal data top
C27H28ClN5OZ = 2
Mr = 473.99F(000) = 500
Triclinic, P1Dx = 1.244 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7272 (6) ÅCell parameters from 2745 reflections
b = 12.7635 (9) Åθ = 2.7–23.6°
c = 13.3411 (9) ŵ = 0.18 mm1
α = 103.821 (1)°T = 298 K
β = 107.828 (1)°Block, colourless
γ = 106.684 (1)°0.20 × 0.20 × 0.10 mm
V = 1265.14 (15) Å3
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
3633 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 26.0°, θmin = 1.7°
φ and ω scansh = 910
9851 measured reflectionsk = 1515
4890 independent reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0719P)2 + 0.5686P]
where P = (Fo2 + 2Fc2)/3
4890 reflections(Δ/σ)max = 0.001
341 parametersΔρmax = 0.34 e Å3
7 restraintsΔρmin = 0.31 e Å3
Crystal data top
C27H28ClN5Oγ = 106.684 (1)°
Mr = 473.99V = 1265.14 (15) Å3
Triclinic, P1Z = 2
a = 8.7272 (6) ÅMo Kα radiation
b = 12.7635 (9) ŵ = 0.18 mm1
c = 13.3411 (9) ÅT = 298 K
α = 103.821 (1)°0.20 × 0.20 × 0.10 mm
β = 107.828 (1)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
3633 reflections with I > 2σ(I)
9851 measured reflectionsRint = 0.031
4890 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0647 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.01Δρmax = 0.34 e Å3
4890 reflectionsΔρmin = 0.31 e Å3
341 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6572 (4)0.2077 (2)0.3739 (2)0.0583 (7)
C20.8171 (4)0.1998 (3)0.3345 (3)0.0717 (8)
H20.84630.17020.27730.086*
C30.9347 (5)0.2372 (3)0.3822 (4)0.0979 (13)
H31.04390.23320.35600.117*
C40.8914 (7)0.2792 (4)0.4661 (4)0.1122 (16)
H40.97080.30370.49720.135*
C50.7319 (8)0.2857 (4)0.5054 (3)0.1098 (15)
H50.70330.31430.56350.132*
C60.6124 (5)0.2502 (3)0.4597 (2)0.0789 (9)
H60.50380.25500.48640.095*
C70.3635 (3)0.0923 (2)0.3943 (2)0.0576 (7)
H70.31680.05820.47250.069*
C80.2730 (3)0.0730 (2)0.3284 (2)0.0524 (6)
C90.3922 (3)0.1419 (2)0.2150 (2)0.0465 (6)
C100.5506 (3)0.1993 (2)0.2167 (2)0.0458 (6)
C110.0965 (4)0.0033 (3)0.3641 (2)0.0588 (7)
C120.6998 (3)0.2731 (2)0.1157 (2)0.0474 (6)
C130.4921 (3)0.2192 (2)0.0253 (2)0.0452 (6)
C140.8127 (3)0.3093 (2)0.08604 (19)0.0452 (6)
C150.8359 (3)0.2254 (2)0.1313 (2)0.0539 (6)
H150.75760.14770.09440.065*
C160.9774 (4)0.2580 (3)0.2325 (2)0.0619 (7)
H160.99360.20290.26470.074*
C171.0926 (3)0.3731 (3)0.2840 (2)0.0610 (7)
C181.0724 (3)0.4560 (3)0.2376 (2)0.0581 (7)
H181.15320.53320.27330.070*
C190.9316 (3)0.4243 (2)0.1376 (2)0.0494 (6)
H190.91690.47960.10520.059*
C200.5447 (3)0.3511 (2)0.1614 (2)0.0586 (7)
H20A0.64230.39990.15100.070*0.654 (8)
H20B0.59150.34350.23400.070*0.654 (8)
H20C0.50140.34450.21940.070*0.346 (8)
H20D0.67000.37250.19570.070*0.346 (8)
C210.4228 (6)0.4153 (4)0.1662 (4)0.0573 (15)0.654 (8)
H21A0.33600.37180.18930.069*0.654 (8)
C220.5259 (10)0.5372 (6)0.2575 (6)0.084 (2)0.654 (8)
H22A0.60410.58500.23380.125*0.654 (8)
H22B0.59210.53090.32630.125*0.654 (8)
H22C0.44650.57240.26960.125*0.654 (8)
C230.3231 (13)0.4174 (11)0.0508 (7)0.107 (5)0.654 (8)
H23A0.22570.43760.05220.161*0.654 (8)
H23B0.28150.34150.00580.161*0.654 (8)
H23C0.39960.47450.03380.161*0.654 (8)
C21'0.5166 (11)0.4456 (6)0.1302 (7)0.066 (3)0.346 (8)
H21B0.58120.46200.08340.080*0.346 (8)
C22'0.601 (2)0.5543 (10)0.2397 (11)0.108 (5)0.346 (8)
H22D0.53620.54280.28560.161*0.346 (8)
H22E0.59940.62230.22110.161*0.346 (8)
H22F0.71950.56540.28040.161*0.346 (8)
C23'0.3252 (13)0.4234 (14)0.0624 (12)0.063 (6)0.346 (8)
H23D0.25290.38790.09660.094*0.346 (8)
H23E0.28730.37210.01370.094*0.346 (8)
H23F0.31590.49650.06210.094*0.346 (8)
C240.3096 (3)0.1501 (2)0.0690 (2)0.0563 (7)
H24A0.26970.07820.00580.068*
H24B0.21920.18130.05490.068*
C250.3327 (5)0.1218 (3)0.1749 (3)0.0758 (9)
H250.35410.19210.23560.091*
C260.4823 (5)0.0853 (4)0.2111 (3)0.0942 (11)
H26A0.46930.02110.14990.141*
H26B0.48420.06140.27430.141*
H26C0.58980.15000.23250.141*
C270.1616 (5)0.0258 (4)0.1541 (4)0.1064 (14)
H27A0.14140.04510.09740.160*
H27B0.06670.05010.12900.160*
H27C0.16930.01210.22280.160*
Cl11.27079 (11)0.41284 (9)0.41014 (7)0.0982 (4)
N10.5307 (3)0.16805 (19)0.32917 (17)0.0524 (5)
N20.0439 (3)0.0646 (3)0.3894 (2)0.0774 (8)
N30.3580 (2)0.15372 (19)0.12032 (17)0.0497 (5)
N40.6615 (2)0.27220 (18)0.01855 (16)0.0462 (5)
N50.4693 (3)0.23473 (18)0.07389 (16)0.0501 (5)
O10.8471 (2)0.32784 (18)0.10456 (16)0.0667 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0707 (18)0.0551 (16)0.0468 (15)0.0199 (14)0.0289 (14)0.0130 (12)
C20.0692 (19)0.0645 (19)0.086 (2)0.0272 (16)0.0413 (17)0.0191 (16)
C30.092 (3)0.086 (3)0.123 (3)0.031 (2)0.069 (3)0.020 (2)
C40.133 (4)0.099 (3)0.099 (3)0.016 (3)0.082 (3)0.018 (3)
C50.158 (4)0.101 (3)0.061 (2)0.022 (3)0.058 (3)0.028 (2)
C60.098 (2)0.083 (2)0.0471 (17)0.0248 (19)0.0292 (17)0.0220 (16)
C70.0574 (16)0.0665 (17)0.0382 (14)0.0220 (14)0.0110 (12)0.0144 (12)
C80.0476 (14)0.0623 (16)0.0398 (13)0.0215 (12)0.0098 (11)0.0158 (12)
C90.0461 (13)0.0525 (14)0.0407 (13)0.0230 (11)0.0141 (11)0.0159 (11)
C100.0476 (13)0.0510 (14)0.0389 (13)0.0222 (11)0.0155 (11)0.0151 (11)
C110.0538 (17)0.0764 (19)0.0409 (14)0.0235 (15)0.0128 (12)0.0228 (13)
C120.0469 (14)0.0478 (14)0.0451 (14)0.0181 (11)0.0163 (11)0.0158 (11)
C130.0444 (13)0.0487 (14)0.0435 (13)0.0233 (11)0.0154 (11)0.0149 (11)
C140.0419 (13)0.0529 (14)0.0389 (12)0.0222 (11)0.0125 (10)0.0135 (11)
C150.0500 (14)0.0516 (15)0.0530 (15)0.0213 (12)0.0140 (12)0.0141 (12)
C160.0609 (17)0.0708 (19)0.0602 (17)0.0329 (15)0.0182 (14)0.0330 (15)
C170.0485 (15)0.082 (2)0.0450 (15)0.0242 (14)0.0092 (12)0.0242 (14)
C180.0480 (14)0.0600 (16)0.0472 (15)0.0110 (12)0.0087 (12)0.0134 (13)
C190.0477 (14)0.0484 (14)0.0483 (14)0.0188 (11)0.0149 (11)0.0167 (12)
C200.0548 (15)0.0676 (18)0.0500 (15)0.0289 (14)0.0208 (13)0.0100 (13)
C210.063 (3)0.063 (3)0.065 (3)0.034 (2)0.037 (2)0.030 (2)
C220.097 (5)0.066 (4)0.103 (5)0.041 (3)0.057 (4)0.023 (3)
C230.127 (10)0.163 (11)0.114 (9)0.116 (8)0.067 (7)0.090 (8)
C21'0.078 (6)0.069 (6)0.088 (7)0.041 (5)0.056 (5)0.041 (5)
C22'0.125 (12)0.059 (7)0.162 (14)0.046 (8)0.082 (11)0.035 (8)
C23'0.061 (10)0.062 (9)0.070 (10)0.015 (7)0.036 (8)0.030 (7)
C240.0582 (16)0.0648 (17)0.0486 (15)0.0251 (13)0.0239 (13)0.0207 (13)
C250.093 (2)0.084 (2)0.068 (2)0.0432 (19)0.0426 (18)0.0344 (18)
C260.118 (3)0.099 (3)0.090 (3)0.060 (2)0.042 (2)0.053 (2)
C270.111 (3)0.135 (4)0.117 (3)0.050 (3)0.072 (3)0.082 (3)
Cl10.0706 (5)0.1232 (8)0.0647 (5)0.0239 (5)0.0087 (4)0.0374 (5)
N10.0533 (12)0.0604 (13)0.0385 (11)0.0190 (11)0.0168 (10)0.0155 (10)
N20.0567 (16)0.098 (2)0.0611 (16)0.0145 (14)0.0131 (12)0.0334 (15)
N30.0417 (11)0.0598 (13)0.0412 (11)0.0191 (10)0.0120 (9)0.0140 (10)
N40.0411 (11)0.0522 (12)0.0381 (11)0.0170 (9)0.0106 (9)0.0126 (9)
N50.0482 (12)0.0577 (13)0.0399 (11)0.0214 (10)0.0159 (9)0.0118 (10)
O10.0501 (11)0.0781 (13)0.0556 (11)0.0079 (10)0.0209 (9)0.0185 (10)
Geometric parameters (Å, º) top
C1—C21.375 (4)C20—C21'1.427 (7)
C1—C61.379 (4)C20—N51.464 (3)
C1—N11.434 (3)C20—C211.524 (4)
C2—C31.397 (5)C20—H20A0.9700
C2—H20.9300C20—H20B0.9700
C3—C41.351 (6)C20—H20C0.9700
C3—H30.9300C20—H20D0.9700
C4—C51.364 (6)C21—C221.528 (6)
C4—H40.9300C21—C231.529 (7)
C5—C61.384 (5)C21—H21A0.9800
C5—H50.9300C22—H22A0.9600
C6—H60.9300C22—H22B0.9600
C7—N11.353 (3)C22—H22C0.9600
C7—C81.369 (4)C23—H23A0.9600
C7—H70.9300C23—H23B0.9600
C8—C111.420 (4)C23—H23C0.9600
C8—C91.421 (3)C21'—C23'1.539 (9)
C9—N31.368 (3)C21'—C22'1.545 (9)
C9—C101.376 (3)C21'—H21B0.9800
C10—N11.398 (3)C22'—H22D0.9600
C10—C121.419 (3)C22'—H22E0.9600
C11—N21.139 (3)C22'—H22F0.9600
C12—O11.217 (3)C23'—H23D0.9600
C12—N41.435 (3)C23'—H23E0.9600
C13—N31.303 (3)C23'—H23F0.9600
C13—N51.373 (3)C24—N51.470 (3)
C13—N41.403 (3)C24—C251.509 (4)
C14—C191.382 (3)C24—H24A0.9700
C14—C151.383 (4)C24—H24B0.9700
C14—N41.452 (3)C25—C261.492 (5)
C15—C161.391 (4)C25—C271.531 (5)
C15—H150.9300C25—H250.9800
C16—C171.374 (4)C26—H26A0.9600
C16—H160.9300C26—H26B0.9600
C17—C181.374 (4)C26—H26C0.9600
C17—Cl11.745 (3)C27—H27A0.9600
C18—C191.381 (3)C27—H27B0.9600
C18—H180.9300C27—H27C0.9600
C19—H190.9300
C2—C1—C6120.9 (3)H20B—C20—H20C45.8
C2—C1—N1120.6 (3)C21'—C20—H20D107.7
C6—C1—N1118.4 (3)N5—C20—H20D107.2
C1—C2—C3118.6 (3)C21—C20—H20D135.3
C1—C2—H2120.7H20A—C20—H20D46.9
C3—C2—H2120.7H20B—C20—H20D62.9
C4—C3—C2120.6 (4)H20C—C20—H20D106.9
C4—C3—H3119.7C20—C21—C22109.4 (4)
C2—C3—H3119.7C20—C21—C23112.2 (5)
C3—C4—C5120.4 (4)C22—C21—C23113.2 (5)
C3—C4—H4119.8C20—C21—H20C37.8
C5—C4—H4119.8C22—C21—H20C101.6
C4—C5—C6120.6 (4)C23—C21—H20C142.0
C4—C5—H5119.7C20—C21—H21A107.2
C6—C5—H5119.7C22—C21—H21A107.2
C1—C6—C5118.8 (4)C23—C21—H21A107.2
C1—C6—H6120.6H20C—C21—H21A74.9
C5—C6—H6120.6C20—C21'—C23'115.8 (8)
N1—C7—C8110.2 (2)C20—C21'—C22'107.1 (8)
N1—C7—H7124.9C23'—C21'—C22'111.4 (7)
C8—C7—H7124.9C20—C21'—H21B107.4
C7—C8—C11127.5 (2)C23'—C21'—H21B107.4
C7—C8—C9106.6 (2)C22'—C21'—H21B107.4
C11—C8—C9125.9 (2)C21'—C22'—H22D109.5
N3—C9—C10125.2 (2)C21'—C22'—H22E109.5
N3—C9—C8127.3 (2)H22D—C22'—H22E109.5
C10—C9—C8107.4 (2)C21'—C22'—H22F109.5
C9—C10—N1107.9 (2)H22D—C22'—H22F109.5
C9—C10—C12121.4 (2)H22E—C22'—H22F109.5
N1—C10—C12130.6 (2)C21'—C23'—H23D109.5
N2—C11—C8177.8 (3)C21'—C23'—H23E109.5
O1—C12—C10128.5 (2)H23D—C23'—H23E109.5
O1—C12—N4120.4 (2)C21'—C23'—H23F109.5
C10—C12—N4111.0 (2)H23D—C23'—H23F109.5
N3—C13—N5119.1 (2)H23E—C23'—H23F109.5
N3—C13—N4123.1 (2)N5—C24—C25113.9 (2)
N5—C13—N4117.8 (2)N5—C24—H24A108.8
C19—C14—C15121.0 (2)C25—C24—H24A108.8
C19—C14—N4121.1 (2)N5—C24—H24B108.8
C15—C14—N4117.9 (2)C25—C24—H24B108.8
C14—C15—C16119.6 (3)H24A—C24—H24B107.7
C14—C15—H15120.2C26—C25—C24113.1 (3)
C16—C15—H15120.2C26—C25—C27110.8 (3)
C17—C16—C15118.8 (3)C24—C25—C27108.1 (3)
C17—C16—H16120.6C26—C25—H25108.2
C15—C16—H16120.6C24—C25—H25108.2
C18—C17—C16121.7 (2)C27—C25—H25108.2
C18—C17—Cl1119.8 (2)C25—C26—H26A109.5
C16—C17—Cl1118.5 (2)C25—C26—H26B109.5
C17—C18—C19119.7 (3)H26A—C26—H26B109.5
C17—C18—H18120.2C25—C26—H26C109.5
C19—C18—H18120.2H26A—C26—H26C109.5
C18—C19—C14119.2 (2)H26B—C26—H26C109.5
C18—C19—H19120.4C25—C27—H27A109.5
C14—C19—H19120.4C25—C27—H27B109.5
C21'—C20—N5118.7 (4)H27A—C27—H27B109.5
C21'—C20—C2143.4 (3)C25—C27—H27C109.5
N5—C20—C21116.8 (3)H27A—C27—H27C109.5
C21'—C20—H20A66.6H27B—C27—H27C109.5
N5—C20—H20A108.1C7—N1—C10107.9 (2)
C21—C20—H20A108.1C7—N1—C1123.4 (2)
C21'—C20—H20B132.5C10—N1—C1128.7 (2)
N5—C20—H20B108.1C13—N3—C9115.4 (2)
C21—C20—H20B108.1C13—N4—C12123.18 (19)
H20A—C20—H20B107.3C13—N4—C14120.53 (19)
C21'—C20—H20C108.0C12—N4—C14115.23 (18)
N5—C20—H20C107.8C13—N5—C20121.0 (2)
C21—C20—H20C68.0C13—N5—C24116.4 (2)
H20A—C20—H20C140.9C20—N5—C24116.6 (2)
C6—C1—C2—C30.8 (5)N5—C20—C21'—C22'176.7 (7)
N1—C1—C2—C3178.6 (3)C21—C20—C21'—C22'77.0 (8)
C1—C2—C3—C40.7 (5)N5—C24—C25—C2652.2 (4)
C2—C3—C4—C50.1 (6)N5—C24—C25—C27175.3 (3)
C3—C4—C5—C60.4 (7)C8—C7—N1—C100.1 (3)
C2—C1—C6—C50.4 (5)C8—C7—N1—C1178.5 (2)
N1—C1—C6—C5178.3 (3)C9—C10—N1—C70.5 (3)
C4—C5—C6—C10.2 (6)C12—C10—N1—C7178.1 (3)
N1—C7—C8—C11177.9 (3)C9—C10—N1—C1178.0 (2)
N1—C7—C8—C90.3 (3)C12—C10—N1—C13.4 (4)
C7—C8—C9—N3177.4 (2)C2—C1—N1—C7127.9 (3)
C11—C8—C9—N34.3 (4)C6—C1—N1—C749.9 (4)
C7—C8—C9—C100.6 (3)C2—C1—N1—C1053.7 (4)
C11—C8—C9—C10177.6 (3)C6—C1—N1—C10128.4 (3)
N3—C9—C10—N1177.4 (2)N5—C13—N3—C9179.4 (2)
C8—C9—C10—N10.7 (3)N4—C13—N3—C91.6 (3)
N3—C9—C10—C123.8 (4)C10—C9—N3—C134.7 (4)
C8—C9—C10—C12178.1 (2)C8—C9—N3—C13177.6 (2)
C7—C8—C11—N2156 (9)N3—C13—N4—C128.9 (4)
C9—C8—C11—N222 (9)N5—C13—N4—C12173.2 (2)
C9—C10—C12—O1179.2 (3)N3—C13—N4—C14158.8 (2)
N1—C10—C12—O10.8 (5)N5—C13—N4—C1419.1 (3)
C9—C10—C12—N43.0 (3)O1—C12—N4—C13174.5 (2)
N1—C10—C12—N4175.5 (2)C10—C12—N4—C139.0 (3)
C19—C14—C15—C162.5 (4)O1—C12—N4—C1417.3 (3)
N4—C14—C15—C16178.8 (2)C10—C12—N4—C14159.3 (2)
C14—C15—C16—C171.2 (4)C19—C14—N4—C13122.7 (3)
C15—C16—C17—C180.7 (4)C15—C14—N4—C1358.6 (3)
C15—C16—C17—Cl1179.3 (2)C19—C14—N4—C1268.6 (3)
C16—C17—C18—C191.1 (4)C15—C14—N4—C12110.0 (3)
Cl1—C17—C18—C19179.8 (2)N3—C13—N5—C20134.4 (2)
C17—C18—C19—C140.2 (4)N4—C13—N5—C2047.6 (3)
C15—C14—C19—C182.1 (4)N3—C13—N5—C2417.5 (3)
N4—C14—C19—C18179.3 (2)N4—C13—N5—C24160.5 (2)
C21'—C20—C21—C2272.3 (6)C21'—C20—N5—C1349.7 (5)
N5—C20—C21—C22176.7 (4)C21—C20—N5—C1399.0 (3)
C21'—C20—C21—C2354.2 (8)C21'—C20—N5—C24102.2 (5)
N5—C20—C21—C2350.2 (6)C21—C20—N5—C2452.8 (4)
N5—C20—C21'—C23'51.8 (10)C25—C24—N5—C13145.7 (2)
C21—C20—C21'—C23'47.9 (8)C25—C24—N5—C2061.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24A···N30.972.352.694 (3)100
C23—H23B···N50.962.572.995 (11)107
C20—H20A···N40.972.542.958 (3)106
C7—H7···N2i0.932.563.202 (4)126
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC27H28ClN5O
Mr473.99
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.7272 (6), 12.7635 (9), 13.3411 (9)
α, β, γ (°)103.821 (1), 107.828 (1), 106.684 (1)
V3)1265.14 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART 4K CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9851, 4890, 3633
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.170, 1.01
No. of reflections4890
No. of parameters341
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.31

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SAINT-Plus, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24A···N30.972.352.694 (3)100.3
C23—H23B···N50.962.572.995 (11)107.3
C20—H20A···N40.972.542.958 (3)106.3
C7—H7···N2i0.932.563.202 (4)126.2
Symmetry code: (i) x, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds