organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

allo-Inositol

CROSSMARK_Color_square_no_text.svg

aThe Pfizer Institute for Pharmaceutical Materials Science, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England, and bThe Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, England
*Correspondence e-mail: motherwell@ccdc.cam.ac.uk

(Received 22 May 2006; accepted 26 May 2006; online 9 June 2006)

In the crystal structure of the title compound, C6H12O6, mol­ecules adopt a chair conformation. The H atoms were located and their positions refined satisfactorily. The mol­ecules form one intra­molecular and 12 inter­molecular hydrogen bonds; all hydroxyl groups act as hydrogen-bond donors and acceptors.

Comment

Inositols are isomers of pyran­ose sugars (C6H12O6), and are present in nature and in biological systems (Podeschwa et al., 2003[Podeschwa, M., Plettenburg, O., Van Brocke, J., Block, O., Adelt, S. & Altenbach, H. (2003). Eur. J. Org. Chem. pp. 1958-1972.]). We have reported elsewhere on the hydrogen bonds in crystal structures of some cyclo­hexa­nol derivatives (Bonnet et al., 2005[Bonnet, A., Motherwell, W. D. S., Chisholm, J. A. & Jones, W. (2005). CrystEngComm, 7, 71-75.]), and a study of the Cambridge Structural Database (Version 5.27; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) reveals that the crystal structures of only five of the nine isomeric inositols have been reported. Here we report the crystal structure of allo-inositol (Fig. 1[link]). Fig. 2[link] provides a view along the a axis, showing each mol­ecule linked to eight neighbouring mol­ecules by hydrogen bonds.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of allo-inositol. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Packing diagram for allo-inositol, viewed along the a axis. The dashed lines show O⋯O contacts for hydrogen bonds.

Experimental

allo-Inositol (97%) was obtained from Sigma–Aldrich UK as a crystalline powder, and its purity was confirmed by solution NMR and elemental analysis. Suitable single crystals were obtained by vapour diffusion of acetone into an aqueous solution of the inositol, after a week at room temperature. Elemental analysis gave C 40.10, H 6.66, O 53.24%; expected: C 40.00, H 6.71, O 53.28%. The onset melting temperature was determined using differential scanning calorimetry, and gave a value of 454 K with reproducibility [literature: 583 K, with decomposition (Tschamber et al., 1992[Tschamber, T., Backenstrass, F., Fritz, H. & Streith, J. (1992). Helv. Chim. Acta, 75, 1052-1060.])].

Crystal data
  • C6H12O6

  • Mr = 180.16

  • Monoclinic, P 21 /n

  • a = 4.9520 (2) Å

  • b = 11.3145 (6) Å

  • c = 12.7326 (6) Å

  • β = 91.142 (3)°

  • V = 713.26 (6) Å3

  • Z = 4

  • Dx = 1.678 Mg m−3

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 180 (2) K

  • Block, colourless

  • 0.23 × 0.18 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • thin–slice ω and φ scans

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.896, Tmax = 0.975

  • 5743 measured reflections

  • 1627 independent reflections

  • 1387 reflections with I > 2σ(I)

  • Rint = 0.038

  • θmax = 27.4°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.102

  • S = 1.06

  • 1627 reflections

  • 130 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0508P)2 + 0.2778P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.004

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 (2) 1.95 (2) 2.7695 (14) 174 (2)
O2—H2⋯O5ii 0.82 (2) 1.91 (2) 2.7289 (14) 179 (2)
O3—H3⋯O6iii 0.85 (2) 1.90 (2) 2.7423 (13) 171 (2)
O4—H4⋯O3iv 0.84 (2) 1.93 (2) 2.7461 (14) 164 (2)
O5—H5⋯O2v 0.86 (2) 2.12 (2) 2.9014 (14) 152 (2)
O6—H6⋯O1vi 0.82 (2) 2.05 (2) 2.8248 (13) 158 (2)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x, -y+1, -z+1; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) x-1, y, z.

The O-bound H atoms were all located in a difference map and refined with a common isotropic displacement parameter [0.041 (2) Å2]; O—H distances were restrained to a target value of 0.83 (1) Å. The C-bound H atoms were placed in calculated positions, with C—H = 1.00 Å, and refined as riding with a common isotropic displacement parameter [0.016 (2) Å2]

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 279, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 279, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Burla, M. C., Camalli, G., Cascarano, G., Giacovazzo, C., Guagliardi, A. & Polidori, G. (1994). J. Appl. Cryst. 27, 435-436.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: MERCURY (Version 1.4; Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Mercury (Version 1.4; Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

hexahydroxycyclohexane top
Crystal data top
C6H12O6F(000) = 384
Mr = 180.16Dx = 1.678 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8271 reflections
a = 4.9520 (2) Åθ = 1.0–27.5°
b = 11.3145 (6) ŵ = 0.15 mm1
c = 12.7326 (6) ÅT = 180 K
β = 91.142 (3)°Block, colourless
V = 713.26 (6) Å30.23 × 0.18 × 0.18 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1387 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
thin–slice ω and φ scansθmax = 27.4°, θmin = 3.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 66
Tmin = 0.896, Tmax = 0.975k = 1414
5743 measured reflectionsl = 1616
1627 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.2778P]
where P = (Fo2 + 2Fc2)/3
1627 reflections(Δ/σ)max = 0.004
130 parametersΔρmax = 0.31 e Å3
6 restraintsΔρmin = 0.46 e Å3
Special details top

Experimental. The –OH hydrogen atoms were all located and their positions were refined satisfactorily.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58505 (18)0.10025 (9)0.42187 (7)0.0175 (2)
H10.622 (4)0.0302 (16)0.4147 (15)0.041 (2)*
C10.2986 (3)0.11545 (11)0.40831 (10)0.0144 (3)
H1A0.20900.03630.41050.0158 (15)*
O20.2568 (2)0.13354 (8)0.59619 (7)0.0167 (2)
H20.112 (4)0.1375 (18)0.6268 (16)0.041 (2)*
C20.1944 (2)0.19153 (11)0.49771 (9)0.0137 (3)
H2A0.00640.19810.48980.0158 (15)*
O30.2171 (2)0.38616 (8)0.57924 (7)0.0204 (3)
H30.306 (4)0.3661 (18)0.6344 (15)0.041 (2)*
C30.3147 (3)0.31563 (11)0.49478 (9)0.0148 (3)
H3A0.51600.31030.50030.0158 (15)*
O40.05263 (19)0.38676 (9)0.38074 (8)0.0201 (2)
H40.100 (4)0.4524 (16)0.4050 (16)0.041 (2)*
C40.2332 (3)0.37526 (12)0.39100 (10)0.0160 (3)
H4A0.31700.45560.38850.0158 (15)*
O50.2820 (2)0.35459 (9)0.20083 (7)0.0207 (2)
H50.113 (4)0.3447 (17)0.1893 (16)0.041 (2)*
C50.3387 (3)0.30110 (12)0.30029 (10)0.0165 (3)
H5A0.53980.29900.30890.0158 (15)*
O60.03399 (19)0.16142 (9)0.26888 (7)0.0193 (2)
H60.133 (4)0.1621 (17)0.3195 (15)0.041 (2)*
C60.2426 (3)0.17232 (12)0.30083 (9)0.0159 (3)
H6A0.35200.12840.24840.0158 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0142 (5)0.0162 (5)0.0222 (5)0.0024 (4)0.0009 (4)0.0007 (4)
C10.0140 (6)0.0132 (6)0.0159 (6)0.0000 (5)0.0007 (5)0.0002 (4)
O20.0184 (5)0.0189 (5)0.0128 (4)0.0022 (4)0.0018 (3)0.0023 (3)
C20.0139 (6)0.0142 (6)0.0130 (6)0.0005 (5)0.0006 (4)0.0014 (4)
O30.0267 (5)0.0172 (5)0.0173 (5)0.0065 (4)0.0020 (4)0.0041 (4)
C30.0164 (6)0.0126 (6)0.0154 (6)0.0015 (5)0.0008 (5)0.0017 (4)
O40.0164 (5)0.0182 (5)0.0255 (5)0.0033 (4)0.0027 (4)0.0015 (4)
C40.0155 (6)0.0140 (6)0.0185 (6)0.0011 (5)0.0009 (5)0.0016 (5)
O50.0198 (5)0.0247 (6)0.0176 (5)0.0008 (4)0.0006 (4)0.0073 (4)
C50.0155 (6)0.0181 (7)0.0158 (6)0.0004 (5)0.0004 (5)0.0037 (5)
O60.0167 (5)0.0248 (5)0.0162 (5)0.0019 (4)0.0008 (3)0.0001 (4)
C60.0165 (6)0.0179 (7)0.0134 (6)0.0004 (5)0.0006 (5)0.0001 (5)
Geometric parameters (Å, º) top
O1—C11.4357 (15)C3—H3A1.0000
O1—H10.819 (17)O4—C41.4248 (15)
C1—C21.5253 (17)O4—H40.839 (17)
C1—C61.5325 (17)C4—C51.5281 (18)
C1—H1A1.0000C4—H4A1.0000
O2—C21.4432 (15)O5—C51.4265 (15)
O2—H20.823 (18)O5—H50.855 (18)
C2—C31.5259 (18)C5—C61.5329 (18)
C2—H2A1.0000C5—H5A1.0000
O3—C31.4309 (15)O6—C61.4263 (16)
O3—H30.853 (18)O6—H60.817 (17)
C3—C41.5305 (17)C6—H6A1.0000
C1—O1—H1108.9 (15)C4—O4—H4109.2 (15)
O1—C1—C2109.03 (10)O4—C4—C5109.56 (10)
O1—C1—C6108.58 (10)O4—C4—C3111.33 (10)
C2—C1—C6111.81 (10)C5—C4—C3108.80 (10)
O1—C1—H1A109.1O4—C4—H4A109.0
C2—C1—H1A109.1C5—C4—H4A109.0
C6—C1—H1A109.1C3—C4—H4A109.0
C2—O2—H2102.3 (15)C5—O5—H5105.8 (14)
O2—C2—C1108.79 (10)O5—C5—C4111.95 (10)
O2—C2—C3111.26 (10)O5—C5—C6110.59 (10)
C1—C2—C3111.28 (10)C4—C5—C6114.06 (10)
O2—C2—H2A108.5O5—C5—H5A106.6
C1—C2—H2A108.5C4—C5—H5A106.6
C3—C2—H2A108.5C6—C5—H5A106.6
C3—O3—H3107.1 (14)C6—O6—H6111.2 (15)
O3—C3—C2110.92 (10)O6—C6—C1111.98 (10)
O3—C3—C4108.41 (10)O6—C6—C5112.17 (10)
C2—C3—C4109.30 (10)C1—C6—C5110.63 (10)
O3—C3—H3A109.4O6—C6—H6A107.3
C2—C3—H3A109.4C1—C6—H6A107.3
C4—C3—H3A109.4C5—C6—H6A107.3
O1—C1—C2—O259.22 (12)O4—C4—C5—O561.06 (13)
C6—C1—C2—O2179.29 (10)C3—C4—C5—O5177.02 (10)
O1—C1—C2—C363.71 (13)O4—C4—C5—C665.47 (13)
C6—C1—C2—C356.37 (14)C3—C4—C5—C656.45 (14)
O2—C2—C3—O358.16 (13)O1—C1—C6—O6164.10 (10)
C1—C2—C3—O3179.65 (10)C2—C1—C6—O675.56 (13)
O2—C2—C3—C4177.64 (10)O1—C1—C6—C569.97 (12)
C1—C2—C3—C460.87 (13)C2—C1—C6—C550.37 (14)
O3—C3—C4—O459.66 (13)O5—C5—C6—O653.13 (13)
C2—C3—C4—O461.36 (13)C4—C5—C6—O674.11 (13)
O3—C3—C4—C5179.51 (10)O5—C5—C6—C1178.95 (10)
C2—C3—C4—C559.48 (13)C4—C5—C6—C151.71 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.82 (2)1.95 (2)2.7695 (14)174 (2)
O2—H2···O5ii0.82 (2)1.91 (2)2.7289 (14)179 (2)
O3—H3···O6iii0.85 (2)1.90 (2)2.7423 (13)171 (2)
O4—H4···O3iv0.84 (2)1.93 (2)2.7461 (14)164 (2)
O5—H5···O2v0.86 (2)2.12 (2)2.9014 (14)152 (2)
O6—H6···O1vi0.82 (2)2.05 (2)2.8248 (13)158 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z+1; (v) x1/2, y+1/2, z1/2; (vi) x1, y, z.
 

Acknowledgements

The authors are grateful to Dr John Davies (Department of Chemistry, University of Cambridge) for determining the crystal structure, and Drs A. Trask and L. Fabian for help with CIF preparation. The Pfizer Institute for Pharmaceutical Materials Science is acknowledged for funding the work.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, G., Cascarano, G., Giacovazzo, C., Guagliardi, A. & Polidori, G. (1994). J. Appl. Cryst. 27, 435–436.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBonnet, A., Motherwell, W. D. S., Chisholm, J. A. & Jones, W. (2005). CrystEngComm, 7, 71–75.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 279, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPodeschwa, M., Plettenburg, O., Van Brocke, J., Block, O., Adelt, S. & Altenbach, H. (2003). Eur. J. Org. Chem. pp. 1958–1972.  CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTschamber, T., Backenstrass, F., Fritz, H. & Streith, J. (1992). Helv. Chim. Acta, 75, 1052–1060.  CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds