Download citation
Download citation
link to html
The crystal structure of the title compound, (NH4)2[Ni(H2O)6]2V10O28·4H2O, comprises centrosymmetric [V10O28]6- anions that are linked via hydrogen bonding by two NH4+ cations, two [Ni(H2O)6]2+ cations, and four water mol­ecules into a three-dimensional structure. The compound is isotypic with other members of the [M(H2O)6]2(NH4)2V10O28·4H2O series (M = Mg and Co).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680503922X/wm6112sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680503922X/wm6112Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](i-O)= 0.002 Å
  • R factor = 0.024
  • wR factor = 0.060
  • Data-to-parameter ratio = 15.5

checkCIF/PLATON results

No syntax errors found



Datablock: I

No errors found in this datablock

Comment top

Recently, decavanadate double salts of nickel and alkali metals have been reported, viz. [Ni(H2O)6]2[Na(H2O)3]2[V10O28]·4H2O (Higami et al., 2002), NiNa4[HV10O28].23H2O (Sum et al., 2002) and [K(H2O)2Ni(H2O)6]2[V10O28] (Li et al., 2004). However, no double salt with nickel and ammonium has been reported up to now. We present here the crystal structure of the decavanadate [Ni(H2O)6]2(NH4)2V10O28·4H2O, (I), which is isotypic with other members of the series [M(H2O)6]2(NH4)2V10O28·4H2O where M = Mg (Avtamonova et al., 1990) and Co (Baudrin et al., 1997).

The structure of (I) consists of a centrosymmetric polyanion, [V10O28]6−, two nickel hexahydrate cations, [Ni(H2O)6]2+, two ammonium cations, NH4+, and four water molecules as single building units (Fig. 1). Each building unit is bonded to another unit via an extensive net of hydrogen bonds into a three-dimensional network. In this way, the [Ni(H2O)6]2+ cation is linked to the decavanadate polyanion and to an isolated water molecule, whereas the NH4+ group is connected to another water molecule and to the polyanion, so that all terminal O atoms of the [V10O28]6− anion are involved in hydrogen bonding (Fig. 2 and Table 2). The deviation from ideal values of the bonding angles in the water molecules of respectively 118.4 and 117.9° for H19A—O19—H19B and H20A—O20—H20B, and in the ammonium cation of 99.1 and 115.7°, is also explained by involvement in hydrogen bonding.

The Ni2+ cation in (I) is coordinated by six water molecules, forming a slightly distorted octahedron (Table 1) with the cis-O—Ni—O angles deviating by about 5° and the trans-O—Ni—O angles by about 7° from ideal values.

The decavanadate polyanion in (I) is composed of ten VO6 octahedra by edge- and corner-sharing. The arrangement of O and V atoms is very close to that in other decavanadates of composition Li6(H2O)16V10O28 (Xie & Ma, 2005) and [LiNa2(H2O)9]2V10O28 (Ma et al., 2005) reported previously. The V···V contacts within the polyanion in (I) range from 3.0537 (14) to 3.1155 (8) Å. The V—O bond-lenght distribution is correlated with the coordination number (CN) of the O atoms. Terminal O atoms with only one V—O bond have distances in the range 1.5985 (9) to 1.6136 (18) Å, whereas the other V–O distances increase with higher CN of the bridging O atoms. V—µ2-O distances are in the range 1.6840 (19) to 2.0214 (19) Å, V—µ3-O distances are 1.9069 (17)–1.9965 (18) Å, and V—µ6-O distances are 2.1057 (19)–2.3410 (19) Å. The bond lengths and angles of the [V10O28]6− polyanion are very similar than those observed in other decavanadates (Kamenar et al., 1996; Choi et al., 2003; Xie & Ma, 2005; Ma et al., 2005).

Experimental top

A mixture of NH4VO3 (Shanghai Chemical Reagents) and Ni(Ac)2·4H2O (Shanghai Chemical Reagents) in a 1:0.2 molar ratio was acidified to pH 5 and hydrothermally treated for 10 h at 398 K. The resulting filtrate was kept at room temperature and after some days a yellow polycrystalline powder precipitated from the solution which was subsequently filtered off. Yellow single crystals of (I) of up to 3 mm in length and of mostly block-like habit formed after 20 d from this solution.

Refinement top

All H atoms were found in a difference Fourier map. Their positions were refined freely using the same isotropic displacement parameter for all H atoms.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 2002); data reduction: Crystal Structure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I), with 40% probability displacement ellipsoids, showing the atom-labelling scheme. [Symmetry code: (i) x − 1, y, z].
[Figure 2] Fig. 2. The structure of (I), shown approximately perpendicular to the bc plane. Part of the hydrogen-bonding network is shown as dashed lines. [Symmetry code: (i) x − 1, y, z.]
(I) top
Crystal data top
(NH4)2[Ni(H2O)6]2V10O28·4H2OZ = 1
Mr = 1399.12F(000) = 692
Triclinic, P1Dx = 2.588 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7728 (18) ÅCell parameters from 7874 reflections
b = 10.923 (2) Åθ = 3.4–27.5°
c = 11.114 (2) ŵ = 3.64 mm1
α = 65.18 (3)°T = 173 K
β = 73.12 (3)°Block, yellow
γ = 70.64 (3)°0.20 × 0.20 × 0.20 mm
V = 897.6 (4) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4056 independent reflections
Radiation source: fine-focus sealed tube3602 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = 1111
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1414
Tmin = 0.471, Tmax = 0.483l = 1412
8845 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.0185P)2 + 1.7228P]
where P = (Fo2 + 2Fc2)/3
4056 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
(NH4)2[Ni(H2O)6]2V10O28·4H2Oγ = 70.64 (3)°
Mr = 1399.12V = 897.6 (4) Å3
Triclinic, P1Z = 1
a = 8.7728 (18) ÅMo Kα radiation
b = 10.923 (2) ŵ = 3.64 mm1
c = 11.114 (2) ÅT = 173 K
α = 65.18 (3)°0.20 × 0.20 × 0.20 mm
β = 73.12 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4056 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3602 reflections with I > 2σ(I)
Tmin = 0.471, Tmax = 0.483Rint = 0.021
8845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.060All H-atom parameters refined
S = 1.09Δρmax = 0.47 e Å3
4056 reflectionsΔρmin = 0.43 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.77935 (4)0.73559 (3)0.78156 (3)0.00754 (8)
V10.69104 (5)0.73612 (4)0.23549 (4)0.00725 (9)
V20.38279 (5)0.77454 (4)0.44976 (4)0.00630 (9)
V30.36396 (5)0.71898 (4)0.20208 (4)0.00716 (9)
V40.32299 (5)0.49313 (4)0.48397 (4)0.00576 (9)
V50.35210 (5)0.54994 (4)0.72996 (4)0.00609 (9)
O10.8279 (2)0.82194 (19)0.14635 (18)0.0116 (4)
O20.2878 (2)0.88984 (18)0.51839 (18)0.0099 (3)
O30.2513 (2)0.79399 (19)0.08874 (18)0.0118 (4)
O40.2035 (2)0.38655 (18)0.59565 (17)0.0085 (3)
O50.2202 (2)0.42913 (17)0.80454 (17)0.0076 (3)
O60.4792 (2)0.35668 (17)0.41068 (17)0.0067 (3)
O70.2524 (2)0.66600 (18)0.79654 (18)0.0097 (3)
O80.5082 (2)0.44277 (17)0.83646 (17)0.0077 (3)
O90.5624 (2)0.83814 (17)0.34111 (17)0.0076 (3)
O100.5403 (2)0.79892 (18)0.12541 (17)0.0088 (3)
O110.2762 (2)0.82728 (17)0.31027 (17)0.0082 (3)
O120.2309 (2)0.58745 (18)0.34623 (17)0.0077 (3)
O130.4863 (2)0.40223 (17)0.62168 (16)0.0065 (3)
O140.2559 (2)0.63212 (17)0.56256 (17)0.0065 (3)
O150.9447 (3)0.8545 (2)0.6688 (2)0.0228 (4)
O160.6622 (2)0.81476 (19)0.61938 (18)0.0121 (4)
O170.9093 (2)0.5669 (2)0.7265 (2)0.0192 (4)
O180.5903 (2)0.63802 (18)0.89135 (17)0.0102 (3)
O190.9122 (2)0.6542 (2)0.93409 (18)0.0144 (4)
O200.6350 (2)0.89580 (18)0.85052 (18)0.0111 (4)
O210.0096 (2)0.9454 (2)0.87664 (19)0.0167 (4)
O220.9237 (2)0.8325 (2)0.3987 (2)0.0156 (4)
N0.3278 (3)0.9151 (2)0.7615 (2)0.0112 (4)
H15A0.96850.89160.71680.050*
H15B1.04870.81670.62610.050*
H16A0.73390.83710.54210.050*
H16B0.61070.75630.61460.050*
H17A0.87460.51930.69810.050*
H17B1.01280.52220.73840.050*
H18A0.55790.61090.97560.050*
H18B0.58250.57660.86550.050*
H19A0.87310.62681.01980.050*
H19B1.00850.66620.90840.050*
H20A0.60630.87350.93230.050*
H20B0.65610.97320.80740.050*
H21A0.05761.02960.87120.050*
H21B0.04550.90070.95770.050*
H22A1.02490.83050.38060.050*
H22B0.92940.75550.37940.050*
H23A0.32160.90190.68030.050*
H23B0.21900.92620.81640.050*
H23C0.41300.83640.80550.050*
H23D0.36810.99210.72080.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.00774 (15)0.00808 (15)0.00719 (15)0.00203 (12)0.00112 (11)0.00314 (12)
V10.0087 (2)0.00641 (19)0.00648 (19)0.00295 (15)0.00033 (15)0.00194 (16)
V20.00814 (19)0.00496 (19)0.00538 (19)0.00100 (15)0.00092 (15)0.00206 (16)
V30.0090 (2)0.00638 (19)0.00564 (19)0.00099 (15)0.00227 (15)0.00178 (16)
V40.00600 (19)0.00594 (19)0.00592 (19)0.00169 (15)0.00110 (15)0.00244 (16)
V50.00729 (19)0.00537 (19)0.00574 (19)0.00144 (15)0.00086 (15)0.00238 (16)
O10.0141 (9)0.0122 (9)0.0091 (8)0.0065 (7)0.0019 (7)0.0047 (7)
O20.0122 (9)0.0079 (8)0.0094 (8)0.0006 (7)0.0025 (7)0.0040 (7)
O30.0155 (9)0.0106 (9)0.0100 (9)0.0008 (7)0.0060 (7)0.0037 (7)
O40.0085 (8)0.0080 (8)0.0097 (8)0.0024 (7)0.0019 (7)0.0033 (7)
O50.0094 (8)0.0079 (8)0.0056 (8)0.0036 (7)0.0005 (6)0.0025 (7)
O60.0074 (8)0.0052 (8)0.0078 (8)0.0006 (6)0.0023 (6)0.0026 (7)
O70.0106 (8)0.0087 (8)0.0115 (9)0.0027 (7)0.0026 (7)0.0044 (7)
O80.0100 (8)0.0076 (8)0.0064 (8)0.0023 (7)0.0015 (6)0.0034 (7)
O90.0098 (8)0.0065 (8)0.0058 (8)0.0029 (7)0.0003 (6)0.0019 (7)
O100.0108 (8)0.0071 (8)0.0080 (8)0.0015 (7)0.0017 (7)0.0027 (7)
O110.0087 (8)0.0070 (8)0.0073 (8)0.0007 (7)0.0020 (7)0.0015 (7)
O120.0069 (8)0.0085 (8)0.0084 (8)0.0012 (6)0.0017 (6)0.0040 (7)
O130.0076 (8)0.0058 (8)0.0061 (8)0.0014 (6)0.0013 (6)0.0021 (7)
O140.0068 (8)0.0060 (8)0.0068 (8)0.0012 (6)0.0023 (6)0.0018 (7)
O150.0177 (10)0.0261 (11)0.0231 (11)0.0077 (9)0.0038 (8)0.0054 (9)
O160.0141 (9)0.0130 (9)0.0104 (9)0.0053 (7)0.0034 (7)0.0030 (7)
O170.0120 (9)0.0201 (10)0.0352 (12)0.0016 (8)0.0086 (8)0.0202 (10)
O180.0140 (9)0.0100 (8)0.0084 (8)0.0059 (7)0.0012 (7)0.0031 (7)
O190.0106 (9)0.0225 (10)0.0068 (8)0.0042 (8)0.0011 (7)0.0022 (8)
O200.0160 (9)0.0079 (8)0.0095 (9)0.0028 (7)0.0033 (7)0.0027 (7)
O210.0153 (10)0.0141 (9)0.0146 (9)0.0040 (8)0.0008 (8)0.0013 (8)
O220.0133 (9)0.0176 (10)0.0177 (10)0.0045 (8)0.0003 (8)0.0090 (8)
N0.0137 (10)0.0081 (10)0.0143 (11)0.0038 (8)0.0048 (9)0.0041 (9)
Geometric parameters (Å, º) top
Ni—O152.047 (2)V4—V1i3.0713 (14)
Ni—O192.054 (2)V5—O71.6112 (18)
Ni—O172.054 (2)V5—O51.8179 (18)
Ni—O162.057 (2)V5—O81.8337 (19)
Ni—O182.0688 (19)V5—O141.9965 (18)
Ni—O202.0848 (19)V5—O6i1.9979 (19)
V1—O11.6054 (19)V5—O132.2328 (18)
V1—O101.8303 (19)O4—V1i2.061 (2)
V1—O91.8407 (18)O5—V1i1.8982 (18)
V1—O5i1.8982 (18)O6—V5i1.9979 (19)
V1—O4i2.061 (2)O6—V2i1.9997 (19)
V1—O13i2.3093 (19)O8—V3i1.8987 (18)
V1—V4i3.0713 (14)O13—V4i2.1180 (18)
V1—V33.0725 (8)O13—V2i2.2282 (18)
V1—V23.0832 (13)O13—V1i2.3093 (19)
V2—O21.6136 (18)O13—V3i2.3410 (19)
V2—O91.8276 (18)O15—H15A0.8909
V2—O111.8291 (18)O15—H15B0.9442
V2—O141.9825 (19)O16—H16A0.8974
V2—O6i1.9997 (19)O16—H16B0.9209
V2—O13i2.2282 (18)O17—H17A0.8725
V2—V53.0537 (14)O17—H17B0.8954
V2—V33.1155 (8)O18—H18A0.8448
V3—O31.5985 (19)O18—H18B0.8609
V3—O101.8404 (19)O19—H19A0.8680
V3—O111.8682 (18)O19—H19B0.8453
V3—O8i1.8987 (18)O20—H20A0.8190
V3—O122.0214 (19)O20—H20B0.8313
V3—O13i2.3410 (19)O21—H21A0.8592
V3—V43.0782 (14)O21—H21B0.8469
V4—O41.6840 (19)O22—H22A0.8460
V4—O121.7027 (19)O22—H22B0.9345
V4—O141.9069 (17)N—H23A0.9903
V4—O61.9442 (18)N—H23B0.9723
V4—O132.1057 (19)N—H23C0.9850
V4—O13i2.1180 (18)N—H23D0.9065
O15—Ni—O1987.70 (8)O13i—V3—V443.41 (5)
O15—Ni—O1795.55 (9)V1—V3—V491.61 (4)
O19—Ni—O1787.93 (8)O3—V3—V2134.85 (7)
O15—Ni—O1689.45 (8)O10—V3—V282.12 (6)
O19—Ni—O16175.84 (7)O11—V3—V232.20 (6)
O17—Ni—O1689.33 (8)O8i—V3—V2122.89 (6)
O15—Ni—O18172.97 (8)O12—V3—V281.57 (5)
O19—Ni—O1896.18 (8)O13i—V3—V245.51 (4)
O17—Ni—O1890.46 (8)V1—V3—V259.77 (3)
O16—Ni—O1886.97 (8)V4—V3—V260.85 (2)
O15—Ni—O2089.29 (8)O4—V4—O12107.01 (9)
O19—Ni—O2091.17 (8)O4—V4—O1498.62 (8)
O17—Ni—O20175.04 (8)O12—V4—O1497.91 (8)
O16—Ni—O2091.83 (8)O4—V4—O696.32 (8)
O18—Ni—O2084.79 (7)O12—V4—O695.91 (8)
O1—V1—O10103.45 (9)O14—V4—O6155.69 (7)
O1—V1—O9102.66 (9)O4—V4—O1387.89 (8)
O10—V1—O993.55 (8)O12—V4—O13164.99 (8)
O1—V1—O5i101.28 (9)O14—V4—O1381.20 (7)
O10—V1—O5i91.02 (8)O6—V4—O1380.30 (7)
O9—V1—O5i153.82 (8)O4—V4—O13i165.69 (8)
O1—V1—O4i99.85 (9)O12—V4—O13i87.17 (8)
O10—V1—O4i156.59 (8)O14—V4—O13i80.87 (7)
O9—V1—O4i83.54 (8)O6—V4—O13i79.93 (7)
O5i—V1—O4i82.11 (8)O13—V4—O13i77.89 (8)
O1—V1—O13i174.03 (8)O4—V4—V1i39.17 (6)
O10—V1—O13i82.34 (7)O12—V4—V1i146.16 (6)
O9—V1—O13i78.15 (7)O14—V4—V1i90.73 (6)
O5i—V1—O13i76.95 (7)O6—V4—V1i88.83 (6)
O4i—V1—O13i74.31 (7)O13—V4—V1i48.72 (5)
O1—V1—V4i130.90 (7)O13i—V4—V1i126.59 (6)
O10—V1—V4i125.56 (6)O4—V4—V3144.76 (7)
O9—V1—V4i79.19 (6)O12—V4—V337.75 (6)
O5i—V1—V4i77.22 (6)O14—V4—V389.69 (6)
O4i—V1—V4i31.06 (5)O6—V4—V389.08 (6)
O13i—V1—V4i43.25 (5)O13—V4—V3127.31 (5)
O1—V1—V3136.72 (7)O13i—V4—V349.43 (5)
O10—V1—V333.28 (6)V1i—V4—V3175.832 (18)
O9—V1—V385.12 (6)O7—V5—O5101.40 (9)
O5i—V1—V384.68 (6)O7—V5—O8102.33 (9)
O4i—V1—V3123.40 (6)O5—V5—O895.86 (8)
O13i—V1—V349.09 (5)O7—V5—O1499.59 (9)
V4i—V1—V392.34 (4)O5—V5—O1489.38 (8)
O1—V1—V2135.24 (7)O8—V5—O14155.94 (7)
O10—V1—V283.20 (6)O7—V5—O6i101.32 (8)
O9—V1—V232.67 (5)O5—V5—O6i154.95 (7)
O5i—V1—V2123.04 (6)O8—V5—O6i89.48 (8)
O4i—V1—V281.94 (6)O14—V5—O6i76.54 (7)
O13i—V1—V246.10 (5)O7—V5—O13175.39 (8)
V4i—V1—V261.99 (3)O5—V5—O1380.54 (7)
V3—V1—V260.81 (2)O8—V5—O1381.54 (7)
O2—V2—O9103.10 (9)O14—V5—O1376.18 (7)
O2—V2—O11103.60 (9)O6i—V5—O1376.05 (7)
O9—V2—O1194.15 (8)O7—V5—V290.87 (7)
O2—V2—O1498.91 (8)O5—V5—V2129.08 (6)
O9—V2—O14155.58 (7)O8—V5—V2129.69 (6)
O11—V2—O1490.83 (8)O14—V5—V239.71 (5)
O2—V2—O6i98.49 (8)O6i—V5—V240.21 (5)
O9—V2—O6i89.49 (8)O13—V5—V284.69 (5)
O11—V2—O6i156.15 (7)V4—O4—V1i109.77 (9)
O14—V2—O6i76.82 (7)V5—O5—V1i114.28 (9)
O2—V2—O13i173.59 (8)V4—O6—V5i107.54 (8)
O9—V2—O13i80.61 (7)V4—O6—V2i106.95 (8)
O11—V2—O13i81.17 (7)V5i—O6—V2i99.62 (8)
O14—V2—O13i76.56 (7)V5—O8—V3i113.84 (9)
O6i—V2—O13i76.17 (7)V2—O9—V1114.39 (9)
O2—V2—V588.57 (7)V1—O10—V3113.65 (10)
O9—V2—V5129.65 (6)V2—O11—V3114.83 (9)
O11—V2—V5130.87 (6)V4—O12—V3111.20 (9)
O14—V2—V540.04 (5)V4—O13—V4i102.11 (8)
O6i—V2—V540.17 (5)V4—O13—V2i93.95 (7)
O13i—V2—V585.05 (5)V4i—O13—V2i92.37 (7)
O2—V2—V1135.89 (7)V4—O13—V592.68 (7)
O9—V2—V132.94 (5)V4i—O13—V593.89 (7)
O11—V2—V182.93 (6)V2i—O13—V5169.74 (9)
O14—V2—V1124.85 (6)V4—O13—V1i88.03 (7)
O6i—V2—V187.51 (6)V4i—O13—V1i169.77 (9)
O13i—V2—V148.31 (5)V2i—O13—V1i85.59 (6)
V5—V2—V1120.23 (4)V5—O13—V1i86.82 (6)
O2—V2—V3136.51 (7)V4—O13—V3i170.72 (8)
O9—V2—V384.05 (6)V4i—O13—V3i87.16 (7)
O11—V2—V332.97 (5)V2i—O13—V3i85.94 (6)
O14—V2—V387.27 (6)V5—O13—V3i86.25 (6)
O6i—V2—V3124.69 (5)V1i—O13—V3i82.70 (6)
O13i—V2—V348.55 (5)V4—O14—V2107.50 (8)
V5—V2—V3119.90 (2)V4—O14—V5107.08 (8)
V1—V2—V359.42 (2)V2—O14—V5100.25 (8)
O3—V3—O10103.42 (9)Ni—O15—H15A111.6
O3—V3—O11102.69 (9)Ni—O15—H15B121.2
O10—V3—O1190.86 (8)H15A—O15—H15B103.5
O3—V3—O8i102.04 (9)Ni—O16—H16A110.3
O10—V3—O8i90.32 (8)Ni—O16—H16B115.4
O11—V3—O8i154.24 (8)H16A—O16—H16B106.6
O3—V3—O12100.88 (9)Ni—O17—H17A128.7
O10—V3—O12155.68 (8)Ni—O17—H17B123.7
O11—V3—O1284.84 (7)H17A—O17—H17B107.2
O8i—V3—O1283.57 (8)Ni—O18—H18A127.8
O3—V3—O13i175.32 (8)Ni—O18—H18B115.6
O10—V3—O13i81.25 (7)H18A—O18—H18B106.3
O11—V3—O13i77.38 (7)Ni—O19—H19A126.2
O8i—V3—O13i77.38 (7)Ni—O19—H19B114.0
O12—V3—O13i74.45 (7)H19A—O19—H19B118.4
O3—V3—V1136.47 (7)Ni—O20—H20A115.8
O10—V3—V133.07 (6)Ni—O20—H20B116.3
O11—V3—V182.66 (6)H20A—O20—H20B117.9
O8i—V3—V184.38 (6)H21A—O21—H21B101.4
O12—V3—V1122.65 (6)H22A—O22—H22B99.3
O13i—V3—V148.21 (5)H23A—N—H23B109.1
O3—V3—V4131.92 (7)H23A—N—H23C107.0
O10—V3—V4124.66 (6)H23B—N—H23C115.7
O11—V3—V478.98 (6)H23A—N—H23D99.1
O8i—V3—V479.23 (6)H23B—N—H23D115.7
O12—V3—V431.05 (5)H23C—N—H23D108.6
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15A···O21ii0.8912.1663.035 (3)165
O15—H15B···O2ii0.9442.3063.050 (3)135
O15—H15B···O14ii0.9442.4263.300 (3)154
O16—H16A···O220.8971.9472.819 (3)164
O16—H16B···O6i0.9201.8142.731 (2)175
O17—H17A···O12i0.8721.9802.847 (3)172
O17—H17B···O5ii0.8951.9512.830 (2)167
O17—H17B···O4ii0.8952.5103.083 (6)122
O18—H18A···O8iii0.8461.8812.726 (1)177
O18—H18B···O80.8611.9542.794 (3)165
O19—H19A···O5iii0.8681.8052.671 (3)176
O19—H19B···O7ii0.8452.1402.951 (3)161
O20—H20A···O10iv0.8201.9312.746 (3)173
O21—H21A···O3v0.8582.2153.030 (3)159
O21—H21B···O1vi0.8472.0342.869 (3)169
O22—H22A···O11ii0.8462.1082.948 (3)173
O22—H22B···O4i0.9342.1202.928 (3)144
N—H23A···O20.9911.9692.957 (3)174
N—H23B···O210.9751.8912.831 (3)162
N—H23C···O180.9872.2173.195 (3)170
N—H23C···O200.9872.4783.044 (3)116
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+2; (iv) x, y, z+1; (v) x, y+2, z+1; (vi) x1, y, z+1.

Experimental details

Crystal data
Chemical formula(NH4)2[Ni(H2O)6]2V10O28·4H2O
Mr1399.12
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.7728 (18), 10.923 (2), 11.114 (2)
α, β, γ (°)65.18 (3), 73.12 (3), 70.64 (3)
V3)897.6 (4)
Z1
Radiation typeMo Kα
µ (mm1)3.64
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.471, 0.483
No. of measured, independent and
observed [I > 2σ(I)] reflections
8845, 4056, 3602
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.060, 1.09
No. of reflections4056
No. of parameters262
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.47, 0.43

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO (Rigaku, 2002), Crystal Structure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), WinGX (Farrugia, 1999), SHELXL97.

Selected bond lengths (Å) top
Ni—O152.047 (2)V3—O31.5985 (19)
Ni—O192.054 (2)V3—O101.8404 (19)
Ni—O172.054 (2)V3—O111.8682 (18)
Ni—O162.057 (2)V3—O8i1.8987 (18)
Ni—O182.0688 (19)V3—O122.0214 (19)
Ni—O202.0848 (19)V3—O13i2.3410 (19)
V1—O11.6054 (19)V4—O41.6840 (19)
V1—O101.8303 (19)V4—O121.7027 (19)
V1—O91.8407 (18)V4—O141.9069 (17)
V1—O5i1.8982 (18)V4—O61.9442 (18)
V1—O4i2.061 (2)V4—O132.1057 (19)
V1—O13i2.3093 (19)V4—O13i2.1180 (18)
V2—O21.6136 (18)V5—O71.6112 (18)
V2—O91.8276 (18)V5—O51.8179 (18)
V2—O111.8291 (18)V5—O81.8337 (19)
V2—O141.9825 (19)V5—O141.9965 (18)
V2—O6i1.9997 (19)V5—O6i1.9979 (19)
V2—O13i2.2282 (18)V5—O132.2328 (18)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15A···O21ii0.8912.1663.035 (3)165
O15—H15B···O2ii0.9442.3063.050 (3)135
O15—H15B···O14ii0.9442.4263.300 (3)154
O16—H16A···O220.8971.9472.819 (3)164
O16—H16B···O6i0.9201.8142.731 (2)175
O17—H17A···O12i0.8721.9802.847 (3)172
O17—H17B···O5ii0.8951.9512.830 (2)167
O17—H17B···O4ii0.8952.5103.083 (6)122
O18—H18A···O8iii0.8461.8812.726 (1)177
O18—H18B···O80.8611.9542.794 (3)165
O19—H19A···O5iii0.8681.8052.671 (3)176
O19—H19B···O7ii0.8452.1402.951 (3)161
O20—H20A···O10iv0.8201.9312.746 (3)173
O21—H21A···O3v0.8582.2153.030 (3)159
O21—H21B···O1vi0.8472.0342.869 (3)169
O22—H22A···O11ii0.8462.1082.948 (3)173
O22—H22B···O4i0.9342.1202.928 (3)144
N—H23A···O20.9911.9692.957 (3)174
N—H23B···O210.9751.8912.831 (3)162
N—H23C···O180.9872.2173.195 (3)170
N—H23C···O200.9872.4783.044 (3)116
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+2; (iv) x, y, z+1; (v) x, y+2, z+1; (vi) x1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds