Download citation
Download citation
link to html
Ag1.911 (6)Cs1.16 (3)Mo9S11, silver caesium nona­molybdenum undeca­sulfide, is isostructural with the archetype h-Mo9Se11. Its crystal structure consists of Mo9S11S6 cluster units centered on the Wyckhoff site 2d and inter­connected through inter-unit Mo-S bonds. The Mo-S framework delimits channels in which the Cs+ cations are disordered. The Ag atoms are located on mirror planes around the threefold axes between two consecutive Mo9S11S6 units.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805028205/wm6090sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805028205/wm6090Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](o-S) = 0.001 Å
  • Disorder in main residue
  • R factor = 0.022
  • wR factor = 0.046
  • Data-to-parameter ratio = 39.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT214_ALERT_2_B Atom Cs2 (Anion/Solvent) ADP max/min Ratio 5.50 prolat
Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)... ? PLAT077_ALERT_4_C Unitcell contains non-integer number of atoms .. ? PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT301_ALERT_3_C Main Residue Disorder ......................... 9.00 Perc. PLAT302_ALERT_4_C Anion/Solvent Disorder ......................... 41.00 Perc. PLAT752_ALERT_4_C Angle Calc 60.00, Rep 60.00(1) ...... Senseless su S2 -MO2 -MO1 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 36.70 Deg. CS2 -S1 -CS2 8.556 1.555 2.554 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 27.30 Deg. CS2 -S1 -CS1 8.556 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 32.07 Deg. MO1 -S1 -MO1 1.555 1.555 3.655 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 32.30 Deg. MO1 -S1 -MO1 4.665 1.555 3.655 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 26.60 Deg. CS1 -S2 -CS2 1.555 1.555 8.556 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 26.60 Deg. CS1 -S2 -CS2 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 32.69 Deg. MO2 -S2 -MO1 4.665 1.555 11.666 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 32.73 Deg. MO1 -S2 -MO1 8.556 1.555 11.666 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 32.69 Deg. MO2 -S2 -MO1 4.665 1.555 4.665 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 32.73 Deg. MO1 -S2 -MO1 1.555 1.555 4.665
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 19 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 11 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

In a previous paper, we reported the synthesis, crystal structures and physical properties of three isostructural selenide compounds, viz. Ag2.6CsMo9Se11, Ag4.1ClMo9Se11 and h-Mo9Se11, all of which crystallize in a new structure type containing Mo9 clusters (Gougeon et al., 2004). We present here the crystal structure of the sulfide Ag1.91Cs1.16Mo9S11, which is isostructural with the three previously reported compounds.

The crystal structure of Ag1.91Cs1.16Mo9S11 (Fig. 1) contains Mo9Si11Sa6 cluster units. The i-type ligands cap Mo triangular faces and the a-type ligands are in apical position for the external Mo1 atoms (Fig. 2); for details of the i- and a-type ligand notation, see Schäfer & von Schnering (1964). The Mo9S11 cluster unit is centered at a 2d position with 6 symmetry. The Mo—Mo distances within the Mo9 cluster are 2.6376 (3) and 2.7232 (4) Å for Mo3 triangles that are formed by Mo atoms related through the threefold axes, and 2.6867 (2) and 2.7232 (4) Å for the other Mo3 triangles. The S atoms bridge either one (S1 and S3) or two (S2) Mo triangular faces of the cluster. Moreover, the S1 atoms are linked to a Mo atom of a neighboring cluster. The Mo—S bond distances range from 2.4172 (7) to 2.5788 (4) Å. Each Mo9S11 cluster is interconnected to six adjacent clusters via Mo1—S1 bonds to form the three-dimensional Mo–S framework, the connectivity formula of which is Mo9Si5Si-a6/2Sa-i6/2. It results from this arrangement that the shortest intercluster Mo1···Mo1 distance is 3.4025 (3) Å, thus indicating only weak metal–metal interaction. The latter value is shorter than the value of 3.6614 (4) Å observed for the selenide Ag2.6CsMo9Se11 (Gougeon et al., 2004), as expected from the smaller size of the S atoms.

The alkali metal cations occupy distorted tricapped trigonal prismatic cavities formed by S atoms. The Cs—S distances spread over the wide range 3.243 (3)–3.960 (10) Å. The Ag atoms are located on mirror planes around the threefold axes between two consecutive Mo9S11 units. They are surrounded by five S atoms forming a distorted square-based pyramid, with Ag—S distances in the range 2.5018 (8)–2.7754 (6) Å.

Experimental top

Single crystals of Ag1.91Cs1.16Mo9S11 were prepared from a mixture of Cs2MoS4, MoS2, Ag and Mo with the nominal composition Ag2CsMo9S11. All handlings of materials were done in an argon-filled glove-box. The initial mixture (ca 5 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc-welding system. The charge was heated at a rate of 300 K h−1 to 1773 K, the temperature held for 48 h, then cooled at a rate of 100 K h−1 to 1373 K and finally allowed to cool in the furnace to room temperature.

Refinement top

In the first stage of the refinement, the atomic positions of the Mo and S atoms were taken as those of Mo and Se in Ag2.6CsMo9Se11 (Gougeon et al., 2004). A subsequent difference Fourier synthesis revealed the Ag atoms and a quasi-continuous electron density along the c axis due to the Cs atoms. The position of the Cs atoms was modelled with two partly occupied Cs sites using second-order tensors for the anisotropic displacement parameters. The shortest contacts between two Cs atoms are 1.78 (2) (Cs1—Cs2) and 2.26 (4) Å (Cs1—Cs2). Anharmonic treatment of the Cs1 and Cs2 positions using the program JANA2000 (Petříček & Dušek, 2000) was unsuccessful. The final occupation factors for the Cs and Ag atoms were refined freely. The highest peak and the deepest hole in the final Fourier map are located 0.41 Å from Cs1 and 0.42 Å from Ag, respectively.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg, 1998); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the crystal structure of Ag1.91Cs1.16Mo9S11, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Plot showing the atom-numbering scheme of the Mo9S11S6 cluster unit.
silver caesium nonamolybdenum undecasulfide top
Crystal data top
Ag1.91Cs1.16Mo9S11Dx = 5.608 Mg m3
Mr = 1576.99Mo Kα radiation, λ = 0.71069 Å
Hexagonal, P63/mCell parameters from 13553 reflections
Hall symbol: -P 6cθ = 1.7–39.1°
a = 9.6366 (1) ŵ = 11.22 mm1
c = 11.6119 (3) ÅT = 293 K
V = 933.86 (3) Å3Truncated octahedron, black
Z = 20.12 × 0.10 × 0.09 mm
F(000) = 1416
Data collection top
Nonius KappaCCD
diffractometer
1982 independent reflections
Radiation source: fine-focus sealed tube1752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ scans and ωθmax = 39.8°, θmin = 3.0°
Absorption correction: analytical
(de Meulenaar & Tompa, 1965)
h = 1717
Tmin = 0.393, Tmax = 0.513k = 1716
16326 measured reflectionsl = 1620
Refinement top
Refinement on F2Primary atom site location: isomorphous structure methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0146P)2 + 2.105P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.046(Δ/σ)max = 0.001
S = 1.08Δρmax = 1.28 e Å3
1982 reflectionsΔρmin = 1.32 e Å3
50 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00338 (14)
Crystal data top
Ag1.91Cs1.16Mo9S11Z = 2
Mr = 1576.99Mo Kα radiation
Hexagonal, P63/mµ = 11.22 mm1
a = 9.6366 (1) ÅT = 293 K
c = 11.6119 (3) Å0.12 × 0.10 × 0.09 mm
V = 933.86 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
1982 independent reflections
Absorption correction: analytical
(de Meulenaar & Tompa, 1965)
1752 reflections with I > 2σ(I)
Tmin = 0.393, Tmax = 0.513Rint = 0.039
16326 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02250 parameters
wR(F2) = 0.0460 restraints
S = 1.08Δρmax = 1.28 e Å3
1982 reflectionsΔρmin = 1.32 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.51582 (2)0.16899 (2)0.058863 (14)0.00800 (4)
Mo20.67583 (3)0.17495 (3)0.25000.00711 (5)
S10.35745 (6)0.30591 (6)0.06805 (4)0.01006 (9)
S20.38169 (9)0.03069 (9)0.25000.01058 (12)
S30.66670.33330.10280 (8)0.01318 (15)
Ag0.57939 (6)0.16398 (5)0.25000.02623 (15)0.636 (2)
Cs10.00000.00000.25000.139 (5)0.573 (15)
Cs20.00000.00000.4029 (18)0.176 (8)0.294 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.00863 (7)0.00915 (7)0.00700 (7)0.00504 (6)0.00039 (5)0.00026 (5)
Mo20.00759 (9)0.00727 (9)0.00659 (9)0.00382 (7)0.0000.000
S10.00986 (19)0.01127 (19)0.01034 (19)0.00625 (16)0.00157 (14)0.00042 (14)
S20.0088 (3)0.0091 (3)0.0114 (3)0.0026 (2)0.0000.000
S30.0166 (2)0.0166 (2)0.0064 (3)0.00829 (12)0.0000.000
Ag0.0322 (3)0.0139 (2)0.0365 (3)0.01437 (18)0.0000.000
Cs10.0359 (7)0.0359 (7)0.344 (17)0.0179 (3)0.0000.000
Cs20.0165 (5)0.0165 (5)0.50 (2)0.0083 (3)0.0000.000
Geometric parameters (Å, º) top
Mo1—S32.4172 (7)S3—Mo1xii4.2747 (2)
Mo1—S12.4688 (5)S3—Mo1iv4.2747 (2)
Mo1—S1i2.4877 (5)S3—Mo1ix4.2747 (2)
Mo1—S1ii2.5458 (5)Ag—S2xiii2.5018 (8)
Mo1—S22.5788 (4)Ag—S3iv2.7088 (7)
Mo1—Mo1iii2.6376 (3)Ag—S3xi2.7088 (7)
Mo1—Mo1i2.6376 (3)Ag—S1vi2.7754 (6)
Mo1—Mo22.6867 (2)Ag—S1i2.7754 (6)
Mo1—Mo2iii2.7255 (2)Ag—Cs1xiv3.5385 (5)
Mo1—Mo1iv3.4025 (3)Ag—Mo1xi3.6963 (2)
Mo1—Agiv3.6963 (2)Ag—Mo1iv3.6963 (2)
Mo1—Mo2i3.8084 (2)Ag—Cs2xiv3.959 (10)
Mo1—Ag4.1908 (4)Ag—Cs2xv3.959 (10)
Mo1—S3iv4.2747 (2)Ag—Mo1vii4.1908 (4)
Mo1—S1iii4.3810 (5)Cs1—Cs21.78 (2)
Mo1—Agv4.3975 (4)Cs1—Cs2vii1.78 (2)
Mo2—S22.4549 (8)Cs1—Agiii3.5385 (5)
Mo2—S2i2.4654 (8)Cs1—Agxvi3.5385 (5)
Mo2—S1vi2.4736 (5)Cs1—Agv3.5385 (5)
Mo2—S1i2.4736 (5)Cs1—S2xvii3.5396 (7)
Mo2—Mo1vii2.6867 (2)Cs1—S2xviii3.5396 (7)
Mo2—Mo2i2.7232 (4)Cs1—S1vii3.8555 (5)
Mo2—Mo2iii2.7232 (4)Cs1—S1xviii3.8555 (5)
Mo2—Mo1vi2.7255 (2)Cs1—S1xix3.8555 (5)
Mo2—Mo1i2.7255 (2)Cs1—S1xvii3.8555 (5)
Mo2—Ag2.9148 (5)Cs1—S1xx3.8555 (5)
Mo2—Mo1viii3.8084 (2)Cs1—Cs2x4.03 (2)
S1—Mo2iii2.4736 (5)Cs1—Cs2xxi4.03 (2)
S1—Mo1iii2.4877 (5)Cs1—Mo2iii4.2270 (2)
S1—Mo1ix2.5458 (5)Cs1—Mo2v4.2270 (2)
S1—Agiii2.7754 (6)Cs1—Mo2xvi4.2270 (2)
S1—Cs2vii3.243 (2)Cs1—S1xxii4.9031 (5)
S1—Cs2x3.752 (11)Cs2—Cs2xxi2.26 (4)
S1—Cs13.8555 (5)Cs2—S1vii3.243 (2)
S1—Mo1i4.3810 (5)Cs2—S1xix3.243 (2)
S2—Mo2iii2.4654 (8)Cs2—S1xx3.243 (2)
S2—Agv2.5018 (8)Cs2—Cs2vii3.55 (4)
S2—Mo1vii2.5788 (4)Cs2—S1xxii3.752 (11)
S2—Cs13.5396 (7)Cs2—S1xxiii3.752 (11)
S2—Cs2vii3.960 (10)Cs2—S1xxiv3.752 (11)
S2—Cs23.960 (10)Cs2—Agxvi3.959 (10)
S2—Mo1viii4.4085 (7)Cs2—Agiii3.959 (10)
S2—Mo1iii4.4085 (7)Cs2—Agv3.959 (10)
S2—Mo1xi4.4093 (5)Cs2—S2xvii3.960 (10)
S2—Mo1iv4.4093 (5)Cs2—S2xviii3.960 (10)
S3—Mo1i2.4172 (7)Cs2—Cs1xxi4.03 (2)
S3—Mo1iii2.4172 (7)Cs2—Mo1xix4.412 (2)
S3—Agxii2.7088 (7)Cs2—Mo1xx4.412 (2)
S3—Agiv2.7088 (7)Cs2—Mo1vii4.412 (2)
S3—Agix2.7088 (7)Cs2—Mo2v4.585 (8)
S3—Mo1—S190.767 (13)Ag—Mo2—Mo1viii139.984 (7)
S3—Mo1—S1i90.316 (13)Mo1—S1—Mo2iii66.934 (14)
S1—Mo1—S1i173.41 (2)Mo1—S1—Mo1iii64.301 (15)
S3—Mo1—S1ii93.662 (19)Mo2iii—S1—Mo1iii65.577 (14)
S1—Mo1—S1ii91.47 (2)Mo1—S1—Mo1ix132.91 (2)
S1i—Mo1—S1ii94.947 (17)Mo2iii—S1—Mo1ix132.69 (2)
S3—Mo1—S2171.42 (2)Mo1iii—S1—Mo1ix85.053 (17)
S1—Mo1—S287.42 (2)Mo1—S1—Agiii132.75 (2)
S1i—Mo1—S290.55 (2)Mo2iii—S1—Agiii67.178 (15)
S1ii—Mo1—S294.766 (19)Mo1iii—S1—Agiii105.42 (2)
S3—Mo1—Mo1iii56.935 (11)Mo1ix—S1—Agiii87.886 (18)
S1—Mo1—Mo1iii58.196 (14)Mo1—S1—Cs2vii100.262 (19)
S1i—Mo1—Mo1iii117.442 (14)Mo2iii—S1—Cs2vii105.9 (3)
S1ii—Mo1—Mo1iii133.873 (14)Mo1iii—S1—Cs2vii164.08 (8)
S2—Mo1—Mo1iii115.366 (16)Mo1ix—S1—Cs2vii109.6 (2)
S3—Mo1—Mo1i56.935 (11)Agiii—S1—Cs2vii81.9 (3)
S1—Mo1—Mo1i118.134 (14)Mo1—S1—Cs2x97.35 (4)
S1i—Mo1—Mo1i57.503 (14)Mo2iii—S1—Cs2x138.6 (2)
S1ii—Mo1—Mo1i135.936 (13)Mo1iii—S1—Cs2x143.6 (3)
S2—Mo1—Mo1i116.908 (15)Mo1ix—S1—Cs2x86.70 (18)
Mo1iii—Mo1—Mo1i60.0Agiii—S1—Cs2x109.6 (2)
S3—Mo1—Mo2118.478 (13)Cs2vii—S1—Cs2x36.7 (7)
S1—Mo1—Mo2117.028 (14)Mo1—S1—Cs199.773 (16)
S1i—Mo1—Mo256.959 (13)Mo2iii—S1—Cs180.599 (14)
S1ii—Mo1—Mo2134.752 (14)Mo1iii—S1—Cs1145.951 (19)
S2—Mo1—Mo255.533 (16)Mo1ix—S1—Cs1123.317 (17)
Mo1iii—Mo1—Mo291.328 (6)Agiii—S1—Cs162.002 (15)
Mo1i—Mo1—Mo261.573 (7)Cs2vii—S1—Cs127.3 (4)
S3—Mo1—Mo2iii117.007 (14)Cs2x—S1—Cs164.0 (3)
S1—Mo1—Mo2iii56.616 (13)Mo1—S1—Mo1i32.068 (8)
S1i—Mo1—Mo2iii117.281 (14)Mo2iii—S1—Mo1i60.088 (11)
S1ii—Mo1—Mo2iii133.564 (15)Mo1iii—S1—Mo1i32.297 (8)
S2—Mo1—Mo2iii55.311 (16)Mo1ix—S1—Mo1i111.611 (16)
Mo1iii—Mo1—Mo2iii60.100 (6)Agiii—S1—Mo1i122.614 (18)
Mo1i—Mo1—Mo2iii90.472 (6)Cs2vii—S1—Mo1i132.03 (3)
Mo2—Mo1—Mo2iii60.413 (9)Cs2x—S1—Mo1i124.33 (12)
S3—Mo1—Mo1iv92.971 (12)Cs1—S1—Mo1i125.054 (13)
S1—Mo1—Mo1iv138.201 (15)Mo2—S2—Mo2iii67.21 (2)
S1i—Mo1—Mo1iv48.195 (12)Mo2—S2—Agv135.94 (4)
S1ii—Mo1—Mo1iv46.752 (12)Mo2iii—S2—Agv156.85 (4)
S2—Mo1—Mo1iv93.968 (17)Mo2—S2—Mo1vii64.462 (15)
Mo1iii—Mo1—Mo1iv148.814 (8)Mo2iii—S2—Mo1vii65.366 (16)
Mo1i—Mo1—Mo1iv98.328 (11)Agv—S2—Mo1vii119.883 (15)
Mo2—Mo1—Mo1iv97.361 (8)Mo2—S2—Mo164.462 (15)
Mo2iii—Mo1—Mo1iv148.292 (10)Mo2iii—S2—Mo165.366 (16)
S3—Mo1—Agiv47.083 (15)Agv—S2—Mo1119.883 (15)
S1—Mo1—Agiv80.398 (15)Mo1vii—S2—Mo1118.78 (3)
S1i—Mo1—Agiv105.012 (15)Mo2—S2—Cs1154.78 (3)
S1ii—Mo1—Agiv48.621 (14)Mo2iii—S2—Cs187.57 (2)
S2—Mo1—Agiv140.474 (17)Agv—S2—Cs169.28 (2)
Mo1iii—Mo1—Agiv89.624 (8)Mo1vii—S2—Cs1105.936 (18)
Mo1i—Mo1—Agiv101.897 (8)Mo1—S2—Cs1105.936 (18)
Mo2—Mo1—Agiv159.697 (11)Mo2—S2—Cs2vii143.97 (19)
Mo2iii—Mo1—Agiv135.639 (10)Mo2iii—S2—Cs2vii87.83 (2)
Mo1iv—Mo1—Agiv72.229 (9)Agv—S2—Cs2vii71.56 (5)
S3—Mo1—Mo2i86.599 (14)Mo1vii—S2—Cs2vii129.1 (2)
S1—Mo1—Mo2i87.663 (13)Mo1—S2—Cs2vii81.9 (2)
S1i—Mo1—Mo2i85.913 (13)Cs1—S2—Cs2vii26.6 (3)
S1ii—Mo1—Mo2i179.099 (14)Mo2—S2—Cs2143.97 (19)
S2—Mo1—Mo2i84.950 (15)Mo2iii—S2—Cs287.83 (2)
Mo1iii—Mo1—Mo2i45.695 (4)Agv—S2—Cs271.56 (5)
Mo1i—Mo1—Mo2i44.852 (4)Mo1vii—S2—Cs281.9 (2)
Mo2—Mo1—Mo2i45.645 (6)Mo1—S2—Cs2129.1 (2)
Mo2iii—Mo1—Mo2i45.632 (6)Cs1—S2—Cs226.6 (3)
Mo1iv—Mo1—Mo2i134.107 (9)Cs2vii—S2—Cs253.3 (6)
Agiv—Mo1—Mo2i131.401 (9)Mo2—S2—Mo1viii59.586 (13)
S3—Mo1—Ag129.991 (9)Mo2iii—S2—Mo1viii32.688 (7)
S1—Mo1—Ag138.797 (14)Agv—S2—Mo1viii148.289 (10)
S1i—Mo1—Ag39.675 (14)Mo1vii—S2—Mo1viii32.726 (11)
S1ii—Mo1—Ag91.533 (14)Mo1—S2—Mo1viii91.451 (19)
S2—Mo1—Ag51.381 (18)Cs1—S2—Mo1viii99.188 (16)
Mo1iii—Mo1—Ag134.457 (8)Cs2vii—S2—Mo1viii111.62 (11)
Mo1i—Mo1—Ag86.317 (10)Cs2—S2—Mo1viii85.24 (15)
Mo2—Mo1—Ag43.682 (7)Mo2—S2—Mo1iii59.586 (13)
Mo2iii—Mo1—Ag93.447 (7)Mo2iii—S2—Mo1iii32.688 (7)
Mo1iv—Mo1—Ag57.132 (6)Agv—S2—Mo1iii148.289 (9)
Agiv—Mo1—Ag129.361 (6)Mo1vii—S2—Mo1iii91.451 (19)
Mo2i—Mo1—Ag88.957 (7)Mo1—S2—Mo1iii32.726 (11)
S3—Mo1—S3iv127.354 (6)Cs1—S2—Mo1iii99.188 (16)
S1—Mo1—S3iv125.862 (13)Cs2vii—S2—Mo1iii85.24 (14)
S1i—Mo1—S3iv57.743 (12)Cs2—S2—Mo1iii111.62 (11)
S1ii—Mo1—S3iv54.445 (15)Mo1viii—S2—Mo1iii60.456 (11)
S2—Mo1—S3iv59.730 (19)Mo2—S2—Mo1xi78.462 (13)
Mo1iii—Mo1—S3iv171.677 (11)Mo2iii—S2—Mo1xi115.221 (13)
Mo1i—Mo1—S3iv115.075 (8)Agv—S2—Mo1xi76.342 (14)
Mo2—Mo1—S3iv80.349 (12)Mo1vii—S2—Mo1xi50.338 (10)
Mo2iii—Mo1—S3iv114.859 (13)Mo1—S2—Mo1xi139.63 (2)
Mo1iv—Mo1—S3iv34.383 (11)Cs1—S2—Mo1xi114.437 (11)
Agiv—Mo1—S3iv98.170 (14)Cs2vii—S2—Mo1xi137.3 (2)
Mo2i—Mo1—S3iv125.983 (11)Cs2—S2—Mo1xi90.3 (3)
Ag—Mo1—S3iv37.307 (10)Mo1viii—S2—Mo1xi82.629 (6)
S3—Mo1—S1iii52.347 (15)Mo1iii—S2—Mo1xi133.686 (16)
S1—Mo1—S1iii87.873 (8)Mo2—S2—Mo1iv78.462 (13)
S1i—Mo1—S1iii87.644 (8)Mo2iii—S2—Mo1iv115.221 (13)
S1ii—Mo1—S1iii145.971 (9)Agv—S2—Mo1iv76.342 (14)
S2—Mo1—S1iii119.170 (16)Mo1vii—S2—Mo1iv139.63 (2)
Mo1iii—Mo1—S1iii29.798 (8)Mo1—S2—Mo1iv50.338 (10)
Mo1i—Mo1—S1iii30.261 (8)Cs1—S2—Mo1iv114.437 (11)
Mo2—Mo1—S1iii73.770 (9)Cs2vii—S2—Mo1iv90.3 (3)
Mo2iii—Mo1—S1iii72.252 (9)Cs2—S2—Mo1iv137.3 (2)
Mo1iv—Mo1—S1iii126.158 (10)Mo1viii—S2—Mo1iv133.686 (16)
Agiv—Mo1—S1iii97.930 (11)Mo1iii—S2—Mo1iv82.629 (6)
Mo2i—Mo1—S1iii34.262 (7)Mo1xi—S2—Mo1iv108.857 (17)
Ag—Mo1—S1iii110.937 (10)Mo1i—S3—Mo166.13 (2)
S3iv—Mo1—S1iii144.595 (8)Mo1i—S3—Mo1iii66.13 (2)
S3—Mo1—Agv159.014 (15)Mo1—S3—Mo1iii66.13 (2)
S1—Mo1—Agv94.721 (15)Mo1i—S3—Agxii92.109 (8)
S1i—Mo1—Agv86.546 (14)Mo1—S3—Agxii123.937 (11)
S1ii—Mo1—Agv66.003 (13)Mo1iii—S3—Agxii151.048 (14)
S2—Mo1—Agv29.556 (14)Mo1i—S3—Agiv151.048 (14)
Mo1iii—Mo1—Agv141.538 (8)Mo1—S3—Agiv92.109 (8)
Mo1i—Mo1—Agv134.938 (9)Mo1iii—S3—Agiv123.937 (11)
Mo2—Mo1—Agv76.681 (7)Agxii—S3—Agiv84.42 (2)
Mo2iii—Mo1—Agv82.602 (8)Mo1i—S3—Agix123.937 (11)
Mo1iv—Mo1—Agv69.615 (8)Mo1—S3—Agix151.048 (14)
Agiv—Mo1—Agv114.012 (11)Mo1iii—S3—Agix92.109 (8)
Mo2i—Mo1—Agv113.814 (5)Agxii—S3—Agix84.42 (2)
Ag—Mo1—Agv50.079 (14)Agiv—S3—Agix84.42 (2)
S3iv—Mo1—Agv36.367 (10)Mo1i—S3—Mo1xii52.646 (6)
S1iii—Mo1—Agv147.955 (8)Mo1—S3—Mo1xii118.23 (2)
S2—Mo2—S2i172.79 (2)Mo1iii—S3—Mo1xii81.704 (11)
S2—Mo2—S1vi93.858 (16)Agxii—S3—Mo1xii69.665 (9)
S2i—Mo2—S1vi89.883 (16)Agiv—S3—Mo1xii147.59 (3)
S2—Mo2—S1i93.858 (16)Agix—S3—Mo1xii74.286 (10)
S2i—Mo2—S1i89.883 (16)Mo1i—S3—Mo1iv81.704 (11)
S1vi—Mo2—S1i117.33 (3)Mo1—S3—Mo1iv52.646 (6)
S2—Mo2—Mo160.004 (8)Mo1iii—S3—Mo1iv118.23 (2)
S2i—Mo2—Mo1117.603 (9)Agxii—S3—Mo1iv74.286 (10)
S1vi—Mo2—Mo1150.850 (16)Agiv—S3—Mo1iv69.665 (9)
S1i—Mo2—Mo157.464 (13)Agix—S3—Mo1iv147.59 (3)
S2—Mo2—Mo1vii60.004 (8)Mo1xii—S3—Mo1iv118.596 (5)
S2i—Mo2—Mo1vii117.603 (9)Mo1i—S3—Mo1ix118.23 (2)
S1vi—Mo2—Mo1vii57.464 (13)Mo1—S3—Mo1ix81.704 (11)
S1i—Mo2—Mo1vii150.850 (16)Mo1iii—S3—Mo1ix52.646 (6)
Mo1—Mo2—Mo1vii111.397 (11)Agxii—S3—Mo1ix147.59 (3)
S2—Mo2—Mo2i116.58 (2)Agiv—S3—Mo1ix74.286 (10)
S2i—Mo2—Mo2i56.21 (2)Agix—S3—Mo1ix69.665 (9)
S1vi—Mo2—Mo2i115.536 (14)Mo1xii—S3—Mo1ix118.596 (5)
S1i—Mo2—Mo2i115.536 (14)Mo1iv—S3—Mo1ix118.596 (5)
Mo1—Mo2—Mo2i89.490 (6)S2xiii—Ag—S3iv90.901 (18)
Mo1vii—Mo2—Mo2i89.490 (6)S2xiii—Ag—S3xi90.901 (18)
S2—Mo2—Mo2iii56.58 (2)S3iv—Ag—S3xi78.25 (3)
S2i—Mo2—Mo2iii116.21 (2)S2xiii—Ag—S1vi117.004 (19)
S1vi—Mo2—Mo2iii117.870 (14)S3iv—Ag—S1vi146.34 (2)
S1i—Mo2—Mo2iii117.870 (14)S3xi—Ag—S1vi82.624 (17)
Mo1—Mo2—Mo2iii60.499 (7)S2xiii—Ag—S1i117.004 (19)
Mo1vii—Mo2—Mo2iii60.499 (7)S3iv—Ag—S1i82.624 (17)
Mo2i—Mo2—Mo2iii60.0S3xi—Ag—S1i146.34 (2)
S2—Mo2—Mo1vi118.128 (9)S1vi—Ag—S1i99.15 (2)
S2i—Mo2—Mo1vi59.323 (8)S2xvii—Cs1—S2120.0
S1vi—Mo2—Mo1vi56.450 (13)S2xvii—Cs1—S2xviii120.0
S1i—Mo2—Mo1vi146.973 (16)S2—Cs1—S2xviii120.0
Mo1—Mo2—Mo1vi145.118 (10)S2xvii—Cs1—S1vii144.962 (8)
Mo1vii—Mo2—Mo1vi58.327 (7)S2—Cs1—S1vii56.104 (12)
Mo2i—Mo2—Mo1vi59.088 (7)S2xviii—Cs1—S1vii74.866 (12)
Mo2iii—Mo2—Mo1vi88.686 (6)S2xvii—Cs1—S1xviii74.866 (12)
S2—Mo2—Mo1i118.128 (9)S2—Cs1—S1xviii144.962 (8)
S2i—Mo2—Mo1i59.323 (8)S2xviii—Cs1—S1xviii56.104 (12)
S1vi—Mo2—Mo1i146.973 (16)S1vii—Cs1—S1xviii130.553 (5)
S1i—Mo2—Mo1i56.450 (13)S2xvii—Cs1—S1xix74.866 (12)
Mo1—Mo2—Mo1i58.327 (7)S2—Cs1—S1xix144.962 (8)
Mo1vii—Mo2—Mo1i145.118 (10)S2xviii—Cs1—S1xix56.104 (12)
Mo2i—Mo2—Mo1i59.088 (7)S1vii—Cs1—S1xix92.841 (11)
Mo2iii—Mo2—Mo1i88.686 (6)S1xviii—Cs1—S1xix66.458 (15)
Mo1vi—Mo2—Mo1i109.041 (11)S2xvii—Cs1—S1xvii56.104 (12)
S2—Mo2—Ag74.60 (2)S2—Cs1—S1xvii74.866 (12)
S2i—Mo2—Ag112.61 (2)S2xviii—Cs1—S1xvii144.962 (8)
S1vi—Mo2—Ag61.360 (13)S1vii—Cs1—S1xvii130.553 (5)
S1i—Mo2—Ag61.360 (13)S1xviii—Cs1—S1xvii92.841 (11)
Mo1—Mo2—Ag96.777 (9)S1xix—Cs1—S1xvii130.553 (5)
Mo1vii—Mo2—Ag96.777 (9)S1vii—Cs2—S1xix118.93 (13)
Mo2i—Mo2—Ag168.818 (17)S1vii—Cs2—S1xx118.93 (13)
Mo2iii—Mo2—Ag131.182 (17)S1xix—Cs2—S1xx118.93 (13)
Mo1vi—Mo2—Ag116.846 (8)S1vii—Cs2—S1xxii61.27 (15)
Mo1i—Mo2—Ag116.846 (8)S1xix—Cs2—S1xxii61.27 (15)
S2—Mo2—Mo1viii86.642 (16)S1xx—Cs2—S1xxii143.3 (7)
S2i—Mo2—Mo1viii87.502 (15)S1vii—Cs2—S1xxiii61.27 (15)
S1vi—Mo2—Mo1viii85.649 (13)S1xix—Cs2—S1xxiii143.3 (7)
S1i—Mo2—Mo1viii156.879 (14)S1xx—Cs2—S1xxiii61.27 (15)
Mo1—Mo2—Mo1viii103.965 (8)S1xxii—Cs2—S1xxiii96.2 (4)
Mo1vii—Mo2—Mo1viii43.820 (5)S1vii—Cs2—S1xxiv143.3 (7)
Mo2i—Mo2—Mo1viii45.682 (4)S1xix—Cs2—S1xxiv61.27 (15)
Mo2iii—Mo2—Mo1viii44.865 (4)S1xx—Cs2—S1xxiv61.27 (15)
Mo1vi—Mo2—Mo1viii43.833 (5)S1xxii—Cs2—S1xxiv96.2 (4)
Mo1i—Mo2—Mo1viii103.166 (7)S1xxiii—Cs2—S1xxiv96.2 (4)
Symmetry codes: (i) y+1, xy, z; (ii) y, x+y, z; (iii) x+y+1, x+1, z; (iv) x+1, y, z; (v) y, xy1, z; (vi) y+1, xy, z+1/2; (vii) x, y, z+1/2; (viii) x+y+1, x+1, z+1/2; (ix) xy, x, z; (x) x, y, z1/2; (xi) x+1, y, z+1/2; (xii) y+1, x+y+1, z; (xiii) x+y+1, x, z; (xiv) x+1, y, z; (xv) x+1, y, z+1/2; (xvi) x1, y, z; (xvii) x+y, x, z; (xviii) y, xy, z; (xix) y, xy, z+1/2; (xx) x+y, x, z+1/2; (xxi) x, y, z+1; (xxii) xy, x, z+1/2; (xxiii) y, x+y, z+1/2; (xxiv) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaAg1.91Cs1.16Mo9S11
Mr1576.99
Crystal system, space groupHexagonal, P63/m
Temperature (K)293
a, c (Å)9.6366 (1), 11.6119 (3)
V3)933.86 (3)
Z2
Radiation typeMo Kα
µ (mm1)11.22
Crystal size (mm)0.12 × 0.10 × 0.09
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionAnalytical
(de Meulenaar & Tompa, 1965)
Tmin, Tmax0.393, 0.513
No. of measured, independent and
observed [I > 2σ(I)] reflections
16326, 1982, 1752
Rint0.039
(sin θ/λ)max1)0.900
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.046, 1.08
No. of reflections1982
No. of parameters50
Δρmax, Δρmin (e Å3)1.28, 1.32

Computer programs: COLLECT (Nonius, 1998), COLLECT, EVALCCD (Duisenberg, 1998), SHELXL97 (Sheldrick, 1997), DIAMOND (Bergerhoff, 1996), SHELXL97.

Selected bond lengths (Å) top
Mo1—S32.4172 (7)Mo2—Mo2i2.7232 (4)
Mo1—S12.4688 (5)Ag—S2v2.5018 (8)
Mo1—S1i2.4877 (5)Ag—S3vi2.7088 (7)
Mo1—S1ii2.5458 (5)Ag—S3vii2.7088 (7)
Mo1—S22.5788 (4)Ag—S1iv2.7754 (6)
Mo1—Mo1iii2.6376 (3)Ag—S1i2.7754 (6)
Mo1—Mo22.6867 (2)Cs1—S2viii3.5396 (7)
Mo1—Mo2iii2.7255 (2)Cs1—S1ix3.8555 (5)
Mo2—S22.4549 (8)Cs2—S1ix3.243 (2)
Mo2—S2i2.4654 (8)Cs2—S1x3.752 (11)
Mo2—S1iv2.4736 (5)Cs2—S2viii3.960 (10)
Mo2—S1i2.4736 (5)
Symmetry codes: (i) y+1, xy, z; (ii) y, x+y, z; (iii) x+y+1, x+1, z; (iv) y+1, xy, z+1/2; (v) x+y+1, x, z; (vi) x+1, y, z; (vii) x+1, y, z+1/2; (viii) x+y, x, z; (ix) x, y, z+1/2; (x) xy, x, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds