Download citation
Download citation
link to html
Single crystals of the title compound, ytterbium silver silicide, were synthesized from the corresponding elements using a eutectic Ag/Si mixture as a solvent. Structure determination suggested the composition of the product to be YbAgxSi2−x [x = 0.28 (1)], i.e. a new ternary derivative of the α-ThSi2 structure type, which crystallizes in the body-centered tetragonal space group I41/amd. The two atoms in the asymmetric unit lie on special positions with Wyckoff symbols 4a (Yb), and 8e (disordered Ag and Si).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805013103/wm6066sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805013103/wm6066Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](Please check) = 0.000 Å
  • R factor = 0.009
  • wR factor = 0.020
  • Data-to-parameter ratio = 13.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.25 Ratio PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)... ? PLAT077_ALERT_4_C Unitcell contains non-integer number of atoms .. ? PLAT301_ALERT_3_C Main Residue Disorder ......................... 10.00 Perc.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SMART; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

ytterbium silver silicide top
Crystal data top
YbAg.28Si1.72Dx = 7.091 Mg m3
Mr = 251.76Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/amdCell parameters from 796 reflections
Hall symbol: -I 4bd 2θ = 5.2–30.9°
a = 4.0757 (2) ŵ = 42.37 mm1
c = 14.1965 (11) ÅT = 293 K
V = 235.82 (2) Å3Bar, grey
Z = 40.05 × 0.04 × 0.03 mm
F(000) = 429
Data collection top
Bruker APEX SMART
diffractometer
118 independent reflections
Radiation source: fine-focus sealed tube107 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 8.3 pixels mm-1θmax = 30.9°, θmin = 5.2°
ω scansh = 55
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 54
Tmin = 0.155, Tmax = 0.280l = 2019
796 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.009 w = 1/[σ2(Fo2) + (0.0097P)2 + 0.0681P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.020(Δ/σ)max < 0.001
S = 1.23Δρmax = 0.45 e Å3
118 reflectionsΔρmin = 0.66 e Å3
9 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0086 (6)
Special details top

Experimental. Data collection was performed with four batch runs at φ = 0.00 ° (606 frames), at φ = 90.00 ° (606 frames), at φ = 180.00 ° (606 frames), and at φ = 270.00 (606 frames). Frame width = 0.30 \& in ω. Data was merged, corrected for decay, and treated with multi-scan absorption corrections. Structure was solved readily using direct methods and refined on F2 using the SHELXL package (Sheldrick, 2001).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Yb0.00000.75000.12500.00700 (14)
Si0.00000.25000.29237 (6)0.0077 (4)0.858 (4)
Ag0.00000.25000.29237 (6)0.0077 (4)0.142 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb0.00575 (15)0.00575 (15)0.00951 (17)0.0000.0000.000
Si0.0044 (5)0.0145 (6)0.0041 (4)0.0000.0000.000
Ag0.0044 (5)0.0145 (6)0.0041 (4)0.0000.0000.000
Geometric parameters (Å, º) top
Yb—Agi3.1116 (3)Si—Agix2.3463 (16)
Yb—Agii3.1116 (3)Si—Siix2.3463 (16)
Yb—Sii3.1116 (3)Si—Agiv2.3664 (8)
Yb—Siii3.1116 (3)Si—Siiv2.3664 (8)
Yb—Agiii3.1116 (3)Si—Agviii2.3664 (8)
Yb—Agiv3.1116 (3)Si—Siviii2.3664 (8)
Yb—Siiii3.1116 (3)Si—Ybii3.1116 (3)
Yb—Siiv3.1116 (3)Si—Ybiv3.1116 (3)
Yb—Agv3.1116 (3)Si—Ybvii3.1116 (3)
Yb—Agvi3.1116 (3)Si—Ybviii3.1116 (3)
Yb—Agvii3.1116 (3)Si—Ybx3.1302 (6)
Yb—Agviii3.1116 (3)
Agi—Yb—Agii180.00 (3)Agvi—Yb—Agviii44.30 (3)
Agi—Yb—Sii0.00 (3)Agvii—Yb—Agviii135.70 (3)
Agii—Yb—Sii180.0Agix—Si—Agiv120.55 (3)
Agi—Yb—Siii180.00 (3)Siix—Si—Agiv120.55 (3)
Agii—Yb—Siii0.00 (3)Siix—Si—Siiv120.55 (3)
Sii—Yb—Siii180.00 (3)Agix—Si—Agviii120.55 (3)
Agi—Yb—Agiii135.70 (3)Siix—Si—Agviii120.55 (3)
Agii—Yb—Agiii44.30 (3)Agiv—Si—Agviii118.90 (7)
Sii—Yb—Agiii135.70 (3)Siiv—Si—Agviii118.90 (7)
Siii—Yb—Agiii44.30 (3)Agix—Si—Siviii120.55 (3)
Agi—Yb—Agiv44.30 (3)Siix—Si—Siviii120.55 (3)
Agii—Yb—Agiv135.70 (3)Agiv—Si—Siviii118.90 (7)
Sii—Yb—Agiv44.30 (3)Siiv—Si—Siviii118.90 (7)
Siii—Yb—Agiv135.70 (3)Agix—Si—Ybii67.851 (14)
Agiii—Yb—Agiv180.0Siix—Si—Ybii67.851 (14)
Agi—Yb—Siiii135.70 (3)Agiv—Si—Ybii139.082 (6)
Agii—Yb—Siiii44.30 (3)Siiv—Si—Ybii139.082 (6)
Sii—Yb—Siiii135.70 (3)Agviii—Si—Ybii68.139 (14)
Siii—Yb—Siiii44.30 (3)Siviii—Si—Ybii68.139 (14)
Agiii—Yb—Siiii0.00 (3)Agix—Si—Ybiv67.851 (14)
Agiv—Yb—Siiii180.0Siix—Si—Ybiv67.851 (14)
Agi—Yb—Siiv44.30 (3)Agiv—Si—Ybiv68.139 (14)
Agii—Yb—Siiv135.70 (3)Siiv—Si—Ybiv68.139 (14)
Sii—Yb—Siiv44.30 (3)Agviii—Si—Ybiv139.082 (6)
Siii—Yb—Siiv135.70 (3)Siviii—Si—Ybiv139.082 (6)
Agiii—Yb—Siiv180.0Ybii—Si—Ybiv135.70 (3)
Agiv—Yb—Siiv0.0Agix—Si—Ybvii67.851 (14)
Siiii—Yb—Siiv180.0Siix—Si—Ybvii67.851 (14)
Agi—Yb—Agv81.828 (10)Agiv—Si—Ybvii68.139 (14)
Agii—Yb—Agv98.172 (10)Siiv—Si—Ybvii68.139 (14)
Sii—Yb—Agv81.828 (10)Agviii—Si—Ybvii139.082 (6)
Siii—Yb—Agv98.172 (10)Siviii—Si—Ybvii139.082 (6)
Agiii—Yb—Agv81.828 (10)Ybii—Si—Ybvii81.828 (10)
Agiv—Yb—Agv98.172 (10)Ybiv—Si—Ybvii81.828 (10)
Siiii—Yb—Agv81.828 (10)Agix—Si—Ybviii67.851 (14)
Siiv—Yb—Agv98.172 (10)Siix—Si—Ybviii67.851 (14)
Agi—Yb—Agvi81.828 (10)Agiv—Si—Ybviii139.082 (6)
Agii—Yb—Agvi98.172 (10)Siiv—Si—Ybviii139.082 (6)
Sii—Yb—Agvi81.828 (10)Agviii—Si—Ybviii68.139 (14)
Siii—Yb—Agvi98.172 (10)Siviii—Si—Ybviii68.139 (14)
Agiii—Yb—Agvi81.828 (10)Ybii—Si—Ybviii81.828 (10)
Agiv—Yb—Agvi98.172 (10)Ybiv—Si—Ybviii81.828 (10)
Siiii—Yb—Agvi81.828 (10)Ybvii—Si—Ybviii135.70 (3)
Siiv—Yb—Agvi98.172 (10)Agix—Si—Ybx139.381 (10)
Agv—Yb—Agvi135.70 (3)Siix—Si—Ybx139.381 (10)
Agi—Yb—Agvii98.172 (10)Agiv—Si—Ybx67.30 (3)
Agii—Yb—Agvii81.828 (10)Siiv—Si—Ybx67.30 (3)
Sii—Yb—Agvii98.172 (10)Agviii—Si—Ybx67.30 (3)
Siii—Yb—Agvii81.828 (10)Siviii—Si—Ybx67.30 (3)
Agiii—Yb—Agvii98.172 (10)Ybii—Si—Ybx135.443 (14)
Agiv—Yb—Agvii81.828 (10)Ybiv—Si—Ybx81.941 (6)
Siiii—Yb—Agvii98.172 (10)Ybvii—Si—Ybx135.443 (14)
Siiv—Yb—Agvii81.828 (10)Ybviii—Si—Ybx81.941 (6)
Agv—Yb—Agvii44.30 (3)Agix—Si—Yb139.381 (10)
Agvi—Yb—Agvii180.0Siix—Si—Yb139.381 (10)
Agi—Yb—Agviii98.172 (10)Agiv—Si—Yb67.30 (3)
Agii—Yb—Agviii81.828 (10)Siiv—Si—Yb67.30 (3)
Sii—Yb—Agviii98.172 (10)Agviii—Si—Yb67.30 (3)
Siii—Yb—Agviii81.828 (10)Siviii—Si—Yb67.30 (3)
Agiii—Yb—Agviii98.172 (10)Ybii—Si—Yb81.941 (6)
Agiv—Yb—Agviii81.828 (10)Ybiv—Si—Yb135.443 (14)
Siiii—Yb—Agviii98.172 (10)Ybvii—Si—Yb81.941 (6)
Siiv—Yb—Agviii81.828 (10)Ybviii—Si—Yb135.443 (14)
Agv—Yb—Agviii180.00 (3)Ybx—Si—Yb81.24 (2)
Symmetry codes: (i) y1/4, x+1/4, z1/4; (ii) x+1/2, y+3/2, z+1/2; (iii) y+3/4, x+5/4, z1/4; (iv) x1/2, y+1/2, z+1/2; (v) y1/4, x+5/4, z1/4; (vi) y+3/4, x+1/4, z1/4; (vii) x1/2, y+3/2, z+1/2; (viii) x+1/2, y+1/2, z+1/2; (ix) y1/4, x+1/4, z+3/4; (x) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds