Download citation
Download citation
link to html
Single crystals of the title compound, penta­cerium gold tetra­germanium, were synthesized from the corresponding elements using a eutectic Au/Ge mixture as solvent. Structure determination of a crystal from that reaction revealed the composition Ce5AuxGe4-x (x = 0.43). The compound is a new ternary derivative of the Sm5Ge4 structure type that crystallizes in the space group Pnma of the orthorhombic system. There are six atoms in the asymmetric unit, one Ce in Wyckoff site 4c, two Ce in 8d, two Ge in 4c and one Ge in 8d. Two of the Ge sites are statistically occupied by Ge and Au atoms, with a lack of long-range ordering. The results are consistent with an earlier report on the structure of the fully stoichiometric analog Ce5Ge4.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680501113X/wm6062sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680501113X/wm6062Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](Ce-Ce) = 0.003 Å
  • R factor = 0.028
  • wR factor = 0.056
  • Data-to-parameter ratio = 20.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.25 Ratio PLAT068_ALERT_1_C Reported F000 Differs from Calcd (or Missing)... ? PLAT077_ALERT_4_C Unitcell contains non-integer number of atoms .. ? PLAT301_ALERT_3_C Main Residue Disorder ......................... 6.00 Perc.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SMART; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Pentacerium gold tetragermanium top
Crystal data top
Ce5Au0.43Ge3.57F(000) = 1752
Mr = 1043.82Dx = 7.173 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 3569 reflections
a = 7.868 (5) Åθ = 2.7–26.4°
b = 15.258 (7) ŵ = 40.31 mm1
c = 8.052 (6) ÅT = 120 K
V = 966.6 (11) Å3Irregular, grey
Z = 40.07 × 0.06 × 0.05 mm
Data collection top
Bruker APEX SMART CCD area-detector
diffractometer
1021 independent reflections
Radiation source: fine-focus sealed tube953 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 8.3 pixels mm-1θmax = 26.4°, θmin = 2.7°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 190
Tmin = 0.083, Tmax = 0.139l = 1010
3569 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0163P)2 + 12.3954P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.056(Δ/σ)max < 0.001
S = 1.10Δρmax = 1.46 e Å3
1021 reflectionsΔρmin = 1.77 e Å3
49 parametersExtinction correction: SHELXTL (Sheldrick, 2001), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00019 (4)
Special details top

Experimental. Crystals were selected and cut in Exxon Paratone N oil bath to the desired dimensions. A suitable one was chosen and it was mounted on the top of glass fiber and quickly placed under the cold nitrogen stream (ca 120 K) in a Bruker SMART CCD-based diffractometer. The crystal, despite the small size, diffracted strongly and an exposure time of 5 second per frame was found sufficient. The structure was solved readily using direct methods and refined on F2 using the SHELXL package (Sheldrick, 2001). Data collection was performed with four batch runs at φ = 0.00 ° (456 frames), at φ = 90.00 ° (456 frames), at φ = 180.00 ° (230 frames), and at φ = 270.00 (230 frames). Frame width = 0.40 \& in ω. Data were merged, corrected for decay, and treated with multi-scan absorption corrections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ce10.29830 (10)0.25000.00310 (9)0.0104 (2)
Ce20.12843 (7)0.11570 (4)0.34014 (6)0.00863 (16)
Ce30.98567 (6)0.09877 (4)0.81688 (6)0.00863 (16)
Ge10.92333 (12)0.25000.10583 (12)0.0077 (4)0.751 (4)
Au10.92333 (12)0.25000.10583 (12)0.0077 (4)0.249 (4)
Ge20.18878 (17)0.25000.63289 (17)0.0071 (3)
Ge30.20994 (11)0.95676 (6)0.53502 (11)0.0103 (3)0.910 (3)
Au30.20994 (11)0.95676 (6)0.53502 (11)0.0103 (3)0.090 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce10.0144 (4)0.0078 (4)0.0091 (4)0.0000.0003 (3)0.000
Ce20.0104 (3)0.0071 (3)0.0084 (3)0.0002 (2)0.0006 (2)0.0013 (2)
Ce30.0089 (3)0.0084 (3)0.0085 (3)0.0001 (2)0.0005 (2)0.0013 (2)
Ge10.0093 (5)0.0067 (6)0.0070 (6)0.0000.0005 (4)0.000
Au10.0093 (5)0.0067 (6)0.0070 (6)0.0000.0005 (4)0.000
Ge20.0090 (7)0.0053 (7)0.0072 (7)0.0000.0004 (5)0.000
Ge30.0157 (5)0.0081 (5)0.0072 (5)0.0026 (3)0.0008 (4)0.0005 (3)
Au30.0157 (5)0.0081 (5)0.0072 (5)0.0026 (3)0.0008 (4)0.0005 (3)
Geometric parameters (Å, º) top
Ce1—Au1i3.064 (2)Ce3—Ge1xiv3.3133 (17)
Ce1—Ge1i3.064 (2)Ce3—Au3xv3.334 (2)
Ce1—Ge2ii3.103 (3)Ce3—Ge3xv3.334 (2)
Ce1—Au3iii3.1657 (16)Ce3—Au3xvi3.5999 (17)
Ce1—Ge3iii3.1657 (16)Ce3—Ce2xvii3.6211 (15)
Ce1—Au3iv3.1658 (16)Ge1—Ge2v2.665 (2)
Ce1—Ge3iv3.1658 (16)Ge1—Ce1xi3.064 (2)
Ce1—Ge2v3.261 (2)Ge1—Ce2vii3.1259 (15)
Ce1—Au1vi3.299 (3)Ge1—Ce2v3.1259 (15)
Ce1—Ge1vi3.299 (3)Ge1—Ce2xviii3.2191 (15)
Ce1—Ce2vii3.5409 (16)Ge1—Ce2xi3.2191 (15)
Ce1—Ce2v3.5410 (16)Ge1—Ce1v3.299 (3)
Ce2—Au3viii2.9588 (15)Ge1—Ce3xix3.3132 (17)
Ce2—Ge3viii2.9588 (15)Ge1—Ce3ii3.3132 (17)
Ce2—Au3iii2.9791 (19)Ge2—Au1vi2.665 (2)
Ce2—Ge3iii2.9791 (19)Ge2—Ge1vi2.665 (2)
Ce2—Au3ix3.0528 (18)Ge2—Ce1xiv3.103 (3)
Ce2—Ge3ix3.0528 (18)Ge2—Ce2xx3.1592 (19)
Ce2—Au1vi3.1259 (15)Ge2—Ce3xxi3.1737 (15)
Ce2—Ge1vi3.1259 (15)Ge2—Ce3i3.1738 (15)
Ce2—Ge23.1592 (19)Ge2—Ce1vi3.261 (2)
Ce2—Ge1i3.2191 (15)Ge2—Ce3xxii3.3081 (17)
Ce2—Au1i3.2191 (15)Ge2—Ce3xxiii3.3081 (17)
Ce2—Ce1vi3.5410 (16)Ge3—Ce2xxiv2.9588 (15)
Ce3—Au3x3.0884 (17)Ge3—Ce2xxv2.9791 (19)
Ce3—Ge3x3.0884 (17)Ge3—Ce2ix3.0528 (18)
Ce3—Ge2xi3.1738 (15)Ge3—Ce3xxvi3.0884 (17)
Ce3—Au3xii3.2898 (15)Ge3—Ce1xxv3.1657 (16)
Ce3—Ge3xii3.2898 (15)Ge3—Ce3xxvii3.2898 (15)
Ce3—Ge2xiii3.3082 (17)Ge3—Ce3xv3.334 (2)
Ce3—Au1xiv3.3133 (17)
Au1i—Ce1—Ge1i0.00 (4)Au3xii—Ce3—Au1xiv96.12 (4)
Au1i—Ce1—Ge2ii89.54 (5)Ge3xii—Ce3—Au1xiv96.12 (4)
Ge1i—Ce1—Ge2ii89.54 (5)Ge2xiii—Ce3—Au1xiv47.46 (3)
Au1i—Ce1—Au3iii87.61 (2)Au3x—Ce3—Ge1xiv84.63 (4)
Ge1i—Ce1—Au3iii87.61 (2)Ge3x—Ce3—Ge1xiv84.63 (4)
Ge2ii—Ce1—Au3iii94.15 (2)Ge2xi—Ce3—Ge1xiv84.03 (5)
Au1i—Ce1—Ge3iii87.61 (2)Au3xii—Ce3—Ge1xiv96.12 (4)
Ge1i—Ce1—Ge3iii87.61 (2)Ge3xii—Ce3—Ge1xiv96.12 (4)
Ge2ii—Ce1—Ge3iii94.15 (2)Ge2xiii—Ce3—Ge1xiv47.46 (3)
Au3iii—Ce1—Ge3iii0.00 (4)Au1xiv—Ce3—Ge1xiv0.00 (4)
Au1i—Ce1—Au3iv87.61 (2)Au3x—Ce3—Au3xv140.50 (4)
Ge1i—Ce1—Au3iv87.61 (2)Ge3x—Ce3—Au3xv140.50 (4)
Ge2ii—Ce1—Au3iv94.15 (2)Ge2xi—Ce3—Au3xv91.17 (5)
Au3iii—Ce1—Au3iv170.40 (4)Au3xii—Ce3—Au3xv80.58 (4)
Ge3iii—Ce1—Au3iv170.40 (4)Ge3xii—Ce3—Au3xv80.58 (4)
Au1i—Ce1—Ge3iv87.61 (2)Ge2xiii—Ce3—Au3xv87.43 (4)
Ge1i—Ce1—Ge3iv87.61 (2)Au1xiv—Ce3—Au3xv134.87 (4)
Ge2ii—Ce1—Ge3iv94.15 (2)Ge1xiv—Ce3—Au3xv134.87 (4)
Au3iii—Ce1—Ge3iv170.40 (4)Au3x—Ce3—Ge3xv140.50 (4)
Ge3iii—Ce1—Ge3iv170.40 (4)Ge3x—Ce3—Ge3xv140.50 (4)
Au3iv—Ce1—Ge3iv0.00 (4)Ge2xi—Ce3—Ge3xv91.17 (5)
Au1i—Ce1—Ge2v176.05 (4)Au3xii—Ce3—Ge3xv80.58 (4)
Ge1i—Ce1—Ge2v176.05 (4)Ge3xii—Ce3—Ge3xv80.58 (4)
Ge2ii—Ce1—Ge2v86.51 (4)Ge2xiii—Ce3—Ge3xv87.43 (4)
Au3iii—Ce1—Ge2v92.67 (2)Au1xiv—Ce3—Ge3xv134.87 (4)
Ge3iii—Ce1—Ge2v92.67 (2)Ge1xiv—Ce3—Ge3xv134.87 (4)
Au3iv—Ce1—Ge2v92.67 (2)Au3xv—Ce3—Ge3xv0.00 (4)
Ge3iv—Ce1—Ge2v92.67 (2)Au3x—Ce3—Au3xvi79.24 (5)
Au1i—Ce1—Au1vi91.69 (4)Ge3x—Ce3—Au3xvi79.24 (5)
Ge1i—Ce1—Au1vi91.69 (4)Ge2xi—Ce3—Au3xvi84.06 (5)
Ge2ii—Ce1—Au1vi178.77 (4)Au3xii—Ce3—Au3xvi98.93 (4)
Au3iii—Ce1—Au1vi85.91 (2)Ge3xii—Ce3—Au3xvi98.93 (4)
Ge3iii—Ce1—Au1vi85.91 (2)Ge2xiii—Ce3—Au3xvi147.46 (4)
Au3iv—Ce1—Au1vi85.91 (2)Au1xiv—Ce3—Au3xvi159.14 (3)
Ge3iv—Ce1—Au1vi85.91 (2)Ge1xiv—Ce3—Au3xvi159.14 (3)
Ge2v—Ce1—Au1vi92.27 (5)Au3xv—Ce3—Au3xvi62.45 (5)
Au1i—Ce1—Ge1vi91.69 (4)Ge3xv—Ce3—Au3xvi62.45 (5)
Ge1i—Ce1—Ge1vi91.69 (4)Au3x—Ce3—Ce2xvii98.22 (3)
Ge2ii—Ce1—Ge1vi178.77 (4)Ge3x—Ce3—Ce2xvii98.22 (3)
Au3iii—Ce1—Ge1vi85.91 (2)Ge2xi—Ce3—Ce2xvii128.23 (4)
Ge3iii—Ce1—Ge1vi85.91 (2)Au3xii—Ce3—Ce2xvii50.79 (3)
Au3iv—Ce1—Ge1vi85.91 (2)Ge3xii—Ce3—Ce2xvii50.79 (3)
Ge3iv—Ce1—Ge1vi85.91 (2)Ge2xiii—Ce3—Ce2xvii119.87 (4)
Ge2v—Ce1—Ge1vi92.27 (5)Au1xiv—Ce3—Ce2xvii146.91 (3)
Au1vi—Ce1—Ge1vi0.00 (3)Ge1xiv—Ce3—Ce2xvii146.91 (3)
Au1i—Ce1—Ce2vii127.59 (4)Au3xv—Ce3—Ce2xvii50.147 (19)
Ge1i—Ce1—Ce2vii127.59 (4)Ge3xv—Ce3—Ce2xvii50.147 (19)
Ge2ii—Ce1—Ce2vii123.10 (3)Au3xvi—Ce3—Ce2xvii50.02 (3)
Au3iii—Ce1—Ce2vii124.25 (3)Ge2v—Ge1—Ce1xi118.17 (6)
Ge3iii—Ce1—Ce2vii124.25 (3)Ge2v—Ge1—Ce2vii65.57 (4)
Au3iv—Ce1—Ce2vii53.80 (3)Ce1xi—Ge1—Ce2vii138.78 (3)
Ge3iv—Ce1—Ce2vii53.80 (3)Ge2v—Ge1—Ce2v65.57 (4)
Ge2v—Ce1—Ce2vii55.16 (4)Ce1xi—Ge1—Ce2v138.78 (3)
Au1vi—Ce1—Ce2vii56.02 (2)Ce2vii—Ge1—Ce2v81.92 (5)
Ge1vi—Ce1—Ce2vii56.02 (2)Ge2v—Ge1—Ce2xviii140.35 (2)
Au1i—Ce1—Ce2v127.59 (4)Ce1xi—Ge1—Ce2xviii71.07 (4)
Ge1i—Ce1—Ce2v127.59 (4)Ce2vii—Ge1—Ce2xviii82.72 (4)
Ge2ii—Ce1—Ce2v123.10 (3)Ce2v—Ge1—Ce2xviii135.06 (4)
Au3iii—Ce1—Ce2v53.80 (3)Ge2v—Ge1—Ce2xi140.35 (2)
Ge3iii—Ce1—Ce2v53.80 (3)Ce1xi—Ge1—Ce2xi71.07 (4)
Au3iv—Ce1—Ce2v124.25 (3)Ce2vii—Ge1—Ce2xi135.06 (4)
Ge3iv—Ce1—Ce2v124.25 (3)Ce2v—Ge1—Ce2xi82.72 (4)
Ge2v—Ce1—Ce2v55.16 (4)Ce2xviii—Ge1—Ce2xi79.07 (5)
Au1vi—Ce1—Ce2v56.02 (2)Ge2v—Ge1—Ce1v118.82 (6)
Ge1vi—Ce1—Ce2v56.02 (2)Ce1xi—Ge1—Ce1v123.01 (4)
Ce2vii—Ce1—Ce2v70.72 (4)Ce2vii—Ge1—Ce1v69.26 (2)
Au3viii—Ce2—Ge3viii0.00 (5)Ce2v—Ge1—Ce1v69.26 (2)
Au3viii—Ce2—Au3iii92.33 (4)Ce2xviii—Ge1—Ce1v65.80 (4)
Ge3viii—Ce2—Au3iii92.33 (4)Ce2xi—Ge1—Ce1v65.80 (4)
Au3viii—Ce2—Ge3iii92.33 (4)Ge2v—Ge1—Ce3xix66.17 (4)
Ge3viii—Ce2—Ge3iii92.33 (4)Ce1xi—Ge1—Ce3xix70.60 (2)
Au3iii—Ce2—Ge3iii0.00 (5)Ce2vii—Ge1—Ce3xix75.59 (3)
Au3viii—Ce2—Au3ix73.60 (4)Ce2v—Ge1—Ce3xix131.62 (4)
Ge3viii—Ce2—Au3ix73.60 (4)Ce2xviii—Ge1—Ce3xix83.92 (5)
Au3iii—Ce2—Au3ix120.62 (4)Ce2xi—Ge1—Ce3xix141.32 (4)
Ge3iii—Ce2—Au3ix120.62 (4)Ce1v—Ge1—Ce3xix135.59 (3)
Au3viii—Ce2—Ge3ix73.60 (4)Ge2v—Ge1—Ce3ii66.17 (4)
Ge3viii—Ce2—Ge3ix73.60 (4)Ce1xi—Ge1—Ce3ii70.60 (2)
Au3iii—Ce2—Ge3ix120.62 (4)Ce2vii—Ge1—Ce3ii131.62 (4)
Ge3iii—Ce2—Ge3ix120.62 (4)Ce2v—Ge1—Ce3ii75.59 (3)
Au3ix—Ce2—Ge3ix0.00 (5)Ce2xviii—Ge1—Ce3ii141.32 (4)
Au3viii—Ce2—Au1vi107.62 (4)Ce2xi—Ge1—Ce3ii83.92 (5)
Ge3viii—Ce2—Au1vi107.62 (4)Ce1v—Ge1—Ce3ii135.59 (3)
Au3iii—Ce2—Au1vi92.36 (4)Ce3xix—Ge1—Ce3ii88.28 (6)
Ge3iii—Ce2—Au1vi92.36 (4)Au1vi—Ge2—Ge1vi0.00 (4)
Au3ix—Ce2—Au1vi147.01 (4)Au1vi—Ge2—Ce1xiv120.05 (7)
Ge3ix—Ce2—Au1vi147.01 (4)Ge1vi—Ge2—Ce1xiv120.05 (7)
Au3viii—Ce2—Ge1vi107.62 (4)Au1vi—Ge2—Ce2xx64.27 (5)
Ge3viii—Ce2—Ge1vi107.62 (4)Ge1vi—Ge2—Ce2xx64.27 (5)
Au3iii—Ce2—Ge1vi92.36 (4)Ce1xiv—Ge2—Ce2xx139.33 (3)
Ge3iii—Ce2—Ge1vi92.36 (4)Au1vi—Ge2—Ce264.27 (5)
Au3ix—Ce2—Ge1vi147.01 (4)Ge1vi—Ge2—Ce264.27 (5)
Ge3ix—Ce2—Ge1vi147.01 (4)Ce1xiv—Ge2—Ce2139.33 (3)
Au1vi—Ce2—Ge1vi0.0Ce2xx—Ge2—Ce280.88 (6)
Au3viii—Ce2—Ge295.93 (5)Au1vi—Ge2—Ce3xxi133.27 (3)
Ge3viii—Ce2—Ge295.93 (5)Ge1vi—Ge2—Ce3xxi133.27 (3)
Au3iii—Ce2—Ge2142.36 (4)Ce1xiv—Ge2—Ce3xxi72.02 (4)
Ge3iii—Ce2—Ge2142.36 (4)Ce2xx—Ge2—Ce3xxi78.53 (5)
Au3ix—Ce2—Ge296.91 (4)Ce2—Ge2—Ce3xxi138.09 (5)
Ge3ix—Ce2—Ge296.91 (4)Au1vi—Ge2—Ce3i133.27 (3)
Au1vi—Ce2—Ge250.16 (3)Ge1vi—Ge2—Ce3i133.27 (3)
Ge1vi—Ce2—Ge250.16 (3)Ce1xiv—Ge2—Ce3i72.02 (4)
Au3viii—Ce2—Ge1i160.26 (3)Ce2xx—Ge2—Ce3i138.09 (5)
Ge3viii—Ce2—Ge1i160.26 (3)Ce2—Ge2—Ce3i78.52 (5)
Au3iii—Ce2—Ge1i88.10 (5)Ce3xxi—Ge2—Ce3i93.28 (6)
Ge3iii—Ce2—Ge1i88.10 (5)Au1vi—Ge2—Ce1vi114.22 (7)
Au3ix—Ce2—Ge1i89.22 (5)Ge1vi—Ge2—Ce1vi114.22 (7)
Ge3ix—Ce2—Ge1i89.22 (5)Ce1xiv—Ge2—Ce1vi125.74 (5)
Au1vi—Ce2—Ge1i92.08 (4)Ce2xx—Ge2—Ce1vi66.92 (3)
Ge1vi—Ce2—Ge1i92.08 (4)Ce2—Ge2—Ce1vi66.92 (3)
Ge2—Ce2—Ge1i95.72 (5)Ce3xxi—Ge2—Ce1vi71.48 (4)
Au3viii—Ce2—Au1i160.26 (3)Ce3i—Ge2—Ce1vi71.49 (4)
Ge3viii—Ce2—Au1i160.26 (3)Au1vi—Ge2—Ce3xxii66.37 (4)
Au3iii—Ce2—Au1i88.10 (5)Ge1vi—Ge2—Ce3xxii66.37 (4)
Ge3iii—Ce2—Au1i88.10 (5)Ce1xiv—Ge2—Ce3xxii71.73 (3)
Au3ix—Ce2—Au1i89.22 (5)Ce2xx—Ge2—Ce3xxii75.22 (3)
Ge3ix—Ce2—Au1i89.22 (5)Ce2—Ge2—Ce3xxii130.52 (5)
Au1vi—Ce2—Au1i92.08 (4)Ce3xxi—Ge2—Ce3xxii77.96 (4)
Ge1vi—Ce2—Au1i92.08 (4)Ce3i—Ge2—Ce3xxii143.66 (5)
Ge2—Ce2—Au1i95.72 (5)Ce1vi—Ge2—Ce3xxii134.92 (3)
Ge1i—Ce2—Au1i0.00 (3)Au1vi—Ge2—Ce3xxiii66.37 (4)
Au3viii—Ce2—Ce1vi116.38 (4)Ge1vi—Ge2—Ce3xxiii66.37 (4)
Ge3viii—Ce2—Ce1vi116.38 (4)Ce1xiv—Ge2—Ce3xxiii71.73 (3)
Au3iii—Ce2—Ce1vi145.26 (3)Ce2xx—Ge2—Ce3xxiii130.52 (5)
Ge3iii—Ce2—Ce1vi145.26 (3)Ce2—Ge2—Ce3xxiii75.22 (3)
Au3ix—Ce2—Ce1vi56.81 (4)Ce3xxi—Ge2—Ce3xxiii143.66 (5)
Ge3ix—Ce2—Ce1vi56.81 (4)Ce3i—Ge2—Ce3xxiii77.96 (4)
Au1vi—Ce2—Ce1vi96.63 (5)Ce1vi—Ge2—Ce3xxiii134.92 (3)
Ge1vi—Ce2—Ce1vi96.63 (5)Ce3xxii—Ge2—Ce3xxiii88.45 (6)
Ge2—Ce2—Ce1vi57.92 (4)Ce2xxiv—Ge3—Ce2xxv146.51 (3)
Ge1i—Ce2—Ce1vi58.18 (4)Ce2xxiv—Ge3—Ce2ix106.40 (4)
Au1i—Ce2—Ce1vi58.18 (4)Ce2xxv—Ge3—Ce2ix88.07 (4)
Au3x—Ce3—Ge3x0.00 (4)Ce2xxiv—Ge3—Ce3xxvi95.24 (4)
Au3x—Ce3—Ge2xi94.27 (5)Ce2xxv—Ge3—Ce3xxvi92.08 (6)
Ge3x—Ce3—Ge2xi94.27 (5)Ce2ix—Ge3—Ce3xxvi139.83 (4)
Au3x—Ce3—Au3xii97.15 (5)Ce2xxiv—Ge3—Ce1xxv140.29 (4)
Ge3x—Ce3—Au3xii97.15 (5)Ce2xxv—Ge3—Ce1xxv72.90 (3)
Ge2xi—Ce3—Au3xii168.54 (3)Ce2ix—Ge3—Ce1xxv69.39 (3)
Au3x—Ce3—Ge3xii97.15 (5)Ce3xxvi—Ge3—Ce1xxv72.32 (3)
Ge3x—Ce3—Ge3xii97.15 (5)Ce2xxiv—Ge3—Ce3xxvii78.19 (4)
Ge2xi—Ce3—Ge3xii168.54 (3)Ce2xxv—Ge3—Ce3xxvii70.37 (4)
Au3xii—Ce3—Ge3xii0.00 (4)Ce2ix—Ge3—Ce3xxvii133.96 (4)
Au3x—Ce3—Ge2xiii132.02 (4)Ce3xxvi—Ge3—Ce3xxvii82.85 (5)
Ge3x—Ce3—Ge2xiii132.02 (4)Ce1xxv—Ge3—Ce3xxvii134.37 (4)
Ge2xi—Ce3—Ge2xiii84.58 (4)Ce2xxiv—Ge3—Ce3xv69.97 (4)
Au3xii—Ce3—Ge2xiii87.11 (5)Ce2xxv—Ge3—Ce3xv143.48 (4)
Ge3xii—Ce3—Ge2xiii87.11 (5)Ce2ix—Ge3—Ce3xv77.60 (5)
Au3x—Ce3—Au1xiv84.63 (4)Ce3xxvi—Ge3—Ce3xv78.75 (5)
Ge3x—Ce3—Au1xiv84.63 (4)Ce1xxv—Ge3—Ce3xv70.63 (3)
Ge2xi—Ce3—Au1xiv84.03 (5)Ce3xxvii—Ge3—Ce3xv141.24 (3)
Symmetry codes: (i) x1, y, z; (ii) x, y, z1; (iii) x+1/2, y+1, z1/2; (iv) x+1/2, y1/2, z1/2; (v) x+1/2, y, z+1/2; (vi) x1/2, y, z+1/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x, y1, z; (ix) x, y+1, z+1; (x) x+3/2, y+1, z+1/2; (xi) x+1, y, z; (xii) x+1/2, y1, z+3/2; (xiii) x+1/2, y, z+3/2; (xiv) x, y, z+1; (xv) x+1, y+1, z+1; (xvi) x+1, y1, z; (xvii) x+1, y, z+1; (xviii) x+1, y+1/2, z; (xix) x, y+1/2, z1; (xx) x, y+1/2, z; (xxi) x1, y+1/2, z; (xxii) x1/2, y+1/2, z+3/2; (xxiii) x1/2, y, z+3/2; (xxiv) x, y+1, z; (xxv) x+1/2, y+1, z+1/2; (xxvi) x+3/2, y+1, z1/2; (xxvii) x1/2, y+1, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds