research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a water oxidation catalyst solvate with composition (NH4)2[FeIV(L-6H)]·3CH3COOH (L = clathrochelate ligand)

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine, bDepartment of Chemistry - Ångström Laboratory, Uppsala University, 75335, Uppsala, Sweden, c"Petru Poni" Institute of Macromolecular Chemistry, Department of Inorganic, Polymers, 700487 Iasi, Romania, and dInnovation Development Center ABN, Pirogov Str. 2/37, 01030 Kyiv, Ukraine
*Correspondence e-mail: plutenkom@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 31 October 2023; accepted 7 December 2023; online 1 January 2024)

The synthetic availability of mol­ecular water oxidation catalysts containing high-valent ions of 3d metals in the active site is a prerequisite to enabling photo- and electrochemical water splitting on a large scale. Herein, the synthesis and crystal structure of di­ammonium {μ-1,3,4,7,8,10,12,13,16,17,19,22-dodeca­aza­tetra­cyclo­[8.8.4.13,17.18,12]tetra­cosane-5,6,14,15,20,21-hexa­onato}ferrate(IV) acetic acid tris­olvate, (NH4)2[FeIV(C12H12N12O6)]·3CH3COOH or (NH4)2[FeIV(L–6H)]·3CH3COOH is reported. The FeIV ion is encapsulated by the macropolycyclic ligand, which can be described as a dodeca-aza-quadricyclic cage with two capping tri­aza­cyclo­hexane fragments making three five- and six six-membered alternating chelate rings with the central FeIV ion. The local coord­ination environment of FeIV is formed by six deprotonated hydrazide nitro­gen atoms, which stabilize the unusual oxidation state. The FeIV ion lies on a twofold rotation axis (multiplicity 4, Wyckoff letter e) of the space group C2/c. Its coordination geometry is inter­mediate between a trigonal prism (distortion angle φ = 0°) and an anti­prism (φ = 60°) with φ = 31.1°. The Fe—N bond lengths lie in the range 1.9376 (13)–1.9617 (13) Å, as expected for tetra­valent iron. Structure analysis revealed that three acetic acid mol­ecules additionally co-crystallize per one iron(IV) complex, and one of them is positionally disordered over four positions. In the crystal structure, the ammonium cations, complex dianions and acetic acid mol­ecules are inter­connected by an intricate system of hydrogen bonds, mainly via the oxamide oxygen atoms acting as acceptors.

1. Chemical context

The design of robust and efficient water oxidation catalysts based on 3d metals requires a rational approach that considers both their redox properties and crystal structure (Blakemore et al., 2015[Blakemore, J. D., Crabtree, R. H. & Brudvig, G. W. (2015). Chem. Rev. 115, 12974-13005.]). The intrinsic lability of the M—L bonds (M = central 3d metal cation, L = ligand) in aqueous solution is one of the main design challenges (Gil-Sepulcre & Llobet, 2022[Gil-Sepulcre, M. & Llobet, A. (2022). Nat. Catal. 5, 79-82.]). In addition, the ligand in the catalyst has to be simple and oxidatively robust, otherwise it will be oxidized in the course of the catalysis (Boniolo et al., 2022[Boniolo, M., Hossain, M. K., Chernev, P., Suremann, N. F., Heizmann, P. A., Lyvik, A. S. L., Beyer, P., Haumann, M., Huang, P., Salhi, N., Cheah, M. H., Shylin, S. I., Lundberg, M., Thapper, A. & Messinger, J. (2022). Inorg. Chem. 61, 9104-9118.]). Efficient chemical (Shylin et al., 2019a[Shylin, S. I., Pavliuk, M. V., D'Amario, L., Fritsky, I. O. & Berggren, G. (2019a). Faraday Discuss. 215, 162-174.]) and photochemical (Shylin et al., 2019b[Shylin, S. I., Pavliuk, M. V., D'Amario, L., Mamedov, F., Sá, J., Berggren, G. & Fritsky, I. O. (2019b). Chem. Commun. 55, 3335-3338.]) water splitting using a clathrochelate complex Na2[FeIV(L–6H)] as a catalyst has recently been reported. The relatively high reaction rate and turnover number have been attributed to the exceptional stability of this cage compound bearing the Fe ion in the unusual oxidation state +IV. Clathrochelate complexes [FeIV(L–6H)]2− with various cations (hexa­methyl­ene­tetra­minium, Bu4N+, Ph4As+, [Ca(H2O)2]2+, Li+) have been obtained and characterized structurally and spectroscopically (Tomyn et al., 2017[Tomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099.]; Plutenko et al., 2023[Plutenko, M. O., Shova, S., Pavlenko, V. A., Golenya, I. A. & Fritsky, I. O. (2023). Acta Cryst. E79, 1059-1062.]). The FeIV ion can be reduced to FeIII or oxidized to FeV, either chemically or electrochemically, but at ambient conditions it spontaneously returns to the FeIV state in air, showcasing the stability of the oxidation state +IV in this specific ligand environment. Related compounds with [MnIV(L–6H)]2− clathrochelate anions have also been described recently (Shylin et al., 2021[Shylin, S. I., Pogrebetsky, J. L., Husak, A. O., Bykov, D., Mokhir, A., Hampel, F., Shova, S., Ozarowski, A., Gumienna-Kontecka, E. & Fritsky, I. O. (2021). Chem. Commun. 57, 11060-11063.]).

[Scheme 1]

In this communication, we report on the template synthesis and crystal structure of the co-crystal compound (NH4)2[FeIV(C12H12N12O6)]·3CH3COOH or (NH4)2[FeIV(L–6H)]·3CH3COOH, which was obtained in an attempt to explore alternative crystallization strategies of cage compounds. We thus demonstrate that FeIV clathrochelates can be obtained in the form of single crystals under mild conditions.

2. Structural commentary

The title compound consists of two ammonium cations, a clathrochelate dianion [FeIV(L–6H)]2−, and three co-crystallized acetic acid mol­ecules per one formula unit (Fig. 1[link]). The core of the macrocyclic ligand L is the hexa­hydrazide N-donor cage capped by two 1,3,5-tri­aza­cyclo­hexane fragments, thus featuring three five- and six six-membered chelate rings. All six hydrazide groups are deprotonated, and the formal charge of the ligand (L–6H) is 6–. The cage encapsulates the Fe ion in the oxidation state +IV, stabilized by the strong σ-donor capacity of the ligand (L–6H), as well as its ability to shield the ion from external factors. The shape of the coordination polyhedron [FeIVN6] cannot be described as octa­hedral, which is typical for most ferrous and ferric complexes. It is rather inter­mediate between an ideal trigonal prism (φ = 0°) and an anti­prism (φ = 60°) with an average φ = 31.1°, calculated as a mean rotation of the N1—N3—N5 triangular base relative to N1i—N3i—N5i. It is within the range of 28.0–32.3° reported for other FeIV and MnIV clathrochelates (Tomyn et al., 2017[Tomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099.]; Shylin et al., 2021[Shylin, S. I., Pogrebetsky, J. L., Husak, A. O., Bykov, D., Mokhir, A., Hampel, F., Shova, S., Ozarowski, A., Gumienna-Kontecka, E. & Fritsky, I. O. (2021). Chem. Commun. 57, 11060-11063.]).

[Figure 1]
Figure 1
The mol­ecular moieties in the crystal structure of (NH4)2[FeIV(L-6H)]·3CH3COOH with ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines; H atoms of the disordered CH3COOH mol­ecule are omitted for clarity. [Symmetry codes: (i) 1 − x, y, [{3\over 2}] − z; (ii) 1 − x, 1 − y, 2 − z; (iii) x, 1 − y, −[{1\over 2}] + z; (iv) −[{1\over 2}] + x, −[{1\over 2}] + y, z; (v) [{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z; (vi) −[{1\over 2}] + x, [{1\over 2}] + y, z; (vii) [{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z.]

The FeIV ion lies on a special position of space group C2/c (twofold rotation axis, multiplicity 4, Wyckoff letter e), making half of the trigonal prism crystallographically independent. As such, the title compound is the first hexa­hydrazide complex with point group symmetry C2 for the complex anion, while all previous clathrochelates have symmetry C1 (Tomyn et al., 2017[Tomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099.]; Shylin et al., 2021[Shylin, S. I., Pogrebetsky, J. L., Husak, A. O., Bykov, D., Mokhir, A., Hampel, F., Shova, S., Ozarowski, A., Gumienna-Kontecka, E. & Fritsky, I. O. (2021). Chem. Commun. 57, 11060-11063.]; Plutenko et al., 2023[Plutenko, M. O., Shova, S., Pavlenko, V. A., Golenya, I. A. & Fritsky, I. O. (2023). Acta Cryst. E79, 1059-1062.]). The Fe—N bond lengths in (NH4)2[FeIV(L–6H)]·3CH3COOH are between 1.9376 (13) and 1.9617 (13) Å, which are close to those reported for related compounds bearing the [FeIV(L–6H)]2− complex anion [1.915 (5)–1.969 (3) Å; Tomyn et al., 2017[Tomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099.]]. The apical bite angles N—Fe—N fall in the range 86.36 (5)–87.56 (5)°, and equatorial bite angles are 80.01 (5)–80.18 (7)° (Table 1[link]). The height of the trigonal prism (i.e. the distance between the triangular bases) is 2.374 (3) Å, which is in the range 2.36–2.38 Å reported for other clathrochelates (Tomyn et al., 2017[Tomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099.]; Shylin et al., 2021[Shylin, S. I., Pogrebetsky, J. L., Husak, A. O., Bykov, D., Mokhir, A., Hampel, F., Shova, S., Ozarowski, A., Gumienna-Kontecka, E. & Fritsky, I. O. (2021). Chem. Commun. 57, 11060-11063.]).

Table 1
Selected geometric parameters (Å, °) for the coordination polyhedron [FeIVN6]

Fe1—N1 1.9610 (13) Fe1—N5 1.9376 (13)
Fe1—N3 1.9617 (13)    
       
N1—Fe1—N3 86.36 (5) N1—Fe1—N3i 80.01 (5)
N1—Fe1—N5 87.15 (5) N5—Fe1—N5i 80.18 (7)
N5—Fe1—N3 87.56 (5)    
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

The macropolycyclic ligand in (NH4)2[FeIV(L–6H)]·3CH3COOH exhibits noticeable distortions, especially with respect to the oxamide moieties. While the hydrazide groups O1–C1–N1–N7 and O3–C3–N3–N9 remain virtually planar, the oxamide moieties are significantly bent with noticeably large torsion angles around the C—C bonds. The O1—C1—C3i—O3i and O5—C5—C5i–O5i torsion angles are 20.15 (15) and 12.33 (16)°, respectively, with the larger torsion angle associated with O1 and O3 atoms involved in inter­molecular hydrogen bonding (see below). The five-membered chelate rings in the complex exhibit a non-symmetric twist conformation with N1—C1—C3i—N3i and N5—C5—C5i—N5i torsion angles of 20.11 (13) and 13.52 (15)°, respectively. The six-membered chelate rings have chair conformations with the Fe and C atoms deviating from the N4 mean plane, with corresponding dihedral angles in the range 35.45 (6)–36.38 (5)° and 59.50 (11)–60.62 (15)°, respectively.

One of three acetic acid mol­ecules is disordered, leading to four equivalent positions (Fig. 1[link]). Specifically, the two C atoms of CH3COOH are disordered along the C—C bond – each can serve as either a methyl or a carboxyl C atom. They are additionally disordered between two positions each by means of the twofold symmetry axis. As such, occupancy factors of C and O atoms are 0.5 and 0.25, respectively.

3. Supra­molecular features

In the crystal structure of the title compound, the ammonium cations; complex anions and acetic acid mol­ecules are associated via an intricate set of O—H⋯O, N—H⋯O, N—H⋯N, and non-classical C—H⋯O hydrogen bonds (Table 2[link]). Most of these contacts show angles far from linearity, indicating that they correspond to rather weak inter­actions. However, a few of them can be considered as significant inter­molecular contacts and are discussed in more detail. Each clathrochelate anion appears to be associated with two CH3COOH co-crystallized mol­ecules and four NH4+ cations, thus employing all six oxamide O atoms as acceptors for hydrogen bonding. The oxamide ribs of the clathrochelate exhibit different binding modes. Specifically, the (O1,O3) ribs are bound to CH3COOH and NH4+ through the O8—H8⋯O1i and N13—H13E⋯O3iii contacts, while the (O5,O5′) ribs are bound to two NH4+ ions through the crystallographically equivalent N13—H13F⋯O5 contacts (Fig. 2[link]). The latter contacts are somewhat weaker than the former (note their DA distances and angles, Table 2[link]), which creates higher distortion of the oxamide moieties O1–C1–C3i–O3i in favor of virtually linear hydrogen bonds. The non-protonated O atom of CH3COOH serves as an acceptor for another NH4+ proton, making N13—H13D⋯O7ii contacts. The fourth remaining proton of NH4+ is involved in binding the neighboring clathrochelate anion through the N13—H13G⋯O1iv contact.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O7ii 0.84 1.94 2.763 (6) 165
O2—H12B⋯N1 1.00 2.66 3.338 (6) 125
O2—H12A⋯O5iii 1.17 2.58 3.356 (6) 122
O4—H4⋯O7ii 0.84 1.96 2.792 (7) 169
O8—H8⋯O1iv 0.81 (3) 1.80 (3) 2.6007 (17) 168 (3)
O10—H15C⋯O5iii 1.15 2.39 3.425 (6) 148
N13—H13D⋯O7v 0.94 (2) 1.99 (2) 2.913 (2) 166.4 (18)
N13—H13E⋯O3vi 0.91 (2) 2.00 (2) 2.9073 (19) 173.2 (19)
N13—H13E⋯N9vi 0.91 (2) 2.64 (2) 3.146 (2) 116.5 (16)
N13—H13F⋯O5 0.88 (2) 2.12 (2) 2.9606 (19) 160.7 (19)
N13—H13F⋯N11 0.88 (2) 2.63 (2) 3.252 (2) 128.3 (17)
N13—H13G⋯O1vii 0.87 (2) 2.09 (2) 2.9241 (19) 158.8 (19)
N13—H13G⋯O3ii 0.87 (2) 2.48 (2) 3.0698 (19) 125.0 (17)
C7—H3A⋯O5viii 0.99 2.47 3.4109 (19) 159
C7—H3B⋯O10 0.99 2.43 3.366 (6) 158
C9—H4A⋯O2vi 0.99 2.35 3.312 (7) 165
C9—H4A⋯O10vi 0.99 2.17 3.132 (5) 165
C11—H6B⋯O1vii 0.99 2.31 3.2606 (19) 160
C12—H12B⋯N1 0.98 2.66 3.575 (7) 155
C12—H12A⋯O5iii 0.98 2.58 3.448 (7) 147
C13—H13B⋯O5 0.90 (3) 2.67 (3) 3.480 (2) 151 (2)
C13—H13C⋯O8ix 0.91 (3) 2.63 (3) 3.416 (3) 146 (2)
C15—H15C⋯O5iii 0.98 2.39 3.245 (6) 146
Symmetry codes: (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [x, y-1, z]; (iv) [x, -y+1, z+{\script{1\over 2}}]; (v) [x, -y+2, z-{\script{1\over 2}}]; (vi) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) [-x+1, -y+1, -z+1]; (viii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ix) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+2].
[Figure 2]
Figure 2
The crystal packing in (NH4)2[FeIV(L-6H)]·3CH3COOH. Relevant hydrogen bonds are shown as dashed lines. The disordered CH3COOH mol­ecule is shown with only one possible orientation. Color code: Fe, black; N, blue; O, red; C, dark ray; H, gray; the unit-cell is outlined.

All in all, the NH4+ cations, isolated complex anions and co-crystallized CH3COOH are connected into a tri-periodic supra­molecular framework by means of hydrogen bonds, mainly via oxamide O atoms as proton acceptors, and NH4+ and CH3COOH as donor groups.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.43, update of November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for complexes with the central metal cation coordinated by six hydrazide ligands revealed nine structures, six of them containing the clathrochelate complex [FeIV(L–6H)]2−. Two of these structures represent mononuclear complexes with Bu4N+ and Ph4As+ cations (Tomyn et al., 2017[Tomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099.]), and four are coordination polymers in which Ca2+ (Tomyn et al., 2017[Tomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099.]), Mn2+ (Xu et al., 2020a[Xu, Y., Hu, Z.-B., Wu, L.-N., Li, M.-X., Wang, Z.-X. & Song, Y. (2020a). Polyhedron, 175, 114243.]), or Cu2+ (2 structures; Xu et al., 2020b[Xu, Y., Wu, L.-N., Li, M.-X., Shi, F.-N. & Wang, Z.-X. (2020b). Inorg. Chem. Commun. 117, 107950.]) cations are exo-coordinated to the vacant (O,O′) and/or (O,N) chelating units of the hexa­hydrazide ligand. To the best of our knowledge, there has been only one structure of the FeIV hexa­hydrazide complex reported after November 2022 (Plutenko et al., 2023[Plutenko, M. O., Shova, S., Pavlenko, V. A., Golenya, I. A. & Fritsky, I. O. (2023). Acta Cryst. E79, 1059-1062.]).

5. Synthesis and crystallization

A powder of (Bu4N)2[FeIV(L–6H)] was obtained by a metal template synthesis as described previously (Tomyn et al., 2017[Tomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099.]). Then, 0.5 mmol of (Bu4N)2[FeIV(L–6H)] and 1 mmol of CH3COONH4 were dissolved in 10 ml of water, and 10 ml of glacial acetic acid was added to this mixture. The resulting mixture was evaporated under vacuum on a rotary evaporator to a volume of ca 10 ml and left in a closed flask. After two weeks, dark-green crystals of (NH4)2[FeIV(L–6H)]·3CH3COOH suitable for the X-ray diffraction analysis were obtained. FTIR (in KBr pellet, cm−1): 3424 (O—H), 3184 (N—H), 2953 (C—H), 1636 (C=O, amide I).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms attached to C were placed in fixed idealized positions using a riding model with Uiso(H) = 1.2Ueq(C) for methyl­ene and 1.5 for methyl groups. The non-disordered H atoms attached to N and O were located in difference-Fourier maps and their positional parameters were verified according to the hydrogen-bonding geometry. Occupancy factors of C and O atoms of the disordered CH3COOH mol­ecule were fixed to 0.5 and 0.25, respectively. The H atoms attached to disordered O atoms were placed in fixed positions with Uiso(H) = 1.5Ueq(O), and their coordinates were refined according to the riding model described above.

Table 3
Experimental details

Crystal data
Chemical formula (NH4)2[Fe(C12H12N12O6)]·3C2H4O2
Mr 692.42
Crystal system, space group Monoclinic, C2/c
Temperature (K) 120
a, b, c (Å) 15.5352 (2), 11.5178 (1), 16.0472 (2)
β (°) 107.616 (2)
V3) 2736.70 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.64
Crystal size (mm) 0.45 × 0.20 × 0.13
 
Data collection
Diffractometer Rigaku SuperNova, Single source at offset, Eos
Absorption correction Analytical [CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) based on analytical numerical absorption correction using a multifaceted crystal model (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.888, 0.954
No. of measured, independent and observed [I > 2σ(I)] reflections 19869, 2431, 2345
Rint 0.025
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.064, 1.07
No. of reflections 2431
No. of parameters 265
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.30
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), CrystaMaker (CrystalMaker, 2017[CrystalMaker (2017). CrystalMaker. CrystalMaker Software, Bicester, England.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Diammonium {µ-1,3,4,7,8,10,12,13,16,17,19,22-dodecaazatetracyclo[8.8.4.13,17.18,12]tetracosane-5,6,14,15,20,21-hexaonato}ferrate(IV) acetic acid trisolvate top
Crystal data top
(NH4)2[Fe(C12H12N12O6)]·3C2H4O2F(000) = 1440
Mr = 692.42Dx = 1.681 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.5352 (2) ÅCell parameters from 18947 reflections
b = 11.5178 (1) Åθ = 3.8–34.6°
c = 16.0472 (2) ŵ = 0.64 mm1
β = 107.616 (2)°T = 120 K
V = 2736.70 (6) Å3Block, black
Z = 40.45 × 0.20 × 0.13 mm
Data collection top
Rigaku SuperNova, Single source at offset, Eos
diffractometer
2431 independent reflections
Radiation source: micro-source2345 reflections with I > 2σ(I)
Detector resolution: 16.0107 pixels mm-1Rint = 0.025
φ scans and ω scans with κ offsetθmax = 25.0°, θmin = 3.2°
Absorption correction: analytical
[CrysAlisPro (Rigaku OD, 2015) based on analytical numerical absorption correction using a multifaceted crystal model (Clark & Reid, 1995)]
h = 1818
Tmin = 0.888, Tmax = 0.954k = 1313
19869 measured reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0287P)2 + 4.4687P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2431 reflectionsΔρmax = 0.31 e Å3
265 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.5000000.51456 (3)0.7500000.01084 (10)
O10.49183 (7)0.33179 (10)0.53250 (7)0.0185 (3)
O30.67899 (8)0.34064 (11)0.94355 (8)0.0230 (3)
O50.58025 (8)0.84207 (10)0.72496 (8)0.0219 (3)
O70.58585 (9)0.91495 (11)1.02775 (9)0.0309 (3)
O80.62188 (9)0.74720 (11)0.97758 (10)0.0306 (3)
H80.5866 (19)0.722 (2)1.0013 (18)0.054 (8)*
N10.54198 (8)0.41708 (11)0.66990 (8)0.0140 (3)
N30.61583 (9)0.47931 (11)0.83762 (8)0.0130 (3)
N50.55986 (8)0.64326 (11)0.71280 (8)0.0137 (3)
N70.63190 (9)0.42275 (12)0.66460 (8)0.0156 (3)
N90.69873 (9)0.48505 (11)0.81754 (8)0.0148 (3)
N110.64693 (9)0.63143 (12)0.70168 (9)0.0155 (3)
N130.63652 (10)0.84256 (13)0.56441 (10)0.0185 (3)
H13D0.6113 (14)0.916 (2)0.5469 (13)0.028*
H13E0.6955 (16)0.8442 (18)0.5665 (13)0.028*
H13F0.6296 (14)0.8293 (18)0.6159 (15)0.028*
H13G0.6080 (14)0.789 (2)0.5275 (14)0.028*
C10.48051 (10)0.37867 (13)0.59867 (10)0.0143 (3)
C30.61482 (10)0.39725 (13)0.89673 (10)0.0149 (3)
C50.54073 (10)0.75177 (14)0.73270 (10)0.0146 (3)
C70.69757 (10)0.39761 (14)0.74949 (10)0.0162 (3)
H3A0.7585390.3932470.7422230.019*
H3B0.6837040.3206240.7696980.019*
C90.71270 (10)0.60121 (14)0.78697 (10)0.0166 (3)
H4A0.7744960.6059430.7817680.020*
H4B0.7081190.6589870.8311140.020*
C110.64715 (11)0.54171 (14)0.63704 (10)0.0173 (3)
H6A0.7059550.5437980.6249540.021*
H6B0.5995430.5600940.5818320.021*
C130.68764 (14)0.91648 (18)0.94181 (14)0.0283 (4)
H13A0.7117 (17)0.984 (2)0.9689 (16)0.042*
H13B0.6571 (16)0.926 (2)0.8850 (17)0.042*
H13C0.7317 (17)0.867 (2)0.9373 (15)0.042*
C140.62703 (11)0.86083 (15)0.98682 (11)0.0211 (4)
O20.5695 (5)0.1300 (5)0.6914 (4)0.0264 (14)0.25
H20.5643060.1141150.6390080.040*0.25
O40.4878 (4)0.1137 (5)0.6462 (5)0.0307 (15)0.25
H40.5236220.1055680.6165290.046*0.25
O60.4189 (3)0.1429 (5)0.6588 (4)0.0316 (12)0.25
O100.6091 (4)0.1341 (5)0.7634 (4)0.0303 (12)0.25
C120.4935 (6)0.1199 (6)0.7018 (6)0.039 (2)0.5
H12A0.5205730.0504270.6848620.058*0.25
H12B0.5205730.1893670.6848620.058*0.25
H12C0.4282940.1198970.6723320.058*0.25
C150.5341 (6)0.1169 (5)0.7245 (7)0.041 (2)0.5
H15C0.5716350.0474330.7419200.061*0.25
H15B0.5716350.1863720.7419200.061*0.25
H15A0.5063750.1169030.6609000.061*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01181 (17)0.01133 (17)0.00910 (16)0.0000.00276 (12)0.000
O10.0187 (6)0.0216 (6)0.0146 (6)0.0041 (5)0.0039 (4)0.0050 (5)
O30.0175 (6)0.0266 (6)0.0234 (6)0.0029 (5)0.0039 (5)0.0125 (5)
O50.0253 (6)0.0152 (6)0.0282 (6)0.0036 (5)0.0126 (5)0.0001 (5)
O70.0368 (8)0.0237 (7)0.0423 (8)0.0063 (6)0.0269 (7)0.0046 (6)
O80.0316 (7)0.0218 (7)0.0475 (8)0.0062 (6)0.0254 (7)0.0035 (6)
N10.0126 (6)0.0156 (7)0.0138 (6)0.0024 (5)0.0038 (5)0.0008 (5)
N30.0114 (6)0.0151 (6)0.0120 (6)0.0015 (5)0.0027 (5)0.0009 (5)
N50.0130 (6)0.0151 (7)0.0149 (6)0.0011 (5)0.0067 (5)0.0023 (5)
N70.0122 (6)0.0197 (7)0.0156 (7)0.0035 (5)0.0050 (5)0.0006 (5)
N90.0117 (6)0.0172 (7)0.0153 (7)0.0006 (5)0.0039 (5)0.0019 (5)
N110.0132 (6)0.0181 (7)0.0170 (7)0.0015 (5)0.0074 (5)0.0035 (5)
N130.0203 (8)0.0174 (8)0.0173 (7)0.0037 (6)0.0048 (6)0.0026 (6)
C10.0174 (8)0.0120 (7)0.0128 (7)0.0034 (6)0.0033 (6)0.0011 (6)
C30.0163 (8)0.0149 (8)0.0126 (7)0.0018 (6)0.0033 (6)0.0007 (6)
C50.0160 (8)0.0151 (8)0.0115 (7)0.0003 (6)0.0024 (6)0.0012 (6)
C70.0143 (8)0.0182 (8)0.0159 (8)0.0039 (6)0.0041 (6)0.0019 (6)
C90.0138 (7)0.0178 (8)0.0182 (8)0.0020 (6)0.0049 (6)0.0029 (6)
C110.0166 (8)0.0221 (8)0.0150 (8)0.0036 (6)0.0075 (6)0.0031 (6)
C130.0318 (10)0.0263 (10)0.0330 (11)0.0074 (8)0.0193 (9)0.0042 (8)
C140.0186 (8)0.0230 (9)0.0217 (9)0.0042 (7)0.0058 (7)0.0019 (7)
O20.027 (4)0.030 (3)0.026 (4)0.001 (2)0.015 (3)0.004 (2)
O40.031 (4)0.035 (3)0.030 (4)0.005 (2)0.015 (3)0.004 (3)
O60.024 (3)0.034 (3)0.033 (3)0.002 (2)0.001 (3)0.006 (2)
O100.024 (3)0.035 (3)0.033 (3)0.005 (2)0.010 (3)0.003 (2)
C120.029 (4)0.029 (3)0.056 (7)0.001 (3)0.009 (4)0.026 (3)
C150.041 (5)0.015 (2)0.053 (6)0.001 (3)0.005 (5)0.007 (2)
Geometric parameters (Å, º) top
Fe1—N11.9610 (13)C7—H3B0.9900
Fe1—N1i1.9610 (13)C9—H4A0.9900
Fe1—N3i1.9617 (13)C9—H4B0.9900
Fe1—N31.9617 (13)C11—H6A0.9900
Fe1—N51.9376 (13)C11—H6B0.9900
Fe1—N5i1.9376 (13)C13—C141.493 (2)
O1—C11.2502 (19)C13—H13A0.92 (3)
O3—C31.2370 (19)C13—H13B0.90 (3)
O5—C51.2330 (19)C13—H13C0.91 (3)
O7—C141.218 (2)O2—C121.246 (11)
O8—C141.317 (2)O2—H20.8400
O8—H80.81 (3)O2—H12A1.1750
N1—C11.324 (2)O2—H12B1.0032
N1—N71.4266 (18)O4—C151.244 (12)
N3—C31.342 (2)O4—H40.8399
N3—N91.4205 (18)O4—H15A0.3140
N5—C51.345 (2)O6—C121.186 (10)
N5—N111.4236 (17)O6—H12C0.3459
N7—C71.463 (2)O10—C151.161 (10)
N7—C111.481 (2)O10—H15C1.1550
N9—C91.464 (2)O10—H15B0.8358
N9—C71.482 (2)C12—C12i1.50 (2)
N11—C111.465 (2)C12—H12A0.9800
N11—C91.481 (2)C12—H12B0.9800
N13—H13D0.94 (2)C12—H12C0.9802
N13—H13E0.91 (2)C15—H15A0.9798
N13—H13F0.88 (2)C15—C15i1.52 (2)
N13—H13G0.87 (2)C15—H15C0.9800
C1—C3i1.520 (2)C15—H15B0.9800
C5—C5i1.528 (3)C15—H15A0.9798
C7—H3A0.9900
N5i—Fe1—N1157.78 (5)N7—C11—H6A108.8
N5—Fe1—N1i157.78 (5)N11—C11—H6B108.8
N5i—Fe1—N1i87.15 (5)N7—C11—H6B108.8
N1—Fe1—N1i110.14 (8)H6A—C11—H6B107.7
N5—Fe1—N3i111.05 (5)C14—C13—H13A111.3 (15)
N5i—Fe1—N3i87.56 (5)C14—C13—H13B109.2 (15)
N1i—Fe1—N3i86.36 (5)H13A—C13—H13B113 (2)
N1—Fe1—N386.36 (5)C14—C13—H13C111.9 (15)
N1i—Fe1—N380.01 (5)H13A—C13—H13C111 (2)
N1—Fe1—N587.15 (5)H13B—C13—H13C100 (2)
N5—Fe1—N387.56 (5)O7—C14—O8123.05 (16)
N1—Fe1—N3i80.01 (5)O7—C14—C13123.51 (17)
N5i—Fe1—N3111.05 (5)O8—C14—C13113.44 (15)
N5—Fe1—N5i80.18 (7)C12—O2—H2107.9
N3i—Fe1—N3156.12 (8)C12—O2—H12A47.6
C14—O8—H8109 (2)H2—O2—H12A82.9
C1—N1—N7115.28 (12)C12—O2—H12B50.2
C1—N1—Fe1117.46 (10)H2—O2—H12B101.8
N7—N1—Fe1122.60 (10)H12A—O2—H12B94.2
C3—N3—N9113.47 (12)C15—O4—H4107.3
C3—N3—Fe1116.60 (10)C15—O4—H15A28.6
N9—N3—Fe1121.71 (9)H4—O4—H15A79.9
C5—N5—N11113.90 (12)C12—O6—H12C46.5
C5—N5—Fe1118.46 (10)C15—O10—H15C50.1
N11—N5—Fe1121.89 (9)C15—O10—H15B56.0
N1—N7—C7110.79 (12)H15C—O10—H15B105.9
N1—N7—C11107.95 (11)O6—C12—O2134.3 (9)
C7—N7—C11109.38 (12)O6—C12—C12i113.8 (10)
N3—N9—C9110.80 (12)O2—C12—C12i107.6 (9)
N3—N9—C7109.02 (12)O6—C12—H12A116.5
C9—N9—C7110.14 (12)O2—C12—H12A62.4
N5—N11—C11111.24 (12)C12i—C12—H12A110.6
N5—N11—C9108.82 (11)O6—C12—H12B94.6
C11—N11—C9109.88 (12)O2—C12—H12B51.9
H13D—N13—H13E108.6 (18)C12i—C12—H12B110.6
H13D—N13—H13F106.2 (18)H12A—C12—H12B109.5
H13E—N13—H13F112.3 (18)O6—C12—H12C14.8
H13D—N13—H13G110.3 (18)O2—C12—H12C144.8
H13E—N13—H13G109.8 (19)C12i—C12—H12C107.2
H13F—N13—H13G109.6 (19)H12A—C12—H12C109.5
O1—C1—N1128.86 (14)H12B—C12—H12C109.5
O1—C1—C3i119.45 (13)H15A—C15—O10127.8
N1—C1—C3i111.69 (13)H15A—C15—O48.8
O3—C3—N3128.37 (14)O10—C15—O4136.6 (10)
O3—C3—C1i120.94 (14)H15A—C15—C15i113.7
N3—C3—C1i110.69 (13)O10—C15—C15i117.4 (11)
O5—C5—N5127.40 (14)O4—C15—C15i105.1 (10)
O5—C5—C5i121.93 (9)H15A—C15—H15C109.5
N5—C5—C5i110.67 (8)O10—C15—H15C64.6
N7—C7—N9113.67 (12)O4—C15—H15C112.1
N7—C7—H3A108.8C15i—C15—H15C107.3
N9—C7—H3A108.8H15A—C15—H15B109.5
N7—C7—H3B108.8O10—C15—H15B45.0
N9—C7—H3B108.8O4—C15—H15B115.1
H3A—C7—H3B107.7C15i—C15—H15B107.3
N9—C9—N11113.19 (13)H15C—C15—H15B109.5
N9—C9—H4A108.9H15A—C15—H15A0.0
N11—C9—H4A108.9O10—C15—H15A127.8
N9—C9—H4B108.9O4—C15—H15A8.8
N11—C9—H4B108.9C15i—C15—H15A113.7
H4A—C9—H4B107.8H15C—C15—H15A109.5
N11—C11—N7113.98 (12)H15B—C15—H15A109.5
N11—C11—H6A108.8
C1—N1—N7—C7146.37 (14)N9—N3—C3—C1i168.31 (12)
Fe1—N1—N7—C758.47 (15)Fe1—N3—C3—C1i19.18 (16)
C1—N1—N7—C1193.89 (15)N11—N5—C5—O515.8 (2)
Fe1—N1—N7—C1161.27 (14)Fe1—N5—C5—O5169.60 (13)
C3—N3—N9—C9154.44 (13)N11—N5—C5—C5i164.79 (14)
Fe1—N3—N9—C958.19 (15)Fe1—N5—C5—C5i11.0 (2)
C3—N3—N9—C784.19 (15)N1—N7—C7—N965.02 (16)
Fe1—N3—N9—C763.18 (14)C11—N7—C7—N953.87 (16)
C5—N5—N11—C11148.26 (13)N3—N9—C7—N767.24 (16)
Fe1—N5—N11—C1158.90 (15)C9—N9—C7—N754.54 (16)
C5—N5—N11—C990.56 (15)N3—N9—C9—N1166.79 (16)
Fe1—N5—N11—C962.28 (14)C7—N9—C9—N1153.92 (16)
N7—N1—C1—O111.1 (2)N5—N11—C9—N968.10 (16)
Fe1—N1—C1—O1167.61 (13)C11—N11—C9—N953.92 (16)
N7—N1—C1—C3i168.97 (12)N5—N11—C11—N766.46 (16)
Fe1—N1—C1—C3i12.47 (17)C9—N11—C11—N754.10 (16)
N9—N3—C3—O311.7 (2)N1—N7—C11—N1166.44 (16)
Fe1—N3—C3—O3160.86 (14)C7—N7—C11—N1154.19 (16)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O7ii0.841.942.763 (6)165
O2—H12B···N11.002.663.338 (6)125
O2—H12A···O5iii1.172.583.356 (6)122
O4—H4···O7ii0.841.962.792 (7)169
O8—H8···O1iv0.81 (3)1.80 (3)2.6007 (17)168 (3)
O10—H15C···O5iii1.152.393.425 (6)148
N13—H13D···O7v0.94 (2)1.99 (2)2.913 (2)166.4 (18)
N13—H13E···O3vi0.91 (2)2.00 (2)2.9073 (19)173.2 (19)
N13—H13E···N9vi0.91 (2)2.64 (2)3.146 (2)116.5 (16)
N13—H13F···O50.88 (2)2.12 (2)2.9606 (19)160.7 (19)
N13—H13F···N110.88 (2)2.63 (2)3.252 (2)128.3 (17)
N13—H13G···O1vii0.87 (2)2.09 (2)2.9241 (19)158.8 (19)
N13—H13G···O3ii0.87 (2)2.48 (2)3.0698 (19)125.0 (17)
C7—H3A···O5viii0.992.473.4109 (19)159
C7—H3B···O100.992.433.366 (6)158
C9—H4A···O2vi0.992.353.312 (7)165
C9—H4A···O10vi0.992.173.132 (5)165
C11—H6B···O1vii0.992.313.2606 (19)160
C12—H12B···N10.982.663.575 (7)155
C12—H12A···O5iii0.982.583.448 (7)147
C13—H13B···O50.90 (3)2.67 (3)3.480 (2)151 (2)
C13—H13C···O8ix0.91 (3)2.63 (3)3.416 (3)146 (2)
C15—H15C···O5iii0.982.393.245 (6)146
Symmetry codes: (ii) x, y+1, z1/2; (iii) x, y1, z; (iv) x, y+1, z+1/2; (v) x, y+2, z1/2; (vi) x+3/2, y+1/2, z+3/2; (vii) x+1, y+1, z+1; (viii) x+3/2, y1/2, z+3/2; (ix) x+3/2, y+3/2, z+2.
Selected geometric parameters for the coordination polyhedron [FeIVN6] (Å, °). top
Fe1—N11.9610 (13)
Fe1—N31.9617 (13)
Fe1—N51.9376 (13)
N1—Fe1—N386.36 (5)
N1—Fe1—N587.15 (5)
N3—Fe1—N587.56 (5)
N1—Fe1—N3i80.01 (5)
N5—Fe1—N5i80.18 (7)
Symmetry code: (i) –x+1, y, –z+3/2.
 

Funding information

This work was supported by the Ministry of Education and Science of Ukraine through grant No. 22BF03–03, the European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement No. 778245, and the Swedish Foundation for Strategic Research.

References

First citationBlakemore, J. D., Crabtree, R. H. & Brudvig, G. W. (2015). Chem. Rev. 115, 12974–13005.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBoniolo, M., Hossain, M. K., Chernev, P., Suremann, N. F., Heizmann, P. A., Lyvik, A. S. L., Beyer, P., Haumann, M., Huang, P., Salhi, N., Cheah, M. H., Shylin, S. I., Lundberg, M., Thapper, A. & Messinger, J. (2022). Inorg. Chem. 61, 9104–9118.  CrossRef PubMed Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCrystalMaker (2017). CrystalMaker. CrystalMaker Software, Bicester, England.  Google Scholar
First citationGil-Sepulcre, M. & Llobet, A. (2022). Nat. Catal. 5, 79–82.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPlutenko, M. O., Shova, S., Pavlenko, V. A., Golenya, I. A. & Fritsky, I. O. (2023). Acta Cryst. E79, 1059–1062.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShylin, S. I., Pavliuk, M. V., D'Amario, L., Fritsky, I. O. & Berggren, G. (2019a). Faraday Discuss. 215, 162–174.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShylin, S. I., Pavliuk, M. V., D'Amario, L., Mamedov, F., Sá, J., Berggren, G. & Fritsky, I. O. (2019b). Chem. Commun. 55, 3335–3338.  Web of Science CrossRef CAS Google Scholar
First citationShylin, S. I., Pogrebetsky, J. L., Husak, A. O., Bykov, D., Mokhir, A., Hampel, F., Shova, S., Ozarowski, A., Gumienna-Kontecka, E. & Fritsky, I. O. (2021). Chem. Commun. 57, 11060–11063.  Web of Science CSD CrossRef CAS Google Scholar
First citationTomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099.  Web of Science CSD CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y., Hu, Z.-B., Wu, L.-N., Li, M.-X., Wang, Z.-X. & Song, Y. (2020a). Polyhedron, 175, 114243.  CSD CrossRef Google Scholar
First citationXu, Y., Wu, L.-N., Li, M.-X., Shi, F.-N. & Wang, Z.-X. (2020b). Inorg. Chem. Commun. 117, 107950.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds