research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure refinement of magnesium zinc divanadate, MgZnV2O7, from powder X-ray diffraction data

crossmark logo

aDepartment of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
*Correspondence e-mail: lijun@oregonstate.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 24 February 2021; accepted 28 April 2021; online 7 May 2021)

The crystal structure of magnesium zinc divanadate, MgZnV2O7, was determined and refined from laboratory X-ray powder diffraction data. The title compound was synthesized by a solid-state reaction at 1023 K in air. The crystal structure is isotypic with Mn0.6Zn1.4V2O7 (C2/m; Z = 6) and is related to the crystal structure of thortveitite. The asymmetric unit contains two metal sites with statistically distributed magnesium and zinc atoms with the atomic ratio close to 1:1. One (Mg/Zn) metal site (M1) is located on Wyckoff position 8j and the other (M2) on 4h. Three V sites (all on 4i), and eight O (three 8j, four 4i, and one 2b) sites complete the asymmetric unit. The structure is an alternate stacking of V2O7 layers and (Mg/Zn) atom layers along [20[\overline{1}]]. It is distinct from other related structures in that each V2O7 layer consists of two groups: a V2O7 dimer and a V4O14 tetra­mer. Mixed-occupied M1 and M2 are coordinated by oxygen atoms in distorted trigonal bipyramidal and octa­hedral sites, respectively.

1. Chemical context

Mixed vanadium oxides with tetra­hedrally coordinated penta­valent vanadium ions have been used as catalysts in the heterogeneous oxidation process (Chang & Wang, 1988[Chang, L. L. Y. & Wang, F. Y. (1988). J. Am. Ceram. Soc. 71, 689-693.]). Since there is a strong correlation between the crystal structure and its properties, the phase relations of vanadates have been thoroughly investigated. During the course of studying the phase diagram in the MgO–ZnO–V2O5 system, a new phase was identified by its X-ray diffraction pattern in the solid-solution range between (Mg0.80Zn1.20)V2O7 and (Mg1.16Zn0.84)V2O7, which was completely different from Mg2V2O7 or Zn2V2O7 (Chang & Wang, 1988[Chang, L. L. Y. & Wang, F. Y. (1988). J. Am. Ceram. Soc. 71, 689-693.]). The crystal structure of the new phase has not been reported to date. We present here the crystal structure of MgZnV2O7 (Fig. 1[link]), as determined and refined from laboratory powder X-ray diffraction data (Table 1[link]).

Table 1
Experimental details

Crystal data
Chemical formula MgZnV2O7
Mr 303.56
Crystal system, space group Monoclinic, C2/m
Temperature (K) 298
a, b, c (Å) 10.32882 (7), 8.50126 (5), 9.30814 (6)
β (°) 98.5748 (5)
V3) 808.19 (1)
Z 6
Radiation type Cu Kα1, λ = 1.5405 Å
Specimen shape, size (mm) Irregular, 24.9 × 24.9
 
Data collection
Diffractometer PANalytical Empyrean
Specimen mounting Dispersed powder
Data collection mode Reflection
Scan method Step
2θ values (°) 2θmin = 5.012, 2θmax = 119.991, 2θstep = 0.013
 
Refinement
R factors and goodness of fit Rp = 0.055, Rwp = 0.076, Rexp = 0.042, R(F2) = 0.20886, χ2 = 3.276
No. of parameters 40
Computer programs: X'Pert Data Collector and X'Pert HighScore Plus (PANalytical, 2011[PANalytical (2011). X'Pert Data Collector and X'Pert High Score Plus. PANalytical BV, Almelo, The Netherlands.]), GSAS (Larson & Von Dreele, 2000[Larson, A. C. & Von Dreele, R. B. (2000). General Structure Analysis System (GSAS). Report LAUR. 86-748 Los Alamos National Laboratory, New Mexico, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]) and VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]).
[Figure 1]
Figure 1
The crystal structure of MgZnV2O7 with VO4 tetra­hedra, VO5 trigonal bipyramids (light purple), and (Mg/Zn) atoms (green/yellow). (a) overview of the structure, (b) a selected slab of one V2O7 layer and the adjacent (Mg/Zn) layer, and (c) a top view of the slab of (b) and magnified local structure of V4O14 tetra­meric and V2O7 dimeric units. [Symmetry codes: (xiii) −x + 1, −y + 1, −z; (xiv) x, y + 1, z − 1; (xv) −x + 1, −y + 1, −z + 1; (xvi) x + 1, y + 1, z + 1.]

2. Structural commentary

The crystal structure of magnesium zinc divanadate, MgZnV2O7, is isotypic with Mn0.6Zn1.4V2O7 (Knowles et al., 2009[Knowles, K. M., Vickers, M. E., Sil, A., Han, Y.-H. & Jaffrenou, P. (2009). Acta Cryst. B65, 160-166.]), where statistically distributed Mg and Zn atoms (Mn and Zn for Mn0.6Zn1.4V2O7) are located in disordered environments in the crystal structure. The unit-cell volume of MgZnV2O7 is smaller than that of Mn0.6Zn1.4V2O7 by 1.65%.

The crystal structure of MgZnV2O7 is shown in Fig. 1[link]a. There are (Mg1/Zn1) (on Wyckoff position 8j, site symmetry 1), (Mg2/Zn2) (on 4h, 2), three V (all on 4i, m), and eight O (three 8j, four 4i, and one 2b, 2/m) sites in the asymmetric unit, where (Mg1/Zn1) and (Mg2/Zn2) represent statistically distributed magnesium and zinc atoms with the atomic ratio close to 1:1.

The crystal structure can be described as an alternate stacking of V2O7 layers and (Mg/Zn) atom layers along [20[\overline{1}]] (Fig. 1[link]b). Each V2O7 layer consists of two groups: a V2O7 dimer and a V4O14 tetra­mer. For illustration, a slab of one V2O7 layer and the adjacent (Mg/Zn) layer is shown in Fig. 1[link]c, which is rotated by 90° from Fig. 1[link]b. Two corner-sharing (V1)O4 tetra­hedra form the dimeric group. Two (V3)O4 tetra­hedra and two (V2)O5 trigonal bipyramids form the tetra­meric group, with a sequence of (V3)O4–(V2)O5–(V2)O5–(V3)O4. The two trigonal bipyramidal units in the middle are edge-sharing, each of which is corner-sharing with the adjacent terminal tetra­hedron. (Mg1/Zn1) and (Mg2/Zn2) are coordinated by oxygen atoms in a distorted trigonal bipyramidal and a distorted octa­hedral environment, respectively (Table 2[link]).

Table 2
Selected bond lengths (Å)

Mg1—O3i 1.975 (10) V1—O3vii 1.628 (10)
Mg1—O4i 1.929 (9) V1—O3viii 1.628 (10)
Mg1—O5ii 2.172 (10) V1—O8 1.599 (15)
Mg1—O7iii 2.081 (11) V2—O1 1.959 (12)
Mg1—O8iii 2.120 (11) V2—O4 1.745 (9)
Mg2—O3iv 2.354 (8) V2—O4ix 1.745 (9)
Mg2—O3ii 2.354 (8) V2—O7x 2.032 (11)
Mg2—O5v 1.948 (10) V2—O7xi 1.898 (15)
Mg2—O5i 1.948 (10) V3—O1xi 1.824 (10)
Mg2—O6iii 2.061 (10) V3—O5xi 1.703 (10)
Mg2—O6vi 2.061 (10) V3—O5xii 1.703 (10)
V1—O2 1.757 (4) V3—O6xi 1.760 (15)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1]; (ii) [x, -y+1, z]; (iii) x, y+1, z; (iv) [-x, -y+1, -z+1]; (v) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (vi) [-x, y+1, -z+1]; (vii) [-x, y, -z+1]; (viii) [-x, -y, -z+1]; (ix) [x, -y, z]; (x) x, y, z+1; (xi) [-x+1, y, -z+1]; (xii) [-x+1, -y, -z+1].

The MgZnV2O7 structure (C2/m, Z = 6) is closely related to thortveitite-type α-Zn2V2O7 (C2/c, Z = 4) (Gopal & Calvo, 1973[Gopal, R. & Calvo, C. (1973). Can. J. Chem. 51, 1004-1009.]), thortveite-type β'-Zn2V2O7 (C2/m, Z = 2) (Krasnenko et al., 2003[Krasnenko, T. I., Zubkov, V. G. & Tjutinskaja, E. F. (2003). Kristallografiya, 48, 40-43.]), and β-Mg2V2O7 (P[\overline{1}], Z = 2) (Gopal & Calvo, 1974[Gopal, R. & Calvo, C. (1974). Acta Cryst. B30, 2491-2493.]), as shown in Fig. 2[link], in which they have an alternate stacking of V2O7 layer and Zn or Mg layers. However, in contrast to MgZnV2O7, they only contain the V2O7 dimer groups. The relationships between other thortveitite-related phases are also well described in a previous work (Knowles et al., 2018[Knowles, K. M., Sil, A., Stöger, B. & Weil, M. (2018). Acta Cryst. C74, 1079-1087.]).

[Figure 2]
Figure 2
Crystal structure of (a) α-Zn2V2O7, (b) thortveite-type β'-Zn2V2O7, and (c) β-Mg2V2O7.

To check the refined structure model, empirical bond-valence sums (BVSs) were calculated (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]; Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]), with the program Valence (Hormillosa et al., 1993[Hormillosa, C., Healy, S., Stephen, T. & Brown, I. D. (1993). Bond Valence Calculator. Version 2.0. McMaster University, Canada.]). The expected charges of the ions match the obtained BVS values (given in valence units): (Mg1/Zn1) = 1.96, (Mg2/Zn2) = 2.11, V1 = 6.08, V2 = 4.31, V3 = 4.69, O1 = 1.60, O2 = 2.26, O3 = 2.25, O4 = 1.71, O5 = 2.10, O6 = 1.87, O7 = 2.02, and O8 = 2.38. The high value for V1 comes from the relatively short V—O distances (Table 2[link]). The restrained distance was slightly longer than the final values, however, the refinement led to the shorter distances. Short bond lengths (1.56–1.60 Å) were also found in other materials, such as BiBa2(VO4)(V2O7) (Huang et al., 1994[Huang, J., Gu, Q. & Sleight, A. W. (1994). J. Solid State Chem. 110, 226-233.]) Mg2(V2O7) (Nielsen et al., 2001[Nielsen, U. G., Jakobsen, H. J., Skibsted, J. & Norby, P. (2001). J. Chem. Soc. Dalton Trans. pp. 3214-3218.]) or Th(V2O7) (Launay et al., 1992[Launay, S., Mahe, P., Quarton, M. & Robert, F. (1992). J. Solid State Chem. 97, 305-313.]). The final atomic positions were confirmed in the Fourier maps (observed and difference map).

3. Synthesis and crystallization

MgZnV2O7 was synthesized by a solid-state reaction from a mixture of Mg(CH3COO)2·4H2O (98.0–102.0%, Alfa-Aesar), ZnO (99.99%, Aldrich) and V2O5 (99.99%, Aldrich) with a nominal composition of Mg:Zn:V = 1:1:2. The mixture was thoroughly ground in an agate mortar with acetone, dried, pressed into a pellet, heated in air at 673 K for 3 h, at 943 K for 6 h, and again at 1023 K for 6 h with inter­mediate grinding and pressing. For the powder X-ray diffraction measurement, the pellet was ground again in an agate mortar and the resultant powder was dispersed on a zero-background Si sample holder.

4. Refinement details

Details of the crystal data collection and structure refinement are summarized in Table 1[link] and the supporting information. Powder X-ray diffraction (PXRD) data for MgZnV2O7 were collected from a Bragg-Brentano diffractometer (PANalytical, 2011[PANalytical (2011). X'Pert Data Collector and X'Pert High Score Plus. PANalytical BV, Almelo, The Netherlands.]) using Cu Kα1 radiation, a focusing primary Ge(111) monochromator (λ = 1.5405 Å) and a position-sensitive PIXcel 3D 2×2 detector. The angular range was set to 8°≤ 2θ ≤ 120°, with a step of 0.0131° and a total measurement time of 8 h at room temperature. The PXRD pattern was indexed using the DICVOL algorithm (Boultif & Louër, 2004[Boultif, A. & Louër, D. (2004). J. Appl. Cryst. 37, 724-731.]) run in WINPLOT (Roisnel & Rodríguez-Carvajal, 2000[Roisnel, T. & Rodríguez-Carvajal, J. (2000). WinPLOTR: a Windows tool for powder diffraction patterns analysis. Mater. Sci. Forum, Proc. 7th Europ. Powder Diff. Conf. (EPDIC 7), edited by R. Delhez & E. J. Mittenmeijer, pp. 118-123,]) through the positions of 26 reflections, resulting in a monoclinic unit cell (step 1). The space groups from the systematic reflection conditions were suggested to be C2/m, C2, or Cm, which were indistinguishable from the reflection conditions. The highest symmetry, C2/m, was chosen first to determine the structure (step 2), and confirmed later. All the reflections were well indexed, except for a few minor unidentified impurity peaks. The structure determination was performed by a combination of the powder profile refinement program GSAS (Larson & Von Dreele, 2000[Larson, A. C. & Von Dreele, R. B. (2000). General Structure Analysis System (GSAS). Report LAUR. 86-748 Los Alamos National Laboratory, New Mexico, USA.]) and the single-crystal structure-refinement program CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]). The software MCE was used to visualize the three-dimensional Fourier electron-density maps, (Rohlíček & Hušák, 2007[Rohlíček, J. & Hušák, M. (2007). J. Appl. Cryst. 40, 600-601.]). Initially, a structural model was used with only one dummy atom placed at the (0,0,0) position in the unit cell. A Le Bail fit was used to extract the structure factors from the powder data in GSAS (step 3), followed by applying direct methods to build the initial structural solution, using SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) run in CRYSTALS, which yielded three vanadium sites as the initial structural model (step 4). The initial dummy atom model was then replaced with the partial model containing only three vanadium atoms, and the Le Bail fit was applied in GSAS (step 5). Improved structure factors were then extracted, which were used for the refinement in CRYSTALS (step 6). This process (step 5 to 6) was repeated until a complete and satisfactory structural model was obtained. Finally, Rietveld refinement in GSAS was employed to complete the structure model, resulting in reasonable isotropic displacement parameters and agreement indices (step 7). The refinement parameters were scale factors, background, unit-cell parameters, peak profile coefficients, atomic coordinates, occupancies for the two (Mg/Zn) sites, common Uiso for the metal atoms, common Uiso for the oxygen atoms, and a March–Dollase preferential orientation coefficient (<111> direction). For the final Rietveld refinement cycles, the Mg—O, Zn—O, and V—O bond lengths were restrained with a tolerance value of 0.01 Å with respect to the distances determined from CRYSTALS, which matched reasonably well with the radii sums of Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). Atomic coordinates and labeling were finally adapted from isotypic Mn0.6Zn1.4V2O7 (Knowles et al., 2009[Knowles, K. M., Vickers, M. E., Sil, A., Han, Y.-H. & Jaffrenou, P. (2009). Acta Cryst. B65, 160-166.]). The final Rietveld plot is displayed in Fig. 3[link].

[Figure 3]
Figure 3
Powder X-ray diffraction Rietveld refinement profiles for MgZnV2O7 from room-temperature data. Black dots mark experimental data, the solid red line represents the calculated profile, and the solid green line is the background. The bottom trace presents the difference curve (blue) and the ticks denote the expected Bragg reflection positions (magenta).

Supporting information


Computing details top

Data collection: X'Pert Data Collector (PANalytical, 2011); cell refinement: GSAS (Larson & Von Dreele, 2000); data reduction: X'Pert HighScore Plus (PANalytical, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and CRYSTALS (Betteridge et al., 2003); program(s) used to refine structure: GSAS (Larson & Von Dreele, 2000); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: GSAS (Larson & Von Dreele, 2000).

Magnesium zinc divanadate top
Crystal data top
MgZnV2O7V = 808.19 (1) Å3
Mr = 303.56Z = 6
Monoclinic, C2/mF(000) = 864.0
Hall symbol: -C 2yDx = 3.743 Mg m3
a = 10.32882 (7) ÅCu Kα1 radiation, λ = 1.5405 Å
b = 8.50126 (5) ÅT = 298 K
c = 9.30814 (6) Åyellow
β = 98.5748 (5)°irregular, 24.9 × 24.9 mm
Data collection top
PANalytical Empyrean
diffractometer
Data collection mode: reflection
Radiation source: sealed X-ray tube, PANalytical Cu Ceramic X-ray tubeScan method: step
Specimen mounting: dispersed powder2θmin = 5.012°, 2θmax = 119.991°, 2θstep = 0.013°
Refinement top
Least-squares matrix: fullProfile function: CW Profile function number 4 with 21 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. Microstrain broadening by P.W. Stephens, (1999). J. Appl. Cryst.,32,281-289. #1(GU) = 3.306 #2(GV) = 0.000 #3(GW) = 0.000 #4(GP) = 1.565 #5(LX) = 2.176 #6(ptec) = 0.00 #7(trns) = 0.00 #8(shft) = -0.5558 #9(sfec) = 0.00 #10(S/L) = 0.0005 #11(H/L) = 0.0005 #12(eta) = 0.7500 #13(S400 ) = 0.0E+00 #14(S040 ) = 0.0E+00 #15(S004 ) = 0.0E+00 #16(S220 ) = 0.0E+00 #17(S202 ) = 0.0E+00 #18(S022 ) = 0.0E+00 #19(S301 ) = 0.0E+00 #20(S103 ) = 0.0E+00 #21(S121 ) = 0.0E+00 Peak tails are ignored where the intensity is below 0.0020 times the peak Aniso. broadening axis 0.0 0.0 1.0
Rp = 0.05540 parameters
Rwp = 0.0760 restraints
Rexp = 0.042(Δ/σ)max = 0.03
R(F2) = 0.20886Background function: GSAS Background function number 1 with 32 terms. Shifted Chebyshev function of 1st kind 1: 684.144 2: -705.826 3: 591.845 4: -383.442 5: 271.953 6: -144.446 7: 80.6035 8: -57.5987 9: 36.6287 10: -27.9916 11: 15.1285 12: -11.9775 13: 12.8819 14: -10.6721 15: 7.66251 16: -8.35018 17: 1.44025 18: -5.00721 19: 5.78817 20: -2.82870 21: 1.93935 22: -1.83947 23: 4.15929 24: 0.506732 25: -0.182215 26: 0.162584 27: 4.98669 28: 0.850932 29: -0.614188 30: -2.46723 31: 3.10631 32: 3.29784
8758 data pointsPreferred orientation correction: March-Dollase AXIS 1 Ratio= 0.72861 h= 1.000 k= 1.000 l= 1.000 Prefered orientation correction range: Min= 0.62193, Max= 1.62737
Excluded region(s): The background is too high at low angles and there was no Bragg's peaks.
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mg10.3477 (3)0.8175 (3)0.2035 (3)0.0069 (3)*0.508 (4)
Mg20.00.8191 (5)0.50.0069 (3)*0.484 (7)
Zn10.3477 (3)0.8175 (3)0.2035 (3)0.0069 (3)*0.492 (4)
Zn20.00.8191 (5)0.50.0069 (3)*0.516 (7)
V10.0517 (4)0.00.1885 (4)0.0069 (3)*
V20.3777 (4)0.00.8892 (4)0.0069 (3)*
V30.6962 (4)0.00.4938 (4)0.0069 (3)*
O10.4041 (12)0.00.6850 (12)0.0070 (8)*
O20.00.00.00.0070 (8)*
O30.0123 (9)0.1586 (10)0.7538 (9)0.0070 (8)*
O40.2787 (9)0.1666 (10)0.8864 (9)0.0070 (8)*
O50.3613 (10)0.1678 (11)0.4382 (10)0.0070 (8)*
O60.1338 (13)0.00.5091 (13)0.0070 (8)*
O70.4380 (14)0.00.1072 (12)0.0070 (8)*
O80.2081 (15)0.00.2045 (13)0.0070 (8)*
Geometric parameters (Å, º) top
Mg1—Mg1i3.104 (6)V2—O11.959 (12)
Mg1—Mg2ii3.185 (3)V2—O41.745 (9)
Mg1—Zn1i3.104 (6)V2—O4xv1.745 (9)
Mg1—Zn2ii3.185 (3)V2—O7xvi2.032 (11)
Mg1—V3iii3.307 (5)V2—O7xvii1.898 (15)
Mg1—O3iv1.975 (10)V3—Mg1xviii3.307 (5)
Mg1—O4iv1.929 (9)V3—Mg1xix3.307 (5)
Mg1—O5v2.172 (10)V3—O1xvii1.824 (10)
Mg1—O7vi2.081 (11)V3—O5xvii1.703 (10)
Mg1—O8vi2.120 (11)V3—O5xx1.703 (10)
Mg2—Mg1ii3.185 (3)V3—O6xvii1.760 (15)
Mg2—Mg1vii3.185 (3)O1—V21.959 (12)
Mg2—Mg2viii3.076 (9)O1—V3xvii1.824 (10)
Mg2—Zn1ii3.185 (3)O2—V11.757 (4)
Mg2—Zn1vii3.185 (3)O2—V1xxi1.757 (4)
Mg2—Zn2viii3.076 (9)O3—Mg1xxii1.975 (10)
Mg2—O3ix2.354 (8)O3—Mg2ix2.354 (8)
Mg2—O3v2.354 (8)O3—Zn1xxii1.975 (10)
Mg2—O5x1.948 (10)O3—Zn2ix2.354 (8)
Mg2—O5iv1.948 (10)O3—V1xii1.628 (10)
Mg2—O6vi2.061 (10)O4—Mg1xxii1.929 (9)
Mg2—O6xi2.061 (10)O4—Zn1xxii1.929 (9)
Zn1—Mg1i3.104 (6)O4—V21.745 (9)
Zn1—Mg2ii3.185 (3)O5—Mg1v2.172 (10)
Zn1—Zn1i3.104 (6)O5—Mg2xxiii1.948 (10)
Zn1—O3iv1.975 (10)O5—Zn1v2.172 (10)
Zn1—O4iv1.929 (9)O5—Zn2xxiii1.948 (10)
Zn1—O5v2.172 (10)O5—V3xvii1.703 (10)
Zn1—O7vi2.081 (11)O6—Mg2xxiv2.061 (10)
Zn1—O8vi2.120 (11)O6—Mg2ix2.061 (10)
Zn2—Mg1ii3.185 (3)O6—Zn2xxiv2.061 (10)
Zn2—Mg1vii3.185 (3)O6—Zn2ix2.061 (10)
Zn2—Mg2viii3.076 (9)O6—V3xvii1.760 (15)
Zn2—Zn2viii3.076 (9)O7—Mg1xxiv2.081 (11)
Zn2—O3ix2.354 (8)O7—Mg1v2.081 (11)
Zn2—O3v2.354 (8)O7—Zn1xxiv2.081 (11)
Zn2—O5x1.948 (10)O7—Zn1v2.081 (11)
Zn2—O5iv1.948 (10)O7—V2xxv2.032 (11)
Zn2—O6vi2.061 (10)O7—V2xvii1.898 (15)
Zn2—O6xi2.061 (10)O8—Mg1xxiv2.120 (11)
V1—O21.757 (4)O8—Mg1v2.120 (11)
V1—O3xii1.628 (10)O8—Zn1xxiv2.120 (11)
V1—O3xiii1.628 (10)O8—Zn1v2.120 (11)
V1—O81.599 (15)O8—V11.599 (15)
V2—V2xiv3.014 (6)
Mg1i—Mg1—Mg2ii111.37 (6)O3xii—V1—O3xiii111.9 (8)
Mg1i—Mg1—O3iv133.1 (3)O3xii—V1—O8115.1 (4)
Mg1i—Mg1—O4iv131.7 (3)O3xiii—V1—O8115.1 (4)
Mg1i—Mg1—O5v86.7 (2)O1—V2—O498.7 (4)
Mg1i—Mg1—O7vi41.8 (3)O1—V2—O4xv98.7 (4)
Mg1i—Mg1—O8vi42.9 (3)O1—V2—O7xvi154.4 (6)
Mg2ii—Mg1—O3iv47.5 (3)O1—V2—O7xvii74.5 (5)
Mg2ii—Mg1—O4iv110.4 (3)O4—V2—O4xv108.5 (7)
Mg2ii—Mg1—O5v36.9 (3)O4—V2—O7xvi96.1 (4)
Mg2ii—Mg1—O7vi116.7 (3)O4—V2—O7xvii125.7 (3)
Mg2ii—Mg1—O8vi120.7 (4)O4xv—V2—O7xvi96.1 (4)
O3iv—Mg1—O4iv93.5 (3)O4xv—V2—O7xvii125.7 (3)
O3iv—Mg1—O5v84.3 (3)O7xvi—V2—O7xvii79.9 (7)
O3iv—Mg1—O7vi103.6 (5)O1xvii—V3—O5xvii99.1 (4)
O3iv—Mg1—O8vi167.9 (4)O1xvii—V3—O5xx99.1 (4)
O4iv—Mg1—O5v114.4 (4)O1xvii—V3—O6xvii114.7 (7)
O4iv—Mg1—O7vi128.8 (4)O5xvii—V3—O5xx113.8 (8)
O4iv—Mg1—O8vi94.1 (4)O5xvii—V3—O6xvii114.2 (4)
O5v—Mg1—O7vi115.1 (4)O5xx—V3—O6xvii114.2 (4)
O5v—Mg1—O8vi84.0 (5)V2—O1—V3xvii138.0 (7)
O7vi—Mg1—O8vi78.8 (4)V1—O2—V1xxi180.0
Mg1ii—Mg2—Mg1vii137.26 (13)Mg1xxii—O3—Mg2ix94.3 (4)
Mg1ii—Mg2—Mg2viii111.37 (6)Mg1xxii—O3—Zn1xxii0.0
Mg1ii—Mg2—O3ix147.6 (2)Mg1xxii—O3—V1xii145.2 (5)
Mg1ii—Mg2—O3v38.2 (2)Mg2ix—O3—Zn1xxii94.3 (4)
Mg1ii—Mg2—O5x105.2 (3)Mg2ix—O3—V1xii115.7 (4)
Mg1ii—Mg2—O5iv42.0 (3)Zn1xxii—O3—V1xii145.2 (5)
Mg1ii—Mg2—O6vi89.7 (3)Mg1xxii—O4—Zn1xxii0.0
Mg1ii—Mg2—O6xi123.3 (3)Mg1xxii—O4—V2154.6 (5)
Mg1vii—Mg2—Mg2viii111.37 (6)Zn1xxii—O4—V2154.6 (5)
Mg1vii—Mg2—O3ix38.2 (2)Mg1v—O5—Mg2xxiii101.1 (5)
Mg1vii—Mg2—O3v147.6 (2)Mg1v—O5—Zn1v0.0
Mg1vii—Mg2—O5x42.0 (3)Mg1v—O5—Zn2xxiii101.1 (5)
Mg1vii—Mg2—O5iv105.2 (3)Mg1v—O5—V3xvii116.7 (5)
Mg1vii—Mg2—O6vi123.3 (3)Mg2xxiii—O5—Zn1v101.1 (5)
Mg1vii—Mg2—O6xi89.7 (3)Mg2xxiii—O5—Zn2xxiii0.0
Mg2viii—Mg2—O3ix85.4 (2)Mg2xxiii—O5—V3xvii136.5 (5)
Mg2viii—Mg2—O3v85.4 (2)Zn1v—O5—Zn2xxiii101.1 (5)
Mg2viii—Mg2—O5x131.3 (3)Zn1v—O5—V3xvii116.7 (5)
Mg2viii—Mg2—O5iv131.3 (3)Zn2xxiii—O5—V3xvii136.5 (5)
Mg2viii—Mg2—O6vi41.7 (3)Mg2xxiv—O6—Mg2ix96.5 (6)
Mg2viii—Mg2—O6xi41.7 (3)Mg2xxiv—O6—Zn2xxiv0.0
O3ix—Mg2—O3v170.8 (4)Mg2xxiv—O6—Zn2ix96.5 (6)
O3ix—Mg2—O5x80.2 (3)Mg2xxiv—O6—V3xvii131.6 (3)
O3ix—Mg2—O5iv106.1 (4)Mg2ix—O6—Zn2xxiv96.5 (6)
O3ix—Mg2—O6vi85.2 (4)Mg2ix—O6—Zn2ix0.0
O3ix—Mg2—O6xi87.9 (4)Mg2ix—O6—V3xvii131.6 (3)
O3v—Mg2—O5x106.1 (4)Zn2xxiv—O6—Zn2ix96.5 (6)
O3v—Mg2—O5iv80.2 (3)Zn2xxiv—O6—V3xvii131.6 (3)
O3v—Mg2—O6vi87.9 (4)Zn2ix—O6—V3xvii131.6 (3)
O3v—Mg2—O6xi85.2 (4)Mg1xxiv—O7—Mg1v96.4 (6)
O5x—Mg2—O5iv97.3 (5)Mg1xxiv—O7—Zn1xxiv0.0
O5x—Mg2—O6vi164.7 (4)Mg1xxiv—O7—Zn1v96.4 (6)
O5x—Mg2—O6xi91.2 (4)Mg1xxiv—O7—V2xxv109.8 (4)
O5iv—Mg2—O6vi91.2 (4)Mg1xxiv—O7—V2xvii120.3 (4)
O5iv—Mg2—O6xi164.7 (4)Mg1v—O7—Zn1xxiv96.4 (6)
O6vi—Mg2—O6xi83.5 (6)Mg1v—O7—Zn1v0.0
O3iv—Zn1—O4iv93.5 (3)Mg1v—O7—V2xxv109.8 (4)
O3iv—Zn1—O5v84.3 (3)Mg1v—O7—V2xvii120.3 (4)
O3iv—Zn1—O7vi103.6 (5)Zn1xxiv—O7—Zn1v96.4 (6)
O3iv—Zn1—O8vi167.9 (4)Zn1xxiv—O7—V2xxv109.8 (4)
O4iv—Zn1—O5v114.4 (4)Zn1xxiv—O7—V2xvii120.3 (4)
O4iv—Zn1—O7vi128.8 (4)Zn1v—O7—V2xxv109.8 (4)
O4iv—Zn1—O8vi94.1 (4)Zn1v—O7—V2xvii120.3 (4)
O5v—Zn1—O7vi115.1 (4)V2xxv—O7—V2xvii100.1 (7)
O5v—Zn1—O8vi84.0 (5)Mg1xxiv—O8—Mg1v94.1 (7)
O7vi—Zn1—O8vi78.8 (4)Mg1xxiv—O8—Zn1xxiv0.0
O5x—Zn2—O5iv97.3 (5)Mg1xxiv—O8—Zn1v94.1 (7)
O5x—Zn2—O6vi164.7 (4)Mg1xxiv—O8—V1132.7 (3)
O5x—Zn2—O6xi91.2 (4)Mg1v—O8—Zn1xxiv94.1 (7)
O5iv—Zn2—O6vi91.2 (4)Mg1v—O8—Zn1v0.0
O5iv—Zn2—O6xi164.7 (4)Mg1v—O8—V1132.7 (3)
O6vi—Zn2—O6xi83.5 (6)Zn1xxiv—O8—Zn1v94.1 (7)
O2—V1—O3xii104.6 (3)Zn1xxiv—O8—V1132.7 (3)
O2—V1—O3xiii104.6 (3)Zn1v—O8—V1132.7 (3)
O2—V1—O8104.2 (5)
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y+3/2, z+1; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z+1; (v) x, y+1, z; (vi) x, y+1, z; (vii) x1/2, y+3/2, z; (viii) x, y+2, z+1; (ix) x, y+1, z+1; (x) x1/2, y+1/2, z; (xi) x, y+1, z+1; (xii) x, y, z+1; (xiii) x, y, z+1; (xiv) x+1, y, z+2; (xv) x, y, z; (xvi) x, y, z+1; (xvii) x+1, y, z+1; (xviii) x+1, y1, z+1; (xix) x+1, y+1, z+1; (xx) x+1, y, z+1; (xxi) x, y, z; (xxii) x+1/2, y1/2, z+1; (xxiii) x+1/2, y1/2, z; (xxiv) x, y1, z; (xxv) x, y, z1.
 

Acknowledgements

This work was supported by the Oregon State University undergraduate inter­nship program. We thank Dr S.-T. Hong at DGIST (Daegu Gyeongbuk Institute of Science and Technology) for assisting with the powder XRD data collection and for helpful discussions.

References

First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBoultif, A. & Louër, D. (2004). J. Appl. Cryst. 37, 724–731.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChang, L. L. Y. & Wang, F. Y. (1988). J. Am. Ceram. Soc. 71, 689–693.  CrossRef CAS Web of Science Google Scholar
First citationGopal, R. & Calvo, C. (1973). Can. J. Chem. 51, 1004–1009.  CrossRef ICSD CAS Web of Science Google Scholar
First citationGopal, R. & Calvo, C. (1974). Acta Cryst. B30, 2491–2493.  CrossRef ICSD IUCr Journals Web of Science Google Scholar
First citationHormillosa, C., Healy, S., Stephen, T. & Brown, I. D. (1993). Bond Valence Calculator. Version 2.0. McMaster University, Canada.  Google Scholar
First citationHuang, J., Gu, Q. & Sleight, A. W. (1994). J. Solid State Chem. 110, 226–233.  CrossRef ICSD CAS Web of Science Google Scholar
First citationKnowles, K. M., Sil, A., Stöger, B. & Weil, M. (2018). Acta Cryst. C74, 1079–1087.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationKnowles, K. M., Vickers, M. E., Sil, A., Han, Y.-H. & Jaffrenou, P. (2009). Acta Cryst. B65, 160–166.  Web of Science CrossRef ICSD IUCr Journals Google Scholar
First citationKrasnenko, T. I., Zubkov, V. G. & Tjutinskaja, E. F. (2003). Kristallografiya, 48, 40–43.  Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (2000). General Structure Analysis System (GSAS). Report LAUR. 86–748 Los Alamos National Laboratory, New Mexico, USA.  Google Scholar
First citationLaunay, S., Mahe, P., Quarton, M. & Robert, F. (1992). J. Solid State Chem. 97, 305–313.  CrossRef ICSD CAS Web of Science Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNielsen, U. G., Jakobsen, H. J., Skibsted, J. & Norby, P. (2001). J. Chem. Soc. Dalton Trans. pp. 3214–3218.  Web of Science CrossRef ICSD Google Scholar
First citationPANalytical (2011). X'Pert Data Collector and X'Pert High Score Plus. PANalytical BV, Almelo, The Netherlands.  Google Scholar
First citationRohlíček, J. & Hušák, M. (2007). J. Appl. Cryst. 40, 600–601.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRoisnel, T. & Rodríguez-Carvajal, J. (2000). WinPLOTR: a Windows tool for powder diffraction patterns analysis. Mater. Sci. Forum, Proc. 7th Europ. Powder Diff. Conf. (EPDIC 7), edited by R. Delhez & E. J. Mittenmeijer, pp. 118–123,  Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds