research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT study of 6-bromo-3-(5-bromo­hex­yl)-2-[4-(di­methyl­amino)­phen­yl]-3H-imidazo[4,5-b]pyridine

CROSSMARK_Color_square_no_text.svg

aLaboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Techniques, Road Immouzer, BP 2202 Fez, Morocco, bLaboratoire de Chimie Bioorganique Appliquée et Environnement Equipe de Chimie, Bioorganique Appliquée, Faculté des Sciences, Université Ibn Zohr, Agadir, Morocco, cLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, dDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: zainabjabri2018@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 June 2020; accepted 30 June 2020; online 10 July 2020)

In the title mol­ecule, C20H24Br2N4, the imidazo­pyridine moiety is not planar as indicated by the dihedral angle of 2.0 (2)° between the constituent rings; the 4-di­methyl­amino­phenyl ring is inclined to the mean plane of the imidazole ring by 27.4 (1)°. In the crystal, two sets of C—H⋯π(ring) inter­actions form stacks of mol­ecules extending parallel to the a-axis direction. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯H (42.2%), H⋯C/C⋯H (23.1%) and H⋯Br/Br⋯H (22.3%) inter­actions. The optimized structure calculated using density functional theory (DFT) at the B3LYP/ 6–311 G(d,p) level is compared with the experimentally determined structure in the solid state. The calculated HOMO–LUMO energy gap is 2.3591 eV.

1. Chemical context

The family of nitro­genous drugs, particularly those containing the imidazo­pyridine moiety, is important in medicinal chemistry because of their wide range of pharmacological activities such as anti­cancer, anti-inflammatory, anti­bacterial, anti-tuberculosis, anti-glycation anti-analgesic and anti­fungal properties, and their anti­oxidant potential. In particular, imadazo[4,5-b]pyridine derivatives inhibit the P-glycoprotein, which could reverse the multidrug resistance of cancer cells (Bourichi et al., 2018[Bourichi, S., Misbahi, H., Rodi, Y. K., Chahdi, F. O., Essassi, E. M., Szabó, S., Szalontai, B., Gajdács, M., Molnár, J. & Spengler, G. (2018). Anticancer Res. 38, 3999-4003.]). They are also inhibitors of type 2 diabetes because of their ability to inhibit the Baker's yeast α-glucosidase enzyme, and are inhibitors of one or more proteins in the treatment of disorders characterized by the activation of Wnt pathway signalling (for example: cancer, abnormal cellular proliferation, angiogenesis, fibrotic disorders, bone or cartilage diseases and osteoarthritis), and of genetic and neurological diseases such as PAK4 kinase 4 inhibitor activated by p21 and aurora kinase inhibitors. Imadazo[4,5-b]pyridine derivatives are also therapeutic agents for dysferlinopathies through phenotypic screening on patient-induced pluripotent stem cells (Takada et al., 2019[Takada, H., Kaieda, A., Tawada, M., Nagino, T., Sasa, K., Oikawa, T., Oki, A., Sameshima, T., Miyamoto, K., Miyamoto, M., Kokubu, Y., Tozawa, R., Sakurai, H. & Saito, B. (2019). J. Med. Chem. 62, 9175-9187.]).

Given the wide range of theraputic applications for such compounds, we have already reported a route for the preparation of imidazo[4,5-b]pyridine derivatives using N-alkyl­ation reactions carried out with di-halogenated carbon chains (Jabri et al., 2020[Jabri, Z., Jarmoni, K., Hökelek, T., Mague, J. T., Sabir, S., Kandri Rodi, Y. & Misbahi, K. (2020). Acta Cryst. E76, 677-682.]); a similar approach yielded the title compound, C20H24Br2N4,(I). Besides the synthesis, we also report the mol­ecular and crystal structures along with a Hirshfeld surface analysis and a density functional theory (DFT) computational calculation carried out at the B3LYP/6–311 G(d,p) level.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] is depicted in Fig. 1[link]. The imidazo­pyridine moiety is not planar, as indicated by the dihedral angle of 2.0 (3)° between the constituent rings. The ring of the 4-di­methyl­amino­phenyl moiety is inclined to the mean plane of the imidazole ring by 27.4 (1)°. The 5-bromo­pentyl chain is oriented in an arc-like form around the periphery of the 4-di­methyl­amino­phenyl moiety so that the terminal Br2 atom of the chain is only 4.36 (6) Å from one of the methyl C atoms (C20; Fig. 1[link]).

[Figure 1]
Figure 1
The asymmetric unit of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, stacks of mol­ecules extending along the a-axis direction are formed by inversion-related C14—H14BCg3i and C15—H15ACg3ii inter­actions [symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 2 − x, 1 − y, 1 − z] where Cg3 is the centroid of the C7–C12 phenyl ring (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C7–C12 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14BCg3vi 0.99 2.60 3.502 (4) 151
C15—H15ACg3ii 0.99 2.94 3.904 (4) 165
Symmetry codes: (ii) -x+2, -y+1, -z+1; (vi) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
A portion of one stack of mol­ecules viewed along the c-axis direction with the C—H⋯π(ring) inter­actions depicted by green dashed lines.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]) was carried out by using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). A view of the three-dimensional Hirshfeld surface of (I)[link], plotted over dnorm and electrostatic potential are shown in Fig. 3[link]a and3b. The shape-index of the HS reveals that there are no significant ππ inter­actions in (I)[link], as shown in Fig. 4[link]. The overall two-dimensional fingerprint plot (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) is shown in Fig. 5[link]a, while those delineated into H⋯H, H⋯C/C⋯H, H⋯Br/Br⋯H, H⋯N/N⋯H, C⋯Br/Br⋯C, N⋯Br/Br⋯N and N⋯C/C⋯N contacts are illustrated in Fig. 5[link]bh, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯H, contributing 42.2% to the overall crystal packing, which is reflected in Fig. 5[link]b as widely scattered points of high density due to the large hydrogen content of the mol­ecule, with the tip at de = di = 1.18 Å. In the presence of C—H⋯π inter­actions, the pair of characteristic wings in the fingerprint plot delineated into H⋯C/C⋯H contacts (23.1% contribution to the HS), Fig. 5[link]c, has the tips at de + di = 2.76 Å. The pair of scattered points of spikes in the fingerprint plot delineated into H⋯Br/Br⋯H, Fig. 5[link]d (22.3%), have the tips at de + di = 2.95 Å. The H⋯N/N⋯H contacts, Fig. 5[link]e (10.1%), have the tips at de + di = 2.56 Å. The C⋯Br/Br⋯C contacts, Fig. 5[link]f, contribute 1.2% to the HS and appear as a pair of scattered points of spikes with the tips at de + di = 3.50 Å. The N⋯Br/Br⋯N contacts, Fig. 5[link]g, contribute 1.1% to the HS appearing as pair of scattered points of spikes with the tips at de + di = 3.59 Å. Finally, the N⋯C/C⋯N contacts, Fig. 5[link]h, make only 0.1% contribution to the HS and have a low-density distribution of points.

[Figure 3]
Figure 3
(a) View of the three-dimensional Hirshfeld surface of the title compound, plotted over dnorm in the range of −0.0709 to 1.1781 a.u. (b) View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory.
[Figure 4]
Figure 4
Hirshfeld surface of the title compound plotted over shape-index.
[Figure 5]
Figure 5
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯Br/Br⋯H, (e) H⋯N/N⋯H, (f) C⋯Br/Br⋯C, (g) N⋯Br/Br⋯N and (h) N⋯C/C⋯N inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. DFT calculations

The optimized structure of (I)[link] in the gas phase was calculated by density functional theory (DFT) using a standard B3LYP functional and the 6–311 G(d,p) basis-set (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]) as implemented in GAUSSIAN 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US.]). The theoretical and experimental results related to bond lengths and angles are in good agreement (Table 2[link]). Calculated numerical values for (I)[link] including electronegativity (χ), hardness (η), potential (μ), electrophilicity (ω) and softness (σ) are collated in Table 3[link]. The electron transition from the HOMO to the LUMO energy level is shown in Fig. 6[link]. The HOMO and LUMO are localized in the plane extending ove the whole 6-bromo-3-(5-bromo­pent­yl)-2-[4-(di­methyl­amino)­phen­yl]-3-H-imidazo[4,5-b]pyridine system. The energy band gap [ΔE = ELUMO − EHOMO] of the mol­ecule is 2.3591 eV, and the frontier mol­ecular orbital energies, EHOMO and ELUMO, are −3.1033 and −0.7442 eV, respectively.

Table 2
Comparison of selected (X-ray and DFT) bond length and angles (Å, °)

  X-ray B3LYP/6–311G(d,p)
Br1—C3 1.905 (3) 1.95402
Br2—C18 1.993 (4) 2.02785
N1—C5 1.346 (4) 1.33429
N1—C4 1.347 (4) 1.37682
N2—C5 1.373 (4) 1.39261
N2—C6 1.387 (4) 1.39443
N2—C13 1.497 (4) 1.47275
N3—C6 1.321 (4) 1.33277
N3—C1 1.381 (4) 1.38362
N4—C10 1.373 (4) 1.39418
N4—C20 1.449 (5) 1.46048
N4—C19 1.464 (5) 1.46022
C5—N1—C4 112.1 (3) 114.50142
C5—N2—C6 105.4 (2) 108.33854
C5—N2—C13 124.1 (2) 118.46297
C6—N2—C13 129.9 (3) 128.08505
C6—N3—C1 105.2 (2) 107.12596
C10—N4—C20 119.7 (3) 120.14593
C10—N4—C19 120.1 (3) 120.10245
C20—N4—C19 117.7 (3) 119.74504
N3—C1—C2 131.6 (3) 134.19166
N3—C1—C5 109.6 (3) 106.29375

Table 3
Calculated energies

Mol­ecular Energy Compound (I)
Total Energy TE (eV) −167186.456
EHOMO (eV) −3.1033
ELUMO (eV) −0.7442
Gap, ΔE (eV) 2.3591
Dipole moment, μ (Debye) 6.1953
Ionization potential, I (eV) 3.1033
Electron affinity, A 0.7442
Electronegativity, χ 1.9237
Hardness, η 1.1796
Electrophilicity, index ω 1.5687
Softness, σ 0.8478
Fraction of electron transferred, ΔN 2.1518
[Figure 6]
Figure 6
The energy band gap of (I)[link].

6. Database survey

A search of the Cambridge Structural Database (CSD version 5.40, updated to March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with fragment (II) (Fig. 7[link]) and excluding metal complexes gave seven matches. Of these, two had a –CH2CH2X– (X = O, NH) chain connecting a saturated nitro­gen atom [corresponding to N2 in (I)] to an ortho position of the phenyl ring and so were considered less comparable to (I)[link] than the remainder, which can be represented by the general structure (III) (Fig. 7[link]). For R = Ph and R" = Br, examples are UCOXES (R′ = CH2COOC2H5; Hjouji et al., 2016[Hjouji, M. Y., Mague, J. T., Kandri Rodi, Y., Ouzidan, Y. & Essassi, E. M. (2016). IUCRData 1, x161999.]), UNUWIK [R′ = (1-benzyl-1H-1,2,3-triazol- 5-yl)methyl; Ouzidan et al., 2011a[Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o890-o891.]] and URAQOU [R′ = (2-oxooxazolidin-3-yl)ethyl; Ouzidan et al., 2011b[Ouzidan, Y., Jasinski, J. P., Butcher, R. J., Golen, J. A., Essassi, E. M. & El Ammari, L. (2011b). Acta Cryst. E67, o1095.]]. For R = 4-ClC6H4 and R" = Br there are two reports of the compound with R′ = 1-octyl-1H-1,2,3-triazol-4-yl)methyl [XITLUK (Bourichi et al., 2019a[Bourichi, S., Kandri Rodi, Y., Hökelek, T., Chakroune, S., Ouzidan, Y. & Capet, F. (2019a). IUCrData, 4, x190053.]) and XITLUK01 (Bourichi et al., 2019b[Bourichi, S., Kandri Rodi, Y., Hokelek, T., Ouzidan, Y., Chahdi, F., Akhazzane, M. & Essassi, E. M. (2019b). J. Maroc. Chem. Heterocycli. 18, 43-53.])]. The dihedral angle between the plane of the 4-di­methyl­amino­phenyl group and the mean plane of the imidazo­pyridine unit is ca 19° in XITLUK and ca 49° in UCOXES. Of all of these related structures, (I)[link] is the only one with the substituent on nitro­gen approximately coplanar with the imidazo­pyridine unit. In UCOXES, this substituent is directed outward and away from the phenyl group while in all the others, it is bent back over the phenyl group. In fact, in UNUWIK there is an H⋯H contact of 2.4 Å between the phenyl ring of the benzyl group and that attached to the imidazole ring.

[Figure 7]
Figure 7
Structural fragments (II) and (III) used in the database search.

7. Synthesis and crystallization

To a solution of 4-(6-bromo-3H-imidazo[4,5-b]pyridin-2-yl)-N,N-di­methyl­aniline (0.4 g, 1.25 mmol), 2.2 equivalents of potassium carbonate (0.38 g, 2.75 mmol) and 0.2 equivalents of tetra-n-butyl ammonium bromide (BTBA) (0.061 g, 0.187 mmol) in 40 ml of DMF were added in small portions to 1.5 equivalent of the 1,6-di­bromo­dodeca­nedihalogenated reagent, and the mixture was stirred magnetically at room temperature for 48 h. After removal of the salts and evaporation of DMF under reduced pressure, the product was subjected to separation by chromatography on a column of silica gel using a mixture of hexa­ne/di­chloro­methane = 1/4 (v/v) as the mobile phase. Brown single crystals suitable for X-ray diffraction were obtained by evaporation of a di­chloro­methane/hexane solution (1:4 v/v).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Hydrogen atoms were included as riding contributions in idealized positions (C—H = 0.95–0.99 Å) with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 4
Experimental details

Crystal data
Chemical formula C20H24Br2N4
Mr 480.25
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 8.1488 (11), 11.2243 (15), 12.6378 (17)
α, β, γ (°) 64.049 (2), 74.184 (2), 86.067 (2)
V3) 998.3 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 4.07
Crystal size (mm) 0.35 × 0.21 × 0.20
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.41, 0.50
No. of measured, independent and observed [I > 2σ(I)] reflections 19397, 5325, 4168
Rint 0.025
(sin θ/λ)max−1) 0.687
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.140, 1.12
No. of reflections 5325
No. of parameters 237
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.18, −0.81
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

6-Bromo-3-(5-bromohexyl)-2-[4-(dimethylamino)phenyl]-3H-imidazo[4,5-b]pyridine top
Crystal data top
C20H24Br2N4Z = 2
Mr = 480.25F(000) = 484
Triclinic, P1Dx = 1.598 Mg m3
a = 8.1488 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2243 (15) ÅCell parameters from 9203 reflections
c = 12.6378 (17) Åθ = 2.6–29.1°
α = 64.049 (2)°µ = 4.07 mm1
β = 74.184 (2)°T = 150 K
γ = 86.067 (2)°Block, brown
V = 998.3 (2) Å30.35 × 0.21 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
5325 independent reflections
Radiation source: fine-focus sealed tube4168 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 8.3333 pixels mm-1θmax = 29.2°, θmin = 1.9°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1515
Tmin = 0.41, Tmax = 0.50l = 1717
19397 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0785P)2 + 0.5344P]
where P = (Fo2 + 2Fc2)/3
5325 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 2.18 e Å3
0 restraintsΔρmin = 0.80 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 20 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.38201 (6)0.28330 (4)0.92693 (3)0.05798 (15)
Br20.95197 (4)0.93260 (3)0.34919 (3)0.04034 (12)
N10.6232 (4)0.0771 (3)0.8277 (2)0.0434 (7)
N20.6823 (4)0.2652 (3)0.6288 (2)0.0367 (6)
N30.5754 (3)0.1802 (3)0.5275 (2)0.0348 (6)
N40.8327 (4)0.7359 (3)0.0600 (3)0.0487 (7)
C10.5486 (4)0.0877 (3)0.6478 (3)0.0305 (6)
C20.4742 (4)0.0402 (3)0.7100 (3)0.0375 (7)
H20.4263420.0802590.6718490.045*
C30.4747 (4)0.1051 (3)0.8308 (3)0.0382 (7)
C40.5490 (5)0.0466 (3)0.8856 (3)0.0457 (8)
H40.5470090.0974330.9690320.055*
C50.6152 (4)0.1393 (3)0.7109 (3)0.0348 (6)
C60.6541 (4)0.2842 (3)0.5191 (3)0.0287 (6)
C70.7070 (4)0.4037 (3)0.4039 (3)0.0298 (6)
C80.7208 (4)0.5323 (3)0.3942 (3)0.0356 (6)
H80.6989940.5443980.4664830.043*
C90.7655 (4)0.6417 (3)0.2817 (3)0.0391 (7)
H90.7759460.7272310.2781060.047*
C100.7958 (4)0.6281 (3)0.1725 (3)0.0355 (6)
C110.7797 (4)0.4999 (3)0.1826 (3)0.0371 (7)
H110.7990810.4874010.1105770.044*
C120.7362 (4)0.3916 (3)0.2950 (3)0.0357 (7)
H120.7256540.3060810.2985810.043*
C130.7850 (4)0.3494 (3)0.6551 (3)0.0370 (7)
H13A0.8553600.4179530.5772410.044*
H13B0.8630390.2934470.7024360.044*
C140.6702 (5)0.4158 (3)0.7268 (3)0.0401 (7)
H14A0.6212560.3485860.8117970.048*
H14B0.5744200.4526690.6901500.048*
C150.7645 (5)0.5269 (3)0.7290 (3)0.0410 (7)
H15A0.8794310.4993330.7392150.049*
H15B0.7013430.5436490.7996810.049*
C160.7824 (4)0.6547 (3)0.6111 (3)0.0374 (7)
H16A0.8653110.6425100.5434720.045*
H16B0.6707410.6701410.5917800.045*
C170.8412 (5)0.7779 (3)0.6165 (3)0.0386 (7)
H17A0.7797300.7769180.6961020.046*
H17B0.9647940.7751620.6109890.046*
C180.8093 (5)0.9053 (3)0.5144 (3)0.0406 (7)
H18A0.8328480.9811530.5292820.049*
H18B0.6872470.9042050.5160410.049*
C190.8714 (6)0.7165 (4)0.0514 (3)0.0552 (10)
H19A0.9725940.6644500.0554840.083*
H19B0.8936160.8029850.1230100.083*
H19C0.7739280.6689790.0502520.083*
C200.8846 (7)0.8629 (4)0.0483 (4)0.0683 (13)
H20A0.7930940.8919550.0989040.103*
H20B0.9074550.9285880.0373580.103*
H20C0.9884180.8541950.0754770.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0870 (3)0.0396 (2)0.0379 (2)0.02465 (19)0.01769 (19)0.00405 (15)
Br20.0480 (2)0.03483 (19)0.03595 (19)0.00702 (14)0.00713 (14)0.01459 (14)
N10.070 (2)0.0335 (14)0.0294 (13)0.0024 (13)0.0171 (13)0.0132 (11)
N20.0564 (17)0.0280 (13)0.0286 (12)0.0006 (11)0.0137 (11)0.0133 (10)
N30.0453 (15)0.0297 (13)0.0298 (12)0.0058 (11)0.0160 (11)0.0087 (10)
N40.068 (2)0.0363 (15)0.0358 (15)0.0161 (14)0.0163 (14)0.0067 (12)
C10.0333 (14)0.0294 (14)0.0289 (14)0.0005 (11)0.0102 (11)0.0118 (11)
C20.0408 (17)0.0364 (16)0.0351 (16)0.0080 (13)0.0134 (13)0.0122 (13)
C30.0507 (19)0.0274 (14)0.0321 (15)0.0053 (13)0.0081 (13)0.0096 (12)
C40.074 (2)0.0338 (17)0.0284 (15)0.0023 (16)0.0110 (15)0.0141 (13)
C50.0517 (18)0.0257 (14)0.0290 (14)0.0020 (13)0.0107 (13)0.0137 (11)
C60.0329 (14)0.0303 (14)0.0266 (13)0.0023 (11)0.0100 (11)0.0144 (11)
C70.0328 (14)0.0272 (14)0.0293 (14)0.0023 (11)0.0127 (11)0.0099 (11)
C80.0484 (18)0.0303 (15)0.0341 (15)0.0027 (13)0.0182 (13)0.0147 (12)
C90.056 (2)0.0262 (14)0.0380 (16)0.0069 (13)0.0218 (15)0.0100 (12)
C100.0364 (16)0.0331 (15)0.0337 (15)0.0062 (12)0.0127 (12)0.0087 (12)
C110.0449 (18)0.0364 (16)0.0317 (15)0.0008 (13)0.0106 (13)0.0161 (13)
C120.0485 (18)0.0290 (15)0.0337 (16)0.0006 (13)0.0121 (13)0.0166 (13)
C130.0416 (17)0.0328 (15)0.0387 (16)0.0016 (13)0.0165 (13)0.0140 (13)
C140.0522 (19)0.0370 (17)0.0324 (16)0.0025 (14)0.0114 (14)0.0157 (13)
C150.060 (2)0.0330 (16)0.0379 (17)0.0038 (14)0.0218 (15)0.0167 (13)
C160.0467 (18)0.0334 (16)0.0367 (16)0.0051 (13)0.0157 (13)0.0157 (13)
C170.0475 (18)0.0349 (16)0.0422 (18)0.0015 (14)0.0184 (14)0.0210 (14)
C180.0502 (19)0.0333 (16)0.0441 (18)0.0022 (14)0.0165 (15)0.0199 (14)
C190.071 (3)0.049 (2)0.0316 (17)0.0067 (19)0.0104 (17)0.0059 (15)
C200.112 (4)0.0352 (19)0.051 (2)0.026 (2)0.031 (2)0.0034 (17)
Geometric parameters (Å, º) top
Br1—C31.905 (3)C11—C121.376 (4)
Br2—C181.993 (4)C11—H110.9500
N1—C51.346 (4)C12—H120.9500
N1—C41.347 (4)C13—C141.512 (5)
N2—C51.373 (4)C13—H13A0.9900
N2—C61.387 (4)C13—H13B0.9900
N2—C131.497 (4)C14—C151.523 (4)
N3—C61.321 (4)C14—H14A0.9900
N3—C11.381 (4)C14—H14B0.9900
N4—C101.373 (4)C15—C161.530 (5)
N4—C201.449 (5)C15—H15A0.9900
N4—C191.464 (5)C15—H15B0.9900
C1—C21.385 (4)C16—C171.528 (4)
C1—C51.396 (4)C16—H16A0.9900
C2—C31.376 (4)C16—H16B0.9900
C2—H20.9500C17—C181.514 (5)
C3—C41.399 (5)C17—H17A0.9900
C4—H40.9500C17—H17B0.9900
C6—C71.461 (4)C18—H18A0.9900
C7—C121.396 (4)C18—H18B0.9900
C7—C81.404 (4)C19—H19A0.9800
C8—C91.383 (4)C19—H19B0.9800
C8—H80.9500C19—H19C0.9800
C9—C101.408 (4)C20—H20A0.9800
C9—H90.9500C20—H20B0.9800
C10—C111.401 (4)C20—H20C0.9800
Br1···C11i3.734 (4)C9···H20A2.72
Br2···N1ii3.597 (3)C9···H14Bvi2.91
Br2···N2ii3.591 (3)C9···H20C2.89
Br2···C5ii3.515 (4)C11···H19C2.73
Br2···C13ii3.711 (4)C11···H19A2.81
Br1···H14Aiii3.05C12···H14Bvi2.99
Br1···H11i3.07C13···H82.66
Br2···H16A3.08C14···H82.90
Br2···H13Bii3.09C16···H82.85
Br2···H18Aiv3.06C16···H13A2.87
Br2···H19Bv3.11C19···H112.47
N1···C4iii3.380 (5)C20···H92.54
N1···H13B2.80C20···H20Bv2.92
N1···H4iii2.67C20···H20Cv2.97
N2···H82.89H2···H18Bvii2.53
N3···H122.57H8···H13A2.14
N3···H16Bvi2.84H8···H14B2.47
N3···H18Bvi2.68H8···H16A2.42
C1···C18vii3.467 (5)H8···H16B2.50
C2···C18vii3.370 (5)H9···H20A2.18
C4···C19viii3.597 (6)H9···H20C2.51
C4···C4iii3.372 (5)H11···C192.47
C8···C133.198 (5)H11···H19C2.21
C20···C20v3.279 (7)H13A···H16A2.37
C1···H18Avii2.89H13B···H15A2.57
C2···H18Bvii2.88H14B···H16B2.28
C4···H4iii2.87H15B···H17A2.40
C7···H14Bvi2.93H16B···H18B2.37
C7···H13A2.84H19B···H20B2.14
C8···H13A2.61H20B···H20Cv2.43
C8···H14Bvi2.85
C5—N1—C4112.1 (3)C14—C13—H13A109.4
C5—N2—C6105.4 (2)N2—C13—H13B109.4
C5—N2—C13124.1 (2)C14—C13—H13B109.4
C6—N2—C13129.9 (3)H13A—C13—H13B108.0
C6—N3—C1105.2 (2)C13—C14—C15112.5 (3)
C10—N4—C20119.7 (3)C13—C14—H14A109.1
C10—N4—C19120.1 (3)C15—C14—H14A109.1
C20—N4—C19117.7 (3)C13—C14—H14B109.1
N3—C1—C2131.6 (3)C15—C14—H14B109.1
N3—C1—C5109.6 (3)H14A—C14—H14B107.8
C2—C1—C5118.7 (3)C14—C15—C16111.1 (3)
C3—C2—C1115.2 (3)C14—C15—H15A109.4
C3—C2—H2122.4C16—C15—H15A109.4
C1—C2—H2122.4C14—C15—H15B109.4
C2—C3—C4122.1 (3)C16—C15—H15B109.4
C2—C3—Br1120.0 (2)H15A—C15—H15B108.0
C4—C3—Br1117.9 (2)C17—C16—C15114.3 (3)
N1—C4—C3124.2 (3)C17—C16—H16A108.7
N1—C4—H4117.9C15—C16—H16A108.7
C3—C4—H4117.9C17—C16—H16B108.7
N1—C5—N2125.4 (3)C15—C16—H16B108.7
N1—C5—C1127.6 (3)H16A—C16—H16B107.6
N2—C5—C1106.8 (3)C18—C17—C16112.2 (3)
N3—C6—N2113.0 (3)C18—C17—H17A109.2
N3—C6—C7121.8 (2)C16—C17—H17A109.2
N2—C6—C7125.3 (3)C18—C17—H17B109.2
C12—C7—C8117.0 (3)C16—C17—H17B109.2
C12—C7—C6118.3 (3)H17A—C17—H17B107.9
C8—C7—C6124.6 (3)C17—C18—Br2113.4 (2)
C9—C8—C7121.5 (3)C17—C18—H18A108.9
C9—C8—H8119.3Br2—C18—H18A108.9
C7—C8—H8119.3C17—C18—H18B108.9
C8—C9—C10121.0 (3)Br2—C18—H18B108.9
C8—C9—H9119.5H18A—C18—H18B107.7
C10—C9—H9119.5N4—C19—H19A109.5
N4—C10—C11120.6 (3)N4—C19—H19B109.5
N4—C10—C9122.0 (3)H19A—C19—H19B109.5
C11—C10—C9117.3 (3)N4—C19—H19C109.5
C12—C11—C10121.2 (3)H19A—C19—H19C109.5
C12—C11—H11119.4H19B—C19—H19C109.5
C10—C11—H11119.4N4—C20—H20A109.5
C11—C12—C7122.0 (3)N4—C20—H20B109.5
C11—C12—H12119.0H20A—C20—H20B109.5
C7—C12—H12119.0N4—C20—H20C109.5
N2—C13—C14111.0 (3)H20A—C20—H20C109.5
N2—C13—H13A109.4H20B—C20—H20C109.5
C6—N3—C1—C2179.0 (3)N3—C6—C7—C1224.9 (4)
C6—N3—C1—C50.6 (3)N2—C6—C7—C12153.7 (3)
N3—C1—C2—C3178.0 (3)N3—C6—C7—C8151.0 (3)
C5—C1—C2—C30.3 (4)N2—C6—C7—C830.4 (5)
C1—C2—C3—C41.5 (5)C12—C7—C8—C91.6 (5)
C1—C2—C3—Br1178.4 (2)C6—C7—C8—C9177.5 (3)
C5—N1—C4—C31.0 (5)C7—C8—C9—C101.2 (5)
C2—C3—C4—N11.2 (6)C20—N4—C10—C11166.9 (4)
Br1—C3—C4—N1178.2 (3)C19—N4—C10—C115.7 (5)
C4—N1—C5—N2178.8 (3)C20—N4—C10—C915.9 (6)
C4—N1—C5—C13.1 (5)C19—N4—C10—C9177.1 (3)
C6—N2—C5—N1176.1 (3)C8—C9—C10—N4177.0 (3)
C13—N2—C5—N14.1 (5)C8—C9—C10—C110.3 (5)
C6—N2—C5—C10.3 (3)N4—C10—C11—C12177.4 (3)
C13—N2—C5—C1172.3 (3)C9—C10—C11—C120.1 (5)
N3—C1—C5—N1175.8 (3)C10—C11—C12—C70.3 (5)
C2—C1—C5—N12.9 (5)C8—C7—C12—C111.2 (5)
N3—C1—C5—N20.5 (4)C6—C7—C12—C11177.4 (3)
C2—C1—C5—N2179.2 (3)C5—N2—C13—C1480.8 (4)
C1—N3—C6—N20.4 (3)C6—N2—C13—C14109.3 (4)
C1—N3—C6—C7179.1 (3)N2—C13—C14—C15166.1 (3)
C5—N2—C6—N30.0 (3)C13—C14—C15—C1680.7 (4)
C13—N2—C6—N3171.4 (3)C14—C15—C16—C17167.7 (3)
C5—N2—C6—C7178.8 (3)C15—C16—C17—C18163.7 (3)
C13—N2—C6—C77.4 (5)C16—C17—C18—Br267.2 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z+2; (iv) x+2, y+2, z+1; (v) x+2, y+2, z; (vi) x+1, y+1, z+1; (vii) x, y1, z; (viii) x, y1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C7–C12 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C14—H14B···Cg3vi0.992.603.502 (4)151
C15—H15A···Cg3ii0.992.943.904 (4)165
Symmetry codes: (ii) x+2, y+1, z+1; (vi) x+1, y+1, z+1.
Comparison of selected (X-ray and DFT) bond length and angles (Å, °) top
X-rayB3LYP/6-311G(d,p)
Br1—C31.905 (3)1.95402
Br2—C181.993 (4)2.02785
N1—C51.346 (4)1.33429
N1—C41.347 (4)1.37682
N2—C51.373 (4)1.39261
N2—C61.387 (4)1.39443
N2—C131.497 (4)1.47275
N3—C61.321 (4)1.33277
N3—C11.381 (4)1.38362
N4—C101.373 (4)1.39418
N4—C201.449 (5)1.46048
N4—C191.464 (5)1.46022
C5—N1—C4112.1 (3)114.50142
C5—N2—C6105.4 (2)108.33854
C5—N2—C13124.1 (2)118.46297
C6—N2—C13129.9 (3)128.08505
C6—N3—C1105.2 (2)107.12596
C10—N4—C20119.7 (3)120.14593
C10—N4—C19120.1 (3)120.10245
C20—N4—C19117.7 (3)119.74504
N3—C1—C2131.6 (3)134.19166
N3—C1—C5109.6 (3)106.29375
Calculated energies top
Molecular EnergyCompound (I)
Total Energy TE (eV)-167186.456
EHOMO (eV)-3.1033
ELUMO (eV)-0.7442
Gap ΔE (eV)2.3591
Dipole moment µ (Debye)6.1953
Ionisation potential I (eV)3.1033
Electron affinity A0.7442
Electronegativity χ1.9237
Hardness η1.1796
Electrophilicity index ω1.5687
Softness σ0.8478
Fraction of electron transferred ΔN2.1518
 

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. TH is grateful to the Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBourichi, S., Kandri Rodi, Y., Hökelek, T., Chakroune, S., Ouzidan, Y. & Capet, F. (2019a). IUCrData, 4, x190053.  Google Scholar
First citationBourichi, S., Kandri Rodi, Y., Hokelek, T., Ouzidan, Y., Chahdi, F., Akhazzane, M. & Essassi, E. M. (2019b). J. Maroc. Chem. Heterocycli. 18, 43–53.  Google Scholar
First citationBourichi, S., Misbahi, H., Rodi, Y. K., Chahdi, F. O., Essassi, E. M., Szabó, S., Szalontai, B., Gajdács, M., Molnár, J. & Spengler, G. (2018). Anticancer Res. 38, 3999–4003.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, US.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHjouji, M. Y., Mague, J. T., Kandri Rodi, Y., Ouzidan, Y. & Essassi, E. M. (2016). IUCRData 1, x161999.  Google Scholar
First citationJabri, Z., Jarmoni, K., Hökelek, T., Mague, J. T., Sabir, S., Kandri Rodi, Y. & Misbahi, K. (2020). Acta Cryst. E76, 677–682.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOuzidan, Y., Jasinski, J. P., Butcher, R. J., Golen, J. A., Essassi, E. M. & El Ammari, L. (2011b). Acta Cryst. E67, o1095.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., Essassi, E. M. & El Ammari, L. (2011a). Acta Cryst. E67, o890–o891.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakada, H., Kaieda, A., Tawada, M., Nagino, T., Sasa, K., Oikawa, T., Oki, A., Sameshima, T., Miyamoto, K., Miyamoto, M., Kokubu, Y., Tozawa, R., Sakurai, H. & Saito, B. (2019). J. Med. Chem. 62, 9175–9187.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds