research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Three 4-(4-fluoro­phen­yl)piperazin-1-ium salts containing organic anions: supra­molecular assembly in one, two and three dimensions

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and cSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 April 2020; accepted 13 May 2020; online 15 May 2020)

Three salts containing the 4-(4-fluoro­phen­yl)piperazin-1-ium cation have been prepared and structurally characterized. In 4-(4-fluoro­phen­yl)piperazin-1-ium 2-hy­droxy-3,5-di­nitro­benzoate, C10H14FN2+·C7H3N2O7, (I), the anion contains an intra­molecular O—H⋯O hydrogen bond, and it has a structure similar to that of the picrate ion. The cations and anions are linked into [001] chains of rings by a combination of two three-centre N—H⋯(O)2 hydrogen bonds. The anion in 4-(4-fluoro­phen­yl)piperazin-1-ium hydrogen oxalate, C10H14FN2+·C2HO4, (II), is planar, and the cations and anions are linked into (100) sheets by multiple hydrogen bonds including two-centre N—H⋯O, three-centre N—H⋯(O)2, O—H⋯O, C—H⋯O and C—H⋯π(arene) types. In 4-(4-fluoro­phen­yl)piperazin-1-ium hydrogen (2R,3R)-tartrate monohydrate, C10H14FN2+·C4H5O6·H2O, (III), the anion exhibits an approximate non-crystallographic twofold rotation symmetry with anti­periplanar carboxyl groups. A combination of eight hydrogen bonds, encompassing two- and three-centre N—H⋯O systems, O—H⋯O and C—H⋯π(arene) types, link the independent components into a three-dimensional framework. Comparisons are made with some related structures.

1. Chemical context

N-(4-fluoro­phen­yl)piperazine (4-FPP) is a major metabolite (Keane et al., 1982[Keane, P. E., Benedetti, M. S. & Dow, J. (1982). Neuropharmacology, 21, 163-169.]; Sanjuan et al., 1983[Sanjuan, M., Rovei, V., Dow, J. & Benedetti, R. S. (1983). Int. J. Mass Spectrom. Ion Phys. 48, 93-96.]) of the sedative and hypnotic drug niaprazine (N-{4-[4-(4-fluoro­phen­yl)piperazin-1-yl]butan-2-yl}pyridine-3-carboxamide), used in the treatment of autistic disorders (Rossi et al., 1999[Rossi, P. G., Posar, A., Parmeggiani, A., Pipitone, E. & D'Agata, M. (1999). J. Child Neurol. 14, 547-550.]). 4-FPP itself has mildly psychedelic and euphorigenic properties and, in this respect, it exhibits effects similar to those of the related compound N-(4-meth­oxy­phen­yl)piperazine (MeOPP), also used as a recreational drug (Nagai et al., 2007[Nagai, F., Nonaka, R. & Kamimura, K. S. H. (2007). Eur. J. Pharmacol. 559, 132-137.]).

We have recently reported the structure of MeOPP and those of a number of salts derived from it (Kiran Kumar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.], 2020[Kiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488-495.]). With the similarities of action between MeOPP and 4-FPP in mind, we have now prepared and structurally characterized a selection of salts derived from 4-FPP, namely 4-(4-fluoro­phen­yl)piperazin-1-ium 2-hy­droxy-3,5-di­nitro­benzoate (I)[link], 4-(4-fluoro­phen­yl)piperazin-1-ium hydrogenoxalate (II)[link] and 4-(4-fluoro­phen­yl)piperazin-1-ium (2R,3R)-hydrogentartrate, which crystallizes from ethyl acetate as a monohydrate (III)[link].

[Scheme 1]

2. Structural commentary

Compounds (I)–(III) are all 1:1 salts (Figs. 1[link]–3[link][link]) in which a single proton has been transferred from the diprotic acid component to the 4-(4-fluoro­phen­yl)piperazine component: of these, (I)[link] and (II)[link] both crystallize in solvent-free form, but (III)[link] crystallizes as a monohydrate. Since a single enanti­omer of tartaric acid, the (2R,3R) form, was used in the synthesis of (III)[link], which occurred under very mild conditions unlikely to induce any stereochemical changes, only a single enanti­omer is present in the product, which therefore crystallizes in a Sohncke space group containing neither inversion nor reflection (mirror or glide) operations, here P212121.

[Figure 1]
Figure 1
The independent components of compound (I)[link] showing the atom-labelling scheme and the hydrogen bonds (drawn as dashed lines) within the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The independent components of compound (II)[link] showing the atom-labelling scheme and the hydrogen bonds (drawn as dashed lines) within the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The independent components of compound (III)[link] showing the atom-labelling scheme and the hydrogen bonds (drawn as dashed lines) within the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level.

In each of (I)–(III), the piperazine ring adopts an almost perfect chair conformation, with the 4-fluoro­phenyl substit­uent occupying an equatorial site. The value of the ring-puckering angle θ (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]), calculated for the atom sequence (N1,C2,C3,N4,C5,C6), ranges from to 2.0 (4)° in (III)[link] to 4.85 (12)° in (II)[link], very close to the ideal value of zero for a perfect chair form (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]).

In the anions in each of compounds (I)–(III), the location of the remaining acidic H atom was initially deduced from difference-Fourier maps, and then confirmed by refinement of the atomic coordinates, reinforced by inspection of the final difference-Fourier map and of the relevant C—O bond lengths, where the single and double bonds have distances entirely typical of their types (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

In the anion of compound (I)[link] (Fig. 1[link]), it is the phenolic proton that has been transferred rather than the carboxyl proton; this was confirmed as described above. The other bond lengths in this anion show some inter­esting features. Firstly, the distance C32—O33, 1.2719 (18) Å, is much closer to the values typically found in cyclo­hexa­nones (mean value, 1.211 Å) than to those found in phenols (mean value 1.362 Å); secondly, the bond lengths C31—C32 and C32—C33, 1.441 (2) and 1.4318 (19) Å, respectively, are much longer than the other C—C distances in this ring, which lie in the range from 1.368 (2) to 1.388 (2) Å. The bond lengths in the anion, taken together, thus indicate extensive delocalization of the negative charge away from atom O33 and onto the aromatic ring atoms C31,C33,C34,C35,C36 (cf. Scheme), as has been observed in picrate (2,4,6-tri­nitro­phenolate) anions (Sagar et al., 2017[Sagar, B. K., Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). Acta Cryst. E73, 1320-1325.]; Shaibah et al., 2017a[Shaibah, M. A. E., Sagar, B. K., Yathirajan, H. S., Kumar, S. M. & Glidewell, C. (2017a). Acta Cryst. E73, 1513-1516.],b[Shaibah, M. A. E., Yathirajan, H. S., Kumar, S. M., Byrappa, K. & Glidewell, C. (2017b). Acta Cryst. E73, 1488-1492.]). However, this anion is not completely planar: the substituents at atoms C31, C33 and C35 make dihedral angles with the plane of the ring of 7.62 (16), 9.31 (12), and 10.9 (2)°, respectively.

By contrast, the anion in compound (II)[link] (Fig. 2[link]) is planar: the r.m.s. deviation from the mean plane through the non-H atoms is only 0.014 Å, with a maximum individual deviation from this plane of 0.0186 (6) Å for atom O34. In the anion of (III)[link], the carboxyl and carboxyl­ate groups are anti­periplanar, as shown by the value of −178.81 (10)° for the torsional angle C31—C32—C33—C34, while the disposition of the two hydroxyl groups is indicated by the value of −66.5 (3)° for the torsional angle O33—C32—C33—O34. Together with the torsional angles O31—C32—C33—C34 and O36—C34—C33—C32, 64.7 (4)° and 59.5 (3)°, respectively, the torsional angles overall indicate that the non-H atoms in this anion exhibit approximate, although non-crystallographic, two-fold rotation symmetry.

3. Supra­molecular features

Within the selected asymmetric unit for compound (I)[link] (Fig. 1[link]), the anion contains an intra­molecular O—H⋯O hydrogen bond (Table 1[link]), generating an S(6) motif (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), and the cation and anion are linked by a three-centre N—H⋯(O)2 system to form an R12(6) motif. Ion pairs of this type, which are related by the c glide plane at y = 0.25, are linked by a second, rather asymmetric, three-centre system via an R12(4) motif to form a chain of rings running parallel to [001] (Fig. 4[link]). There is also a short C—H⋯O contact (Table 1[link]), which lies within the chain of rings: however, the small C—H⋯O angle indicates that the inter­action energy is likely to be very small (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]), so that this is probably best regarded as an adventitious contact of little structural significance.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O33 0.90 (2) 2.014 (19) 2.7968 (18) 144.8 (15)
N1—H11⋯O34 0.90 (2) 2.352 (19) 3.049 (2) 134.4 (14)
N1—H12⋯O31i 0.912 (19) 2.075 (19) 2.959 (2) 163.0 (17)
N1—H12⋯O32i 0.912 (19) 2.487 (18) 3.1576 (19) 130.7 (15)
O32—H32⋯O33 0.97 (3) 1.55 (3) 2.4676 (17) 157 (3)
C2—H2B⋯O35ii 0.97 2.51 3.313 (2) 140
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
Part of the crystal structure of compound (I)[link] showing the formation of a hydrogen-bonded chain of rings running parallel to [001]. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.

The component ions in compound (II)[link] (Fig. 2[link]) are linked by a single N—H⋯O hydrogen bond (Table 2[link]). The ion pairs, which are related by a 21 screw axis along (0.5, y, 0.25), are linked by a combination of an asymmetric three-centre N—H⋯(O)2 hydrogen bond and a two-centre O—H⋯O hydrogen bond (Table 2[link]) to form a complex chain of rings running parallel to the [010] direction (Fig. 5[link]). This chain is reinforced by two C—H⋯O hydrogen bonds, involving methyl­ene atoms C2 and C6 as the donors. However, the combination of the C—H⋯O hydrogen bond having methyl­ene atom C5 as the donor and the C—H⋯π(arene) hydrogen bond having atom C2 as the donor links ion pairs, which are related by the c glide plane at y = 0.75, to form a second chain of rings, this time running parallel to the [001] direction (Fig. 6[link]). The combination of chains along [010] and [001] generates a complex sheet lying parallel to (100). There is a fairly short O⋯C contact between inversion-related anions, with a distance O31⋯C32i [symmetry code: (i) 1 − x, 1 − y, 2 − z] of 3.0108 (14) Å, but it is unclear whether this has any structural significance.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O32 0.918 (16) 1.896 (16) 2.7769 (14) 160.2 (15)
N1—H12⋯O31i 0.920 (16) 1.902 (17) 2.7507 (14) 152.6 (15)
N1—H12⋯O34i 0.920 (16) 2.354 (16) 2.9588 (14) 123.1 (13)
O34—H34⋯O32ii 0.908 (17) 1.712 (17) 2.6102 (12) 170.0 (17)
C2—H2A⋯O33iii 0.97 2.54 3.4454 (15) 155
C5—H5A⋯O32iv 0.97 2.45 3.3849 (15) 163
C6—H6B⋯O31v 0.97 2.50 3.4259 (15) 159
C2—H2BCg1vi 0.97 2.65 3.6124 (14) 170
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z; (iii) x, y+1, z; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 5]
Figure 5
Part of the crystal structure of compound (II)[link] showing the formation of a hydrogen-bonded chain of rings running parallel to the [010] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 6]
Figure 6
Part of the crystal structure of compound (II)[link] showing the formation of a chain of rings running parallel to the [001] direction and built from C—H⋯O and C—H⋯π(arene) hydrogen bonds. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to the C atoms not involved in the motif shown have been omitted.

The supra­molecular assembly in the monohydrate (III)[link] is more complex than that in either (I)[link] or (II)[link], and it is three-dimensional as opposed to the one- and two-dimensional assembly in (I)[link] and (II)[link], respectively. However, the three-dimensional assembly in (III)[link] can readily be analysed in terms of some simpler sub-structures (Ferguson et al., 1998a[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129-138.],b[Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139-150.]; Gregson et al., 2000[Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39-57.]). Within the asymmetric unit (Fig. 3[link]), the components are linked by two N—H⋯O hydrogen bonds and one O—H⋯O hydrogen bond (Table 3[link]), forming a compact aggregate containing an R33(11) motif (Fig. 3[link]). The inter-aggregate hydrogen bonds having atoms O36 and O41 as the donors link aggregates related by translation to form a sheet lying parallel to (001) in the domain 0.5 < z < 1.0 (Fig. 7[link]). A second sheet of this type, related to the first by the 21 screw axes parallel to [100], lies in the domain 0 < z < 0.5 and adjacent sheets of this type are linked into a bilayer by a combination of N—H⋯O and O—H⋯O hydrogen bonds (Table 3[link]). Finally, the bilayers are linked into a continuous three-dimensional structure by a single C—H⋯π(arene) hydrogen bond: in combination with the N—H⋯O hydrogen bond linking the ion pairs within the asymmetric unit, this C—H⋯π inter­action generates a chain running parallel to the [001] direction (Fig. 8[link]), thereby linking adjacent bilayers.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

Cg1 represents the centroid of the ring (C21–C26).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O36 0.87 (4) 2.31 (4) 2.929 (4) 128 (3)
N1—H11⋯O35i 0.87 (4) 2.17 (4) 2.855 (4) 136 (3)
N1—H12⋯O41 0.92 (4) 1.83 (4) 2.740 (5) 169 (3)
O33—H33⋯O34ii 0.80 (4) 2.10 (4) 2.805 (3) 146 (3)
O34—H34⋯O31ii 0.81 (4) 2.07 (4) 2.806 (3) 151 (4)
O36—H36⋯O32iii 0.95 (4) 1.53 (4) 2.470 (3) 175 (3)
O41—H41⋯O31 0.96 (5) 1.82 (5) 2.771 (4) 178 (5)
O41—H42⋯O33iv 0.78 (5) 2.00 (5) 2.754 (4) 163 (5)
C25—H25⋯Cg1v 0.93 2.86 3.649 (5) 144
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) x, y-1, z; (iv) x-1, y, z; (v) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 7]
Figure 7
Part of the crystal structure of compound (III)[link] showing the formation of a hydrogen-bonded sheet lying parallel to (001). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms bonded to C atoms have been omitted.
[Figure 8]
Figure 8
Part of the crystal structure of compound (III)[link] showing the formation of a hydrogen-bonded chain of cations and anions running parallel to the [001] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the water mol­ecules and the H atoms not involved in the motif shown have been omitted.

4. Related structures

It is of inter­est briefly to compare the structures reported here with those of some closely related compounds. An obvious comparison is between compound (I)[link], reported here and the analogous salt (IV)[link] derived from MeOPP (Kiran Kumar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.]). Although (I)[link] and (IV)[link] both crystallize in space-group type P21/c, their unit-cell dimensions are very different, as is the manner of their supra­molecular assembly. Thus, in the structure of (IV), a combination of N—H⋯O and C—H⋯O hydrogen bonds links the component ions into a chain of centrosymmetric rings in which rings of R22(10) and R64(16) types alternate, with chains of this type linked by C—H⋯π(arene) hydrogen bonds to form a three-dimensional network, as compared with the one-dimensional assembly in (I)[link]. Thus a change in one small passive substituent between compounds (I)[link] and (IV)[link] is associated with a considerable change in the crystal structure. The constitution of compound (II)[link] has some resemblance to the hydrogensuccinate (V)[link] and hydrogenfumarate (VI)[link] salts of MeOPP, in both of which anions exhibits some disorder (Kiran Kumar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494-1506.]). In each of (V)[link] and (VI)[link] the component ions are linked by a combination of O—H⋯O and N—H⋯O hydrogen bonds to form sheets, which are in turn linked into a three-dimensional assembly by C—H⋯π(arene) hydrogen bonds, as compared to the two dimensional assembly in (II)[link]. We also note that structures have been reported for 4-[bis­(4-fluoro­phen­yl)meth­yl)piperazine (VII)[link] (Dayananda et al., 2012a[Dayananda, A. S., Dutkiewicz, G., Yathirajan, H. S., Ramesha, A. R. & Kubicki, M. (2012a). Acta Cryst. E68, o2817.]), and for its 1-acetyl derivative (VIII)[link] (Dayananda et al., 2012b[Dayananda, A. S., Yathirajan, H. S., Keeley, A. C. & Jasinski, J. P. (2012b). Acta Cryst. E68, o2237.]), both of which are inter­mediates on the synthetic pathway to the calcium-channel blocker flunarizine, 1-[bis­(4-fluoro­phen­yl)meth­yl]-4-cinnamyl-piperazine (IX)[link] (Prasanna & Row, 2001[Prasanna, M. D. & Row, T. N. G. (2001). J. Mol. Struct. 562, 55-61.]).

[Scheme 2]

5. Synthesis and crystallization

All starting materials were obtained commercially, and all were used as received. For the preparation of compounds (I)–(III), N-(4-fluoro­phen­yl)piperazine (100 mg, 0.55 mmol) was dissolved in methanol (10 ml) and a solution of the appropriate acid (0.55 mmol) in methanol (10 ml) [2-hy­droxy-3,5-di­nitro­benzoic acid, 125.5 mg for (I)[link], oxalic acid, 49.5 mg for (II)[link], and (2R,3R)-tartaric acid, 82.5 mg for (III)] was then added; the mixtures were briefly stirred at 323 K before being set aside at ambient temperature to crystallize. After two days, the resulting solid products were collected by filtration and dried in air. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in ethyl acetate for (I)[link] and (III)[link], or in methanol for (II)[link]: m.p. (I)[link] 460–463 K, (II)[link] 421–425 K, (III)[link] 437–441 K.

6. Refinement

Crystal data, data collection and refinement details are summarized in Table 4[link]. All H atoms were located in difference-Fourier maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances 0.93 Å (aromatic), 0.97 Å (CH2), or 0.98 Å (aliphatic C—H) and with Uiso(H) = 1.2Ueq(C). The H atoms bonded to N or O atoms were refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O), giving the N—H and O—H distances shown in Tables 1[link]–3[link][link]. In the absence of significant resonant scattering in compound (III)[link], the Flack x parameter (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) was indeterminate (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]): thus the value of x, calculated (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) using 683 quotients of type [(I+) − (I)]/[(I+) + (I)], was −1.5 (7). Since a single enanti­omer, the (2R,3R) form, of tartaric acid was used in the preparation of compound (III)[link], the absolute configuration in the crystal of (III)[link] was set on this basis.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C10H14FN2+·C7H3N2O7 C10H14FN2+·C2HO4 C10H14FN2+·C4H5O6·H2O
Mr 408.35 270.26 348.33
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Orthorhombic, P212121
Temperature (K) 293 293 293
a, b, c (Å) 10.6829 (6), 13.1701 (6), 13.5563 (7) 17.0606 (6), 5.7820 (2), 12.5815 (5) 7.0961 (4), 7.4967 (4), 30.757 (2)
α, β, γ (°) 90, 108.970 (5), 90 90, 102.761 (4), 90 90, 90, 90
V3) 1803.71 (17) 1210.44 (8) 1636.19 (17)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.13 0.12 0.12
Crystal size (mm) 0.50 × 0.44 × 0.34 0.34 × 0.34 × 0.28 0.40 × 0.22 × 0.10
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD Oxford Diffraction Xcalibur with Sapphire CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.])
Tmin, Tmax 0.874, 0.958 0.877, 0.966 0.904, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 7194, 3905, 2845 4450, 2596, 2237 4553, 3036, 2347
Rint 0.011 0.009 0.019
(sin θ/λ)max−1) 0.656 0.656 0.656
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.03 0.033, 0.089, 1.03 0.045, 0.085, 1.14
No. of reflections 3905 2596 3036
No. of parameters 271 182 238
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.20 0.32, −0.14 0.18, −0.21
Absolute structure Flack x determined using 683 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

4-(4-Fluorophenyl)piperazin-1-ium 2-hydroxy-3,5-dinitrobenzoate (I) top
Crystal data top
C10H14FN2+·C7H3N2O7F(000) = 848
Mr = 408.35Dx = 1.504 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.6829 (6) ÅCell parameters from 3905 reflections
b = 13.1701 (6) Åθ = 2.6–27.8°
c = 13.5563 (7) ŵ = 0.13 mm1
β = 108.970 (5)°T = 293 K
V = 1803.71 (17) Å3Block, yellow
Z = 40.50 × 0.44 × 0.34 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3905 independent reflections
Radiation source: Enhance (Mo) X-ray Source2845 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ω scansθmax = 27.8°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 138
Tmin = 0.874, Tmax = 0.958k = 1712
7194 measured reflectionsl = 1117
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.4487P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3905 reflectionsΔρmax = 0.29 e Å3
271 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.23326 (15)0.37624 (11)0.56770 (10)0.0410 (3)
H110.2339 (18)0.3081 (15)0.5648 (13)0.049*
H120.1870 (18)0.3961 (14)0.6103 (14)0.049*
C20.16795 (18)0.41660 (13)0.46103 (12)0.0458 (4)
H2A0.07540.39690.43690.055*
H2B0.20980.38830.41350.055*
C30.17888 (16)0.53003 (12)0.46196 (13)0.0446 (4)
H3A0.13730.55610.39200.054*
H3B0.13280.55830.50660.054*
N40.31711 (13)0.56110 (10)0.49976 (10)0.0386 (3)
C50.38008 (18)0.52566 (14)0.60598 (13)0.0507 (4)
H5A0.33660.55580.65150.061*
H5B0.47210.54660.63020.061*
C60.37196 (18)0.41196 (14)0.61064 (15)0.0527 (4)
H6A0.42380.38200.57120.063*
H6B0.40930.38980.68250.063*
C210.34479 (15)0.66117 (12)0.47504 (12)0.0369 (3)
C220.29655 (18)0.69322 (13)0.37175 (13)0.0481 (4)
H220.24180.65020.32180.058*
C230.3279 (2)0.78703 (14)0.34172 (15)0.0545 (5)
H230.29480.80740.27240.065*
C240.40826 (18)0.84938 (13)0.41541 (16)0.0505 (4)
F240.44076 (13)0.94182 (8)0.38489 (10)0.0748 (4)
C250.45600 (18)0.82219 (13)0.51707 (16)0.0533 (5)
H250.51010.86640.56600.064*
C260.42392 (17)0.72812 (13)0.54787 (13)0.0464 (4)
H260.45570.70970.61790.056*
C370.15341 (16)0.07140 (13)0.28960 (12)0.0422 (4)
O310.11601 (13)0.02065 (10)0.21079 (8)0.0549 (3)
O320.19930 (15)0.16315 (11)0.28736 (10)0.0644 (4)
H320.224 (3)0.1886 (19)0.358 (2)0.097*
C310.15560 (14)0.03293 (11)0.39367 (11)0.0336 (3)
C320.21010 (14)0.09577 (11)0.48464 (11)0.0328 (3)
O330.24279 (12)0.18739 (8)0.47606 (8)0.0461 (3)
C330.22155 (15)0.04718 (11)0.58166 (11)0.0346 (3)
C340.17610 (15)0.04917 (12)0.58678 (12)0.0384 (4)
H340.18440.07820.65110.046*
C350.11827 (15)0.10288 (12)0.49668 (12)0.0379 (3)
C360.10914 (14)0.06281 (12)0.39986 (12)0.0365 (3)
H360.07170.10080.33960.044*
N330.28212 (14)0.09929 (11)0.68062 (10)0.0456 (3)
O340.33859 (15)0.17925 (10)0.68299 (10)0.0654 (4)
O350.2769 (2)0.05901 (14)0.75965 (10)0.0944 (6)
N350.06646 (15)0.20338 (11)0.50384 (13)0.0497 (4)
O360.09063 (16)0.24215 (11)0.58996 (12)0.0768 (5)
O370.00086 (15)0.24444 (10)0.42356 (12)0.0668 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0566 (9)0.0317 (7)0.0400 (7)0.0031 (6)0.0228 (6)0.0008 (6)
C20.0570 (10)0.0409 (9)0.0380 (8)0.0130 (8)0.0132 (7)0.0001 (7)
C30.0416 (9)0.0372 (9)0.0506 (9)0.0068 (7)0.0088 (7)0.0042 (7)
N40.0405 (7)0.0348 (7)0.0378 (7)0.0064 (6)0.0091 (5)0.0011 (5)
C50.0513 (10)0.0503 (10)0.0426 (9)0.0115 (8)0.0044 (8)0.0038 (8)
C60.0504 (10)0.0503 (11)0.0544 (10)0.0019 (8)0.0131 (8)0.0131 (9)
C210.0373 (8)0.0338 (8)0.0422 (8)0.0041 (6)0.0166 (6)0.0040 (6)
C220.0613 (11)0.0398 (9)0.0434 (9)0.0120 (8)0.0171 (8)0.0032 (7)
C230.0682 (12)0.0464 (10)0.0528 (10)0.0056 (9)0.0251 (9)0.0068 (8)
C240.0522 (10)0.0331 (9)0.0740 (13)0.0064 (8)0.0313 (9)0.0020 (8)
F240.0864 (9)0.0408 (6)0.1059 (10)0.0168 (6)0.0432 (7)0.0086 (6)
C250.0485 (10)0.0404 (10)0.0705 (12)0.0149 (8)0.0187 (9)0.0135 (9)
C260.0464 (9)0.0439 (10)0.0466 (9)0.0088 (8)0.0121 (7)0.0059 (7)
C370.0451 (9)0.0506 (10)0.0317 (8)0.0017 (8)0.0138 (7)0.0028 (7)
O310.0654 (8)0.0674 (8)0.0314 (6)0.0048 (7)0.0151 (5)0.0039 (6)
O320.1018 (11)0.0559 (8)0.0392 (7)0.0167 (8)0.0279 (7)0.0062 (6)
C310.0340 (7)0.0384 (8)0.0304 (7)0.0037 (6)0.0132 (6)0.0013 (6)
C320.0346 (7)0.0330 (8)0.0337 (7)0.0025 (6)0.0152 (6)0.0016 (6)
O330.0662 (8)0.0337 (6)0.0416 (6)0.0063 (5)0.0219 (5)0.0001 (5)
C330.0364 (8)0.0376 (8)0.0312 (7)0.0025 (6)0.0126 (6)0.0002 (6)
C340.0393 (8)0.0419 (9)0.0370 (8)0.0051 (7)0.0165 (7)0.0095 (7)
C350.0362 (8)0.0323 (8)0.0476 (9)0.0007 (6)0.0169 (7)0.0039 (7)
C360.0341 (8)0.0374 (8)0.0387 (8)0.0005 (6)0.0130 (6)0.0037 (6)
N330.0534 (8)0.0503 (9)0.0327 (7)0.0013 (7)0.0133 (6)0.0002 (6)
O340.0900 (11)0.0529 (8)0.0464 (7)0.0153 (7)0.0128 (7)0.0104 (6)
O350.1494 (17)0.0992 (13)0.0325 (7)0.0423 (11)0.0265 (8)0.0008 (7)
N350.0475 (8)0.0385 (8)0.0662 (10)0.0035 (6)0.0228 (7)0.0050 (7)
O360.0962 (11)0.0551 (9)0.0759 (10)0.0183 (8)0.0235 (8)0.0238 (8)
O370.0731 (9)0.0487 (8)0.0777 (10)0.0215 (7)0.0232 (8)0.0112 (7)
Geometric parameters (Å, º) top
N1—C61.481 (2)C24—F241.3664 (19)
N1—C21.485 (2)C25—C261.386 (2)
N1—H110.898 (19)C25—H250.9300
N1—H120.912 (19)C26—H260.9300
C2—C31.498 (2)C37—O311.2125 (19)
C2—H2A0.9700C37—O321.308 (2)
C2—H2B0.9700C37—C311.492 (2)
C3—N41.456 (2)O32—H320.97 (3)
C3—H3A0.9700C31—C361.368 (2)
C3—H3B0.9700C31—C321.441 (2)
N4—C211.4147 (19)C32—O331.2719 (18)
N4—C51.454 (2)C32—C331.4318 (19)
C5—C61.502 (2)C33—C341.368 (2)
C5—H5A0.9700C33—N331.4578 (19)
C5—H5B0.9700C34—C351.372 (2)
C6—H6A0.9700C34—H340.9300
C6—H6B0.9700C35—C361.388 (2)
C21—C261.387 (2)C35—N351.450 (2)
C21—C221.391 (2)C36—H360.9300
C22—C231.376 (2)N33—O341.2089 (19)
C22—H220.9300N33—O351.2129 (18)
C23—C241.361 (3)N35—O371.2187 (19)
C23—H230.9300N35—O361.2224 (19)
C24—C251.353 (3)
C6—N1—C2111.24 (13)C24—C23—H23120.6
C6—N1—H11108.3 (12)C22—C23—H23120.6
C2—N1—H11108.8 (11)C25—C24—C23121.80 (16)
C6—N1—H12109.8 (11)C25—C24—F24119.70 (17)
C2—N1—H12109.5 (11)C23—C24—F24118.50 (17)
H11—N1—H12109.1 (16)C24—C25—C26119.69 (16)
N1—C2—C3109.76 (13)C24—C25—H25120.2
N1—C2—H2A109.7C26—C25—H25120.2
C3—C2—H2A109.7C25—C26—C21120.47 (16)
N1—C2—H2B109.7C25—C26—H26119.8
C3—C2—H2B109.7C21—C26—H26119.8
H2A—C2—H2B108.2O31—C37—O32120.48 (15)
N4—C3—C2110.53 (14)O31—C37—C31123.05 (16)
N4—C3—H3A109.5O32—C37—C31116.42 (14)
C2—C3—H3A109.5C37—O32—H32106.3 (15)
N4—C3—H3B109.5C36—C31—C32122.05 (13)
C2—C3—H3B109.5C36—C31—C37118.46 (13)
H3A—C3—H3B108.1C32—C31—C37119.46 (13)
C21—N4—C5117.95 (13)O33—C32—C33124.33 (13)
C21—N4—C3116.41 (13)O33—C32—C31120.87 (13)
C5—N4—C3110.38 (13)C33—C32—C31114.80 (13)
N4—C5—C6110.31 (14)C34—C33—C32122.36 (13)
N4—C5—H5A109.6C34—C33—N33116.65 (13)
C6—C5—H5A109.6C32—C33—N33120.98 (13)
N4—C5—H5B109.6C33—C34—C35119.82 (14)
C6—C5—H5B109.6C33—C34—H34120.1
H5A—C5—H5B108.1C35—C34—H34120.1
N1—C6—C5111.34 (15)C34—C35—C36121.23 (14)
N1—C6—H6A109.4C34—C35—N35118.82 (14)
C5—C6—H6A109.4C36—C35—N35119.95 (14)
N1—C6—H6B109.4C31—C36—C35119.54 (14)
C5—C6—H6B109.4C31—C36—H36120.2
H6A—C6—H6B108.0C35—C36—H36120.2
C26—C21—C22117.66 (15)O34—N33—O35121.56 (15)
C26—C21—N4123.34 (14)O34—N33—C33120.20 (13)
C22—C21—N4118.92 (14)O35—N33—C33118.22 (15)
C23—C22—C21121.61 (16)O37—N35—O36123.20 (15)
C23—C22—H22119.2O37—N35—C35118.20 (15)
C21—C22—H22119.2O36—N35—C35118.59 (15)
C24—C23—C22118.74 (17)
C6—N1—C2—C354.64 (19)O32—C37—C31—C321.7 (2)
N1—C2—C3—N458.34 (18)C36—C31—C32—O33174.27 (14)
C2—C3—N4—C21160.93 (13)C37—C31—C32—O337.8 (2)
C2—C3—N4—C561.10 (18)C36—C31—C32—C334.9 (2)
C21—N4—C5—C6163.70 (14)C37—C31—C32—C33173.01 (13)
C3—N4—C5—C659.05 (19)O33—C32—C33—C34175.03 (14)
C2—N1—C6—C553.7 (2)C31—C32—C33—C344.1 (2)
N4—C5—C6—N155.5 (2)O33—C32—C33—N334.5 (2)
C5—N4—C21—C262.9 (2)C31—C32—C33—N33176.36 (13)
C3—N4—C21—C26131.79 (17)C32—C33—C34—C350.6 (2)
C5—N4—C21—C22173.56 (16)N33—C33—C34—C35179.81 (14)
C3—N4—C21—C2251.7 (2)C33—C34—C35—C362.4 (2)
C26—C21—C22—C231.3 (3)C33—C34—C35—N35177.75 (14)
N4—C21—C22—C23175.35 (16)C32—C31—C36—C352.2 (2)
C21—C22—C23—C240.1 (3)C37—C31—C36—C35175.71 (14)
C22—C23—C24—C251.1 (3)C34—C35—C36—C311.6 (2)
C22—C23—C24—F24178.99 (16)N35—C35—C36—C31178.55 (14)
C23—C24—C25—C260.6 (3)C34—C33—N33—O34171.04 (15)
F24—C24—C25—C26179.47 (16)C32—C33—N33—O349.4 (2)
C24—C25—C26—C210.9 (3)C34—C33—N33—O357.2 (2)
C22—C21—C26—C251.8 (2)C32—C33—N33—O35172.40 (16)
N4—C21—C26—C25174.71 (15)C34—C35—N35—O37169.81 (15)
O31—C37—C31—C362.3 (2)C36—C35—N35—O3710.4 (2)
O32—C37—C31—C36179.71 (15)C34—C35—N35—O369.1 (2)
O31—C37—C31—C32175.74 (15)C36—C35—N35—O36170.72 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O330.90 (2)2.014 (19)2.7968 (18)144.8 (15)
N1—H11···O340.90 (2)2.352 (19)3.049 (2)134.4 (14)
N1—H12···O31i0.912 (19)2.075 (19)2.959 (2)163.0 (17)
N1—H12···O32i0.912 (19)2.487 (18)3.1576 (19)130.7 (15)
O32—H32···O330.97 (3)1.55 (3)2.4676 (17)157 (3)
C2—H2B···O35ii0.972.513.313 (2)140
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
4-(4-Fluorophenyl)piperazin-1-ium hydrogen oxalate (II) top
Crystal data top
C10H14FN2+·C2HO4F(000) = 568
Mr = 270.26Dx = 1.483 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.0606 (6) ÅCell parameters from 2596 reflections
b = 5.7820 (2) Åθ = 3.3–27.8°
c = 12.5815 (5) ŵ = 0.12 mm1
β = 102.761 (4)°T = 293 K
V = 1210.44 (8) Å3Block, colourless
Z = 40.34 × 0.34 × 0.28 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
2596 independent reflections
Radiation source: Enhance (Mo) X-ray Source2237 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.009
ω scansθmax = 27.8°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1622
Tmin = 0.877, Tmax = 0.966k = 75
4450 measured reflectionsl = 169
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.346P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.32 e Å3
2596 reflectionsΔρmin = 0.14 e Å3
182 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0084 (12)
Primary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.34076 (6)0.76074 (19)0.62909 (9)0.0310 (2)
H110.3629 (9)0.731 (3)0.7011 (13)0.037*
H120.3813 (9)0.831 (3)0.6035 (12)0.037*
C20.27227 (7)0.9240 (2)0.62039 (10)0.0316 (3)
H2A0.29111.06810.65660.038*
H2B0.23240.85840.65590.038*
C30.23469 (8)0.9699 (2)0.50098 (10)0.0324 (3)
H3A0.18961.07490.49500.039*
H3B0.27391.04110.46600.039*
N40.20732 (6)0.75101 (17)0.44718 (8)0.0268 (2)
C50.27693 (7)0.5982 (2)0.45117 (10)0.0319 (3)
H5A0.31540.67350.41630.038*
H5B0.25950.45610.41200.038*
C60.31618 (8)0.5431 (2)0.56812 (11)0.0347 (3)
H6A0.27880.45900.60170.042*
H6B0.36290.44610.57050.042*
C210.15689 (7)0.7661 (2)0.34045 (9)0.0276 (3)
C220.10736 (8)0.5776 (2)0.30382 (11)0.0364 (3)
H220.10700.45200.34990.044*
C230.05858 (8)0.5743 (3)0.19977 (12)0.0424 (3)
H230.02620.44720.17530.051*
C240.05932 (8)0.7625 (3)0.13391 (11)0.0418 (3)
F240.01133 (7)0.75923 (18)0.03205 (7)0.0688 (3)
C250.10587 (9)0.9541 (3)0.16709 (11)0.0418 (3)
H250.10441.08060.12100.050*
C260.15542 (8)0.9549 (2)0.27143 (10)0.0344 (3)
H260.18771.08260.29500.041*
C310.47968 (7)0.58033 (19)0.86963 (9)0.0239 (2)
C320.43856 (7)0.3385 (2)0.84980 (9)0.0258 (2)
O310.55249 (5)0.58853 (15)0.91087 (7)0.0319 (2)
O320.43316 (5)0.74960 (14)0.84049 (7)0.0315 (2)
O330.36759 (5)0.31730 (17)0.81152 (8)0.0417 (2)
O340.48994 (5)0.16802 (15)0.87815 (7)0.0320 (2)
H340.4648 (10)0.029 (3)0.8663 (13)0.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0245 (5)0.0331 (6)0.0310 (5)0.0043 (4)0.0037 (4)0.0048 (4)
C20.0321 (6)0.0295 (6)0.0305 (6)0.0019 (5)0.0008 (5)0.0036 (5)
C30.0355 (6)0.0246 (6)0.0324 (6)0.0032 (5)0.0025 (5)0.0014 (5)
N40.0250 (5)0.0250 (5)0.0273 (5)0.0024 (4)0.0007 (4)0.0001 (4)
C50.0302 (6)0.0289 (6)0.0345 (6)0.0046 (5)0.0025 (5)0.0019 (5)
C60.0301 (6)0.0278 (6)0.0411 (7)0.0033 (5)0.0032 (5)0.0027 (5)
C210.0245 (5)0.0300 (6)0.0265 (6)0.0042 (5)0.0019 (4)0.0010 (5)
C220.0349 (7)0.0339 (7)0.0363 (7)0.0028 (5)0.0008 (5)0.0016 (5)
C230.0370 (7)0.0411 (8)0.0424 (7)0.0024 (6)0.0058 (6)0.0082 (6)
C240.0402 (7)0.0471 (8)0.0303 (6)0.0124 (6)0.0093 (5)0.0052 (6)
F240.0811 (7)0.0650 (6)0.0406 (5)0.0116 (5)0.0291 (5)0.0051 (5)
C250.0503 (8)0.0382 (7)0.0326 (7)0.0108 (6)0.0001 (6)0.0061 (6)
C260.0363 (6)0.0300 (6)0.0338 (6)0.0018 (5)0.0011 (5)0.0003 (5)
C310.0273 (5)0.0224 (5)0.0215 (5)0.0006 (4)0.0042 (4)0.0009 (4)
C320.0269 (6)0.0248 (6)0.0241 (5)0.0004 (4)0.0026 (4)0.0004 (4)
O310.0246 (4)0.0274 (4)0.0405 (5)0.0014 (3)0.0006 (3)0.0036 (4)
O320.0324 (5)0.0224 (4)0.0360 (5)0.0037 (3)0.0002 (4)0.0008 (3)
O330.0272 (5)0.0349 (5)0.0560 (6)0.0030 (4)0.0057 (4)0.0029 (4)
O340.0292 (4)0.0200 (4)0.0442 (5)0.0003 (3)0.0026 (4)0.0000 (4)
Geometric parameters (Å, º) top
N1—C61.4854 (16)C21—C261.3917 (18)
N1—C21.4872 (16)C21—C221.3935 (17)
N1—H110.918 (16)C22—C231.3875 (18)
N1—H120.920 (16)C22—H220.9300
C2—C31.5208 (16)C23—C241.370 (2)
C2—H2A0.9700C23—H230.9300
C2—H2B0.9700C24—F241.3600 (15)
C3—N41.4622 (15)C24—C251.373 (2)
C3—H3A0.9700C25—C261.3956 (17)
C3—H3B0.9700C25—H250.9300
N4—C211.4284 (14)C26—H260.9300
N4—C51.4723 (15)C31—O311.2368 (13)
C5—C61.5098 (17)C31—O321.2625 (13)
C5—H5A0.9700C31—C321.5597 (16)
C5—H5B0.9700C32—O331.2064 (14)
C6—H6A0.9700C32—O341.3148 (14)
C6—H6B0.9700O34—H340.908 (18)
C6—N1—C2111.85 (9)C5—C6—H6A109.7
C6—N1—H11110.9 (9)N1—C6—H6B109.7
C2—N1—H11109.8 (9)C5—C6—H6B109.7
C6—N1—H12110.0 (9)H6A—C6—H6B108.2
C2—N1—H12109.5 (9)C26—C21—C22118.75 (11)
H11—N1—H12104.5 (13)C26—C21—N4123.95 (11)
N1—C2—C3109.65 (10)C22—C21—N4117.30 (11)
N1—C2—H2A109.7C23—C22—C21121.10 (13)
C3—C2—H2A109.7C23—C22—H22119.4
N1—C2—H2B109.7C21—C22—H22119.4
C3—C2—H2B109.7C24—C23—C22118.41 (13)
H2A—C2—H2B108.2C24—C23—H23120.8
N4—C3—C2109.16 (10)C22—C23—H23120.8
N4—C3—H3A109.8F24—C24—C23118.36 (13)
C2—C3—H3A109.8F24—C24—C25119.02 (13)
N4—C3—H3B109.8C23—C24—C25122.63 (12)
C2—C3—H3B109.8C24—C25—C26118.56 (13)
H3A—C3—H3B108.3C24—C25—H25120.7
C21—N4—C3116.55 (9)C26—C25—H25120.7
C21—N4—C5112.49 (9)C21—C26—C25120.53 (12)
C3—N4—C5109.32 (9)C21—C26—H26119.7
N4—C5—C6109.92 (10)C25—C26—H26119.7
N4—C5—H5A109.7O31—C31—O32126.93 (11)
C6—C5—H5A109.7O31—C31—C32118.43 (10)
N4—C5—H5B109.7O32—C31—C32114.64 (9)
C6—C5—H5B109.7O33—C32—O34125.62 (11)
H5A—C5—H5B108.2O33—C32—C31122.08 (10)
N1—C6—C5109.77 (10)O34—C32—C31112.29 (9)
N1—C6—H6A109.7C32—O34—H34110.9 (10)
C6—N1—C2—C355.37 (14)N4—C21—C22—C23177.69 (12)
N1—C2—C3—N458.86 (13)C21—C22—C23—C240.9 (2)
C2—C3—N4—C21168.31 (10)C22—C23—C24—F24179.84 (13)
C2—C3—N4—C562.77 (13)C22—C23—C24—C250.5 (2)
C21—N4—C5—C6166.31 (10)F24—C24—C25—C26179.45 (13)
C3—N4—C5—C662.56 (13)C23—C24—C25—C261.2 (2)
C2—N1—C6—C554.78 (14)C22—C21—C26—C250.68 (19)
N4—C5—C6—N157.70 (14)N4—C21—C26—C25178.36 (12)
C3—N4—C21—C2623.67 (17)C24—C25—C26—C210.6 (2)
C5—N4—C21—C26103.72 (14)O31—C31—C32—O33178.81 (11)
C3—N4—C21—C22157.27 (11)O32—C31—C32—O331.35 (16)
C5—N4—C21—C2275.34 (14)O31—C31—C32—O341.92 (14)
C26—C21—C22—C231.42 (19)O32—C31—C32—O34177.92 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O320.918 (16)1.896 (16)2.7769 (14)160.2 (15)
N1—H12···O31i0.920 (16)1.902 (17)2.7507 (14)152.6 (15)
N1—H12···O34i0.920 (16)2.354 (16)2.9588 (14)123.1 (13)
O34—H34···O32ii0.908 (17)1.712 (17)2.6102 (12)170.0 (17)
C2—H2A···O33iii0.972.543.4454 (15)155
C5—H5A···O32iv0.972.453.3849 (15)163
C6—H6B···O31v0.972.503.4259 (15)159
C2—H2B···Cg1vi0.972.653.6124 (14)170
C23—H23···Cg1vii0.932.943.5865 (16)128
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y1, z; (iii) x, y+1, z; (iv) x, y+3/2, z1/2; (v) x+1, y1/2, z+3/2; (vi) x, y+3/2, z+1/2; (vii) x, y1/2, z+1/2.
4-(4-Fluorophenyl)piperazin-1-ium hydrogen (2R,3R)-tartrate monohydrate (III) top
Crystal data top
C10H14FN2+·C4H5O6·H2ODx = 1.414 Mg m3
Mr = 348.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 3036 reflections
a = 7.0961 (4) Åθ = 2.7–27.8°
b = 7.4967 (4) ŵ = 0.12 mm1
c = 30.757 (2) ÅT = 293 K
V = 1636.19 (17) Å3Needle, yellow
Z = 40.40 × 0.22 × 0.10 mm
F(000) = 736
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD
diffractometer
3036 independent reflections
Radiation source: Enhance (Mo) X-ray Source2347 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.8°, θmin = 2.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 87
Tmin = 0.904, Tmax = 0.988k = 79
4553 measured reflectionsl = 3920
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0206P)2 + 0.5183P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
3036 reflectionsΔρmax = 0.18 e Å3
238 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack x determined using 683 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6296 (4)0.2270 (5)0.60097 (11)0.0454 (8)
H110.688 (5)0.200 (5)0.5771 (12)0.054*
H120.623 (5)0.349 (5)0.5995 (12)0.054*
C20.7310 (4)0.1802 (5)0.64079 (12)0.0464 (9)
H2A0.84930.24500.64180.056*
H2B0.75970.05370.64050.056*
C30.6174 (5)0.2235 (5)0.68063 (11)0.0424 (9)
H3A0.68520.18470.70630.051*
H3B0.59980.35160.68260.051*
N40.4346 (3)0.1361 (4)0.67912 (8)0.0359 (7)
C50.3323 (5)0.1901 (5)0.64017 (11)0.0464 (9)
H5A0.31060.31780.64100.056*
H5B0.21070.13110.63960.056*
C60.4402 (5)0.1435 (6)0.59966 (11)0.0521 (10)
H6A0.45300.01500.59740.063*
H6B0.37200.18550.57430.063*
C210.3285 (5)0.1373 (4)0.71803 (10)0.0350 (7)
C220.3867 (5)0.2237 (5)0.75550 (11)0.0439 (9)
H220.49810.28900.75510.053*
C230.2824 (6)0.2149 (5)0.79359 (12)0.0554 (11)
H230.32430.27070.81880.066*
C240.1175 (6)0.1230 (5)0.79317 (12)0.0541 (10)
F240.0137 (4)0.1146 (4)0.83031 (7)0.0923 (9)
C250.0551 (5)0.0358 (6)0.75739 (12)0.0547 (11)
H250.05750.02760.75820.066*
C260.1605 (5)0.0422 (5)0.71956 (12)0.0456 (9)
H260.11850.01780.69490.055*
C310.9787 (4)0.8324 (4)0.56468 (10)0.0317 (7)
C321.0513 (4)0.6417 (4)0.56228 (10)0.0269 (7)
H32A1.01430.57960.58900.032*
C330.9627 (4)0.5450 (4)0.52373 (9)0.0270 (7)
H33A0.82600.54150.52810.032*
C341.0350 (4)0.3543 (4)0.52206 (10)0.0285 (7)
O310.8084 (3)0.8554 (3)0.57208 (8)0.0416 (6)
O321.0978 (3)0.9520 (3)0.55833 (9)0.0510 (7)
O331.2503 (3)0.6346 (3)0.55866 (8)0.0381 (6)
H331.279 (5)0.722 (5)0.5451 (12)0.057*
O340.9995 (3)0.6363 (3)0.48486 (7)0.0397 (6)
H341.101 (6)0.610 (5)0.4746 (12)0.060*
O351.1228 (3)0.2964 (3)0.49167 (8)0.0453 (6)
O360.9946 (3)0.2667 (3)0.55754 (7)0.0341 (5)
H361.040 (5)0.148 (5)0.5570 (11)0.051*
O410.5786 (4)0.5889 (4)0.60508 (10)0.0566 (8)
H410.659 (7)0.681 (6)0.5942 (14)0.085*
H420.477 (7)0.607 (6)0.5968 (15)0.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0359 (17)0.061 (2)0.0389 (18)0.0067 (17)0.0065 (15)0.0021 (18)
C20.0323 (18)0.058 (2)0.049 (2)0.0006 (17)0.0024 (18)0.004 (2)
C30.0353 (19)0.054 (2)0.038 (2)0.0045 (17)0.0052 (17)0.0010 (19)
N40.0317 (14)0.0420 (16)0.0339 (15)0.0036 (14)0.0002 (13)0.0030 (14)
C50.0322 (17)0.070 (3)0.037 (2)0.0069 (18)0.0011 (17)0.004 (2)
C60.0374 (19)0.080 (3)0.039 (2)0.017 (2)0.0033 (17)0.010 (2)
C210.0416 (17)0.0331 (17)0.0304 (18)0.0017 (17)0.0000 (16)0.0018 (16)
C220.050 (2)0.041 (2)0.040 (2)0.0004 (18)0.0025 (19)0.0011 (18)
C230.078 (3)0.056 (2)0.032 (2)0.007 (2)0.004 (2)0.005 (2)
C240.069 (3)0.061 (3)0.032 (2)0.010 (2)0.013 (2)0.010 (2)
F240.101 (2)0.131 (3)0.0449 (14)0.0048 (19)0.0275 (15)0.0101 (16)
C250.048 (2)0.066 (3)0.050 (2)0.005 (2)0.010 (2)0.010 (2)
C260.045 (2)0.053 (2)0.040 (2)0.0076 (19)0.0030 (18)0.0018 (19)
C310.0327 (17)0.0241 (15)0.0382 (19)0.0000 (14)0.0036 (15)0.0015 (14)
C320.0241 (14)0.0230 (14)0.0337 (18)0.0003 (13)0.0011 (13)0.0030 (15)
C330.0237 (14)0.0263 (14)0.0311 (17)0.0013 (14)0.0003 (14)0.0038 (15)
C340.0276 (14)0.0281 (15)0.0298 (17)0.0001 (15)0.0028 (14)0.0002 (16)
O310.0319 (12)0.0327 (12)0.0604 (16)0.0040 (11)0.0029 (11)0.0000 (13)
O320.0352 (12)0.0217 (10)0.096 (2)0.0011 (11)0.0024 (14)0.0034 (14)
O330.0244 (11)0.0261 (11)0.0639 (17)0.0006 (10)0.0059 (11)0.0078 (13)
O340.0400 (13)0.0421 (13)0.0371 (14)0.0082 (12)0.0024 (11)0.0137 (12)
O350.0533 (15)0.0436 (14)0.0391 (14)0.0126 (13)0.0113 (13)0.0048 (12)
O360.0399 (13)0.0205 (10)0.0419 (13)0.0022 (10)0.0052 (11)0.0037 (11)
O410.0408 (16)0.0624 (18)0.0666 (19)0.0045 (14)0.0111 (14)0.0216 (15)
Geometric parameters (Å, º) top
N1—C21.463 (4)C23—H230.9300
N1—C61.483 (4)C24—C251.355 (5)
N1—H110.87 (4)C24—F241.361 (4)
N1—H120.92 (4)C25—C261.384 (5)
C2—C31.503 (5)C25—H250.9300
C2—H2A0.9700C26—H260.9300
C2—H2B0.9700C31—O311.241 (4)
C3—N41.454 (4)C31—O321.248 (4)
C3—H3A0.9700C31—C321.522 (4)
C3—H3B0.9700C32—O331.418 (3)
N4—C211.414 (4)C32—C331.525 (4)
N4—C51.458 (4)C32—H32A0.9800
C5—C61.503 (5)C33—O341.402 (3)
C5—H5A0.9700C33—C341.519 (4)
C5—H5B0.9700C33—H33A0.9800
C6—H6A0.9700C34—O351.204 (4)
C6—H6B0.9700C34—O361.306 (4)
C21—C221.385 (4)O33—H330.80 (4)
C21—C261.390 (5)O34—H340.81 (4)
C22—C231.387 (5)O36—H360.95 (4)
C22—H220.9300O41—H410.95 (5)
C23—C241.358 (6)O41—H420.78 (5)
C2—N1—C6111.5 (3)C21—C22—H22119.3
C2—N1—H11115 (2)C23—C22—H22119.3
C6—N1—H11108 (3)C24—C23—C22118.4 (4)
C2—N1—H12108 (2)C24—C23—H23120.8
C6—N1—H12112 (3)C22—C23—H23120.8
H11—N1—H12102 (3)C25—C24—C23122.3 (4)
N1—C2—C3111.5 (3)C25—C24—F24118.9 (4)
N1—C2—H2A109.3C23—C24—F24118.8 (4)
C3—C2—H2A109.3C24—C25—C26119.3 (4)
N1—C2—H2B109.3C24—C25—H25120.3
C3—C2—H2B109.3C26—C25—H25120.3
H2A—C2—H2B108.0C25—C26—C21120.6 (3)
N4—C3—C2110.8 (3)C25—C26—H26119.7
N4—C3—H3A109.5C21—C26—H26119.7
C2—C3—H3A109.5O31—C31—O32126.0 (3)
N4—C3—H3B109.5O31—C31—C32118.0 (3)
C2—C3—H3B109.5O32—C31—C32116.0 (3)
H3A—C3—H3B108.1O33—C32—C31112.1 (2)
C21—N4—C3116.4 (3)O33—C32—C33109.4 (2)
C21—N4—C5115.4 (3)C31—C32—C33110.2 (2)
C3—N4—C5110.2 (3)O33—C32—H32A108.4
N4—C5—C6111.3 (3)C31—C32—H32A108.4
N4—C5—H5A109.4C33—C32—H32A108.4
C6—C5—H5A109.4O34—C33—C34111.6 (2)
N4—C5—H5B109.4O34—C33—C32110.7 (2)
C6—C5—H5B109.4C34—C33—C32109.5 (2)
H5A—C5—H5B108.0O34—C33—H33A108.3
N1—C6—C5109.9 (3)C34—C33—H33A108.3
N1—C6—H6A109.7C32—C33—H33A108.3
C5—C6—H6A109.7O35—C34—O36125.5 (3)
N1—C6—H6B109.7O35—C34—C33122.7 (3)
C5—C6—H6B109.7O36—C34—C33111.8 (3)
H6A—C6—H6B108.2C32—O33—H33105 (3)
C22—C21—C26117.9 (3)C33—O34—H34112 (3)
C22—C21—N4123.3 (3)C34—O36—H36113 (2)
C26—C21—N4118.8 (3)H41—O41—H42108 (4)
C21—C22—C23121.4 (4)
C6—N1—C2—C354.1 (4)C23—C24—C25—C261.0 (6)
N1—C2—C3—N455.9 (4)F24—C24—C25—C26179.4 (3)
C2—C3—N4—C21168.2 (3)C24—C25—C26—C210.2 (6)
C2—C3—N4—C557.9 (4)C22—C21—C26—C250.4 (5)
C21—N4—C5—C6166.5 (3)N4—C21—C26—C25178.2 (3)
C3—N4—C5—C659.1 (4)O31—C31—C32—O33173.2 (3)
C2—N1—C6—C554.1 (4)O32—C31—C32—O337.7 (4)
N4—C5—C6—N156.8 (4)O31—C31—C32—C3364.7 (4)
C3—N4—C21—C223.3 (5)O32—C31—C32—C33114.4 (3)
C5—N4—C21—C22128.2 (3)O33—C32—C33—O3466.5 (3)
C3—N4—C21—C26174.3 (3)C31—C32—C33—O3457.2 (3)
C5—N4—C21—C2654.1 (4)O33—C32—C33—C3456.9 (3)
C26—C21—C22—C230.6 (5)C31—C32—C33—C34179.4 (2)
N4—C21—C22—C23177.1 (3)O34—C33—C34—O354.2 (4)
C21—C22—C23—C241.7 (6)C32—C33—C34—O35118.7 (3)
C22—C23—C24—C252.0 (6)O34—C33—C34—O36177.5 (2)
C22—C23—C24—F24179.6 (3)C32—C33—C34—O3659.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 represents the centroid of the ring (C21–C26).
D—H···AD—HH···AD···AD—H···A
N1—H11···O360.87 (4)2.31 (4)2.929 (4)128 (3)
N1—H11···O35i0.87 (4)2.17 (4)2.855 (4)136 (3)
N1—H12···O410.92 (4)1.83 (4)2.740 (5)169 (3)
O33—H33···O320.80 (4)2.19 (4)2.614 (3)113 (3)
O33—H33···O34ii0.80 (4)2.10 (4)2.805 (3)146 (3)
O34—H34···O350.81 (4)2.41 (4)2.702 (3)102 (3)
O34—H34···O31ii0.81 (4)2.07 (4)2.806 (3)151 (4)
O36—H36···O32iii0.95 (4)1.53 (4)2.470 (3)175 (3)
O41—H41···O310.96 (5)1.82 (5)2.771 (4)178 (5)
O41—H42···O33iv0.78 (5)2.00 (5)2.754 (4)163 (5)
C25—H25···Cg1v0.932.863.649 (5)144
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+3/2, z+1; (iii) x, y1, z; (iv) x1, y, z; (v) x, y1/2, z+3/2.
 

Acknowledgements

CHC thanks University of Mysore for research facilities.

Funding information

HSY thanks the University Grants Commission, New Delhi, for the award of a BSR Faculty Fellowship for three years.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDayananda, A. S., Dutkiewicz, G., Yathirajan, H. S., Ramesha, A. R. & Kubicki, M. (2012a). Acta Cryst. E68, o2817.  CSD CrossRef IUCr Journals Google Scholar
First citationDayananda, A. S., Yathirajan, H. S., Keeley, A. C. & Jasinski, J. P. (2012b). Acta Cryst. E68, o2237.  CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998a). Acta Cryst. B54, 129–138.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKeane, P. E., Benedetti, M. S. & Dow, J. (1982). Neuropharmacology, 21, 163–169.  CrossRef CAS PubMed Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Foro, S. & Glidewell, C. (2019). Acta Cryst. E75, 1494–1506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Harish Chinthal, C., Foro, S. & Glidewell, C. (2020). Acta Cryst. E76, 488–495.  CSD CrossRef IUCr Journals Google Scholar
First citationNagai, F., Nonaka, R. & Kamimura, K. S. H. (2007). Eur. J. Pharmacol. 559, 132–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrasanna, M. D. & Row, T. N. G. (2001). J. Mol. Struct. 562, 55–61.  Web of Science CSD CrossRef CAS Google Scholar
First citationRossi, P. G., Posar, A., Parmeggiani, A., Pipitone, E. & D'Agata, M. (1999). J. Child Neurol. 14, 547–550.  CrossRef PubMed CAS Google Scholar
First citationSagar, B. K., Girisha, M., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). Acta Cryst. E73, 1320–1325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSanjuan, M., Rovei, V., Dow, J. & Benedetti, R. S. (1983). Int. J. Mass Spectrom. Ion Phys. 48, 93–96.  CrossRef CAS Google Scholar
First citationShaibah, M. A. E., Sagar, B. K., Yathirajan, H. S., Kumar, S. M. & Glidewell, C. (2017a). Acta Cryst. E73, 1513–1516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShaibah, M. A. E., Yathirajan, H. S., Kumar, S. M., Byrappa, K. & Glidewell, C. (2017b). Acta Cryst. E73, 1488–1492.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds