research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 1,2,4-triazolium hydrogen oxalate

CROSSMARK_Color_square_no_text.svg

aMaterials and Textile Technology, Faculty of Science and Technology, Thammasat University, Khlong Luang, Pathum Thani, 12121, Thailand, and bScience Classroom in University-Affiliated School Projects (SCiUS), Suankularb, Wittayalai Rangsit School, Muang, Pathum Thani 12120, Thailand
*Correspondence e-mail: kc@tu.ac.th

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 October 2019; accepted 28 December 2019; online 7 January 2020)

The asymmetric unit of the title 1:1 salt 1,2,4-triazolium hydrogen oxalate, C2H4N3+·C2HO4 (I), comprises one 1,2,4-triazolium cation and one hydrogen oxalate anion. In the crystal, the hydrogen oxalate anions are linked by O—H⋯O hydrogen bonds into chains running parallel to [100]. In turn, the anionic chains are linked through the 1,2,4-triazolium cations by charge-assisted +N—H⋯O hydrogen bonds into sheets aligned parallel to (01[\overline{1}]). The sheets are further stacked through ππ inter­actions between the 1,2,4-triazolium rings [centroid-to-centroid distance = 3.642 (3) Å, normal distance = 3.225 (3) Å, slippage 1.691 Å], resulting in the formation of a three-dimensional supra­molecular network. Hirshfeld surface analysis of the title salt suggests that the most significant contributions to the crystal packing are by H⋯O/O⋯H and H⋯N/N⋯H contacts involving the hydrogen bonds.

1. Chemical context

The oxalate anion (C2O42–), i.e. the complete deprotonation product of oxalic acid (C2H2O4), is a small, rigid, planar species and has been widely used as a ligand in the formation of coordination polymers (Gruselle et al., 2006[Gruselle, M., Train, C., Boubekeur, K., Gredin, P. & Ovanesyan, N. (2006). Coord. Chem. Rev. 250, 2491-2500.]; Abraham et al., 2014[Abraham, F., Arab-Chapelet, B., Rivenet, M., Tamain, C. & Grandjean, S. (2014). Coord. Chem. Rev. 266-267, 28-68.]). This ligand possesses four electron-donating O atoms and can display versatile coordination modes upon metal complexation. As a result, a large number of compounds with multi-dimensional coordination networks with short inter­metallic distances have been synthesized along with the investigation of inter­esting properties (Clemente-León et al., 2011[Clemente-León, M., Coronado, E., Martí-Gastaldo, C. & Romero, F. M. (2011). Chem. Soc. Rev. 40, 473-497.]). During our synthetic efforts to develop novel lanthanide coordination polymers with rigid, short, organic ligands including the oxalate anion, the title salt C2H4N3+·C2HO4 (I) was obtained unexpectedly from the reaction of terbium(III) chloride hexa­hydrate, oxalic acid, and 1,2,4-triazole in water at room temperature.

[Scheme 1]

Herein, we describe the crystal structure and Hirshfeld surface analysis of the title salt (I).

2. Structural commentary

As shown in Fig. 1[link], the asymmetric unit consists of one 1,2,4-triazolium cation and one hydrogen oxalate anion. In the hydrogen oxalate anion, the C1—O1 bond to the O atom that carries the H atom is significantly longer [1.3066 (14) Å] than the C1—O2 bond [1.1976 (15) Å], whereas the C2—O3 and C2—O4 bond lengths of the carboxyl­ate group show inter­mediate values [1.2370 (15) and 1.2586 (14) Å, respectively]. The hydrogen oxalate mol­ecule is nearly planar with an O2—C1—C2—O4 torsion angle of 2.3 (2)°. The 1,2,4-triazolium mol­ecule is perfectly planar with a root-mean-square (r.m.s.) deviation (excluding hydrogen atoms) of 0.001 Å. The cationic and anionic mol­ecules are coplanar with an r.m.s. deviation of 0.020 Å.

[Figure 1]
Figure 1
The structures of the mol­ecular entities in the title salt (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level, and hydrogen bonds are shown as dotted lines.

3. Supra­molecular features

Extensive hydrogen-bonding inter­actions in the crystal of the title salt (I) are observed, the numerical values of which are collated in Table 1[link]. As shown in Fig. 2[link], each hydrogen oxalate anion is linked with another anion by O—H⋯O hydrogen bonds into an infinite chain running parallel to [100]. The anionic chains are linked by charge-assisted +N—H⋯O hydrogen bonds involving the 1,2,4-triazolium cations into sheets extending parallel to (01[\overline{1}]). Additionally, intra­sheet C—H⋯O hydrogen and C—H⋯N hydrogen bonds involving the cationic mol­ecules are also observed. The sheets are further stacked through ππ inter­actions between the 1,2,4-triazolium rings [centroid-to-centroid distance = 3.642 (3) Å, normal distance = 3.225 (3) Å, slippage 1.691 Å], Fig. 3[link], resulting in the formation of a three-dimensional supra­molecular network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4i 0.94 (2) 1.61 (2) 2.5447 (13) 175.0 (18)
N1—H1⋯O3 0.91 (2) 1.81 (2) 2.7199 (15) 175.4 (18)
N2—H2⋯O4ii 0.96 (2) 1.80 (2) 2.7443 (15) 167.3 (19)
C3—H3⋯O2iii 0.93 2.40 3.1717 (17) 141
C3—H3⋯N3iv 0.93 2.58 3.3939 (18) 146
C4—H4⋯O1 0.93 2.45 3.0289 (16) 120
C4—H4⋯O3i 0.93 2.30 3.1625 (17) 153
Symmetry codes: (i) x-1, y, z; (ii) x-1, y-1, z-1; (iii) x, y-1, z-1; (iv) x+1, y, z.
[Figure 2]
Figure 2
Partial view along [010] of the title salt (I), showing the O—H⋯O and N—H⋯O hydrogen-bonded sheet propagating parallel to (01[\overline{1}]). C—H⋯O and C—H⋯N hydrogen bonds are omitted for clarity.
[Figure 3]
Figure 3
A view of the ππ stacking inter­actions along with the C—H⋯N hydrogen bonds in the title salt (I).

4. Hirshfeld surface analysis

In order to qu­antify the nature of the inter­molecular inter­actions present in the crystal structure, Hirshfeld surfaces (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) and their associated two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) were calculated using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). The contribution of inter­atomic contacts to the dnorm surface of the title salt and the individual cations and anions are compared and shown in Fig. 4[link]. In all cases, H⋯O/O⋯H contacts (i.e. +N—H⋯O, O—H⋯O, C–H⋯O) were found to be the major contributors towards the Hirshfeld surface, whereas H⋯N/N⋯H contacts (i.e. C—H⋯N) between the 1,2,4-triazolium cations play a minor role in the stabilization of the crystal packing. The differences between the individual fingerprints of cations and anions result from different distributions of the C⋯N/N⋯C contacts (i.e. ππ stacking). It was found that the H⋯H contacts have a relatively small contribution of only 7.7% to the entire Hirshfeld surfaces of the title salt.

[Figure 4]
Figure 4
Full two-dimensional fingerprint plots of the title salt (I) (a), and its cation (b) and anion (c); separate contact types for the salt are given in (d)–(h) with relative contributions. Hirshfeld surfaces mapped over dnorm are displayed in all plots.

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.40, August 2019 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures with hydrogen oxalate gave 666 hits of which five are hydrogen-bonded salts of triazolium, viz. AFIVAO (Essid et al., 2013[Essid, M., Marouani, H., Al-Deyab, S. S. & Rzaigui, M. (2013). Acta Cryst. E69, o1279.]) and CIRXEH (Matulková et al., 2008[Matulková, I., Němec, I., Teubner, K., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 873, 46-60.]), or imidazolium, viz. EVAPEX (Zhu, 2011[Zhu, R.-Q. (2011). Acta Cryst. E67, o1627.]), MEQPAZ (MacDonald et al., 2001[MacDonald, J. C., Dorrestein, P. C. & Pilley, M. M. (2001). Cryst. Growth Des. 1, 29-38.]) and MEQPAZ01 (Prasad et al., 2002[Prasad, R. A., Neeraj, S., Vaidhyanathan, R. & Natarajan, S. (2002). J. Solid State Chem. 166, 128-141.]).

6. Synthesis and crystallization

An aqueous solution (5 ml) of oxalic acid (0.09 g, 0.01 mol) and 1,2,4-triazole (0.07 g, 0.01 mmol) was added dropwise to an aqueous solution (5 ml) of TbCl3·6H2O (0.37 g, 0.01 mol) under constant stirring for one h. The resulting solution was filtered to remove any undissolved solid. The filtrate was allowed to slowly evaporate at room temperature. After two weeks, colourless block-shaped crystals of the title salt (I) suitable for X-ray analysis were obtained.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The carboxyl and triazolium H atoms were located in difference-Fourier maps and were freely refined. Carbon-bound H atoms were placed in calculated positions and refined using a riding-model approximation with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C2H4N3+·C2HO4
Mr 159.11
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 5.592 (1), 7.2162 (12), 8.4021 (13)
α, β, γ (°) 109.148 (6), 93.889 (7), 103.282 (6)
V3) 307.92 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.16
Crystal size (mm) 0.34 × 0.22 × 0.22
 
Data collection
Diffractometer Bruker D8 Quest CMOS PHOTON II
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.638, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 4805, 1524, 1278
Rint 0.038
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.07
No. of reflections 1524
No. of parameters 112
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.20
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1,2,4-Triazolium hydrogen oxalate top
Crystal data top
C2H4N3+·C2HO4Z = 2
Mr = 159.11F(000) = 164
Triclinic, P1Dx = 1.716 Mg m3
a = 5.592 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.2162 (12) ÅCell parameters from 2650 reflections
c = 8.4021 (13) Åθ = 2.6–28.3°
α = 109.148 (6)°µ = 0.16 mm1
β = 93.889 (7)°T = 296 K
γ = 103.282 (6)°Block, light colourless
V = 307.92 (9) Å30.34 × 0.22 × 0.22 mm
Data collection top
Bruker D8 Quest CMOS PHOTON II
diffractometer
1524 independent reflections
Radiation source: sealed x-ray tube1278 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 7.39 pixels mm-1θmax = 28.4°, θmin = 2.6°
ω and φ scansh = 67
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 98
Tmin = 0.638, Tmax = 0.746l = 1111
4805 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.0686P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1524 reflectionsΔρmax = 0.37 e Å3
112 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14792 (16)0.88282 (15)0.62587 (12)0.0335 (3)
H1A0.020 (4)0.935 (3)0.674 (2)0.069 (6)*
O20.38612 (19)1.12875 (18)0.85543 (14)0.0506 (3)
O30.54794 (17)0.76994 (15)0.51985 (12)0.0365 (3)
O40.78723 (16)1.00344 (15)0.75427 (12)0.0345 (3)
N10.1358 (2)0.53625 (17)0.28813 (14)0.0305 (3)
H10.270 (4)0.620 (3)0.367 (2)0.057 (5)*
N20.0976 (2)0.30879 (17)0.06817 (14)0.0305 (3)
H20.162 (4)0.201 (3)0.039 (3)0.063 (6)*
N30.2527 (2)0.40637 (18)0.16122 (14)0.0352 (3)
C10.3594 (2)0.98777 (18)0.72504 (15)0.0264 (3)
C20.5818 (2)0.91101 (18)0.65830 (15)0.0249 (3)
C30.1335 (2)0.38679 (19)0.14421 (16)0.0304 (3)
H30.2707830.3451690.1046950.036*
C40.1040 (2)0.5435 (2)0.29349 (17)0.0340 (3)
H40.1553570.6356860.3813910.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0174 (4)0.0398 (5)0.0303 (5)0.0095 (4)0.0014 (4)0.0054 (4)
O20.0280 (5)0.0571 (7)0.0392 (6)0.0155 (5)0.0002 (4)0.0201 (5)
O30.0224 (5)0.0396 (5)0.0306 (5)0.0093 (4)0.0027 (4)0.0101 (4)
O40.0183 (4)0.0414 (5)0.0294 (5)0.0093 (4)0.0003 (4)0.0064 (4)
N10.0231 (5)0.0316 (6)0.0269 (5)0.0052 (4)0.0002 (4)0.0003 (4)
N20.0319 (6)0.0286 (5)0.0225 (5)0.0072 (4)0.0021 (4)0.0009 (4)
N30.0264 (6)0.0380 (6)0.0294 (6)0.0091 (5)0.0012 (5)0.0029 (5)
C10.0190 (6)0.0304 (6)0.0236 (6)0.0083 (5)0.0023 (4)0.0004 (5)
C20.0183 (5)0.0274 (6)0.0238 (6)0.0071 (4)0.0033 (4)0.0018 (5)
C30.0281 (6)0.0313 (6)0.0285 (6)0.0103 (5)0.0059 (5)0.0046 (5)
C40.0273 (7)0.0359 (7)0.0275 (6)0.0101 (5)0.0014 (5)0.0038 (5)
Geometric parameters (Å, º) top
O1—H1A0.94 (2)N2—H20.96 (2)
O1—C11.3066 (14)N2—N31.3677 (16)
O2—C11.1976 (15)N2—C31.3089 (17)
O3—C21.2370 (15)N3—C41.2967 (17)
O4—C21.2586 (14)C1—C21.5413 (17)
N1—H10.91 (2)C3—H30.9300
N1—C31.3272 (16)C4—H40.9300
N1—C41.3568 (18)
C1—O1—H1A109.1 (12)O2—C1—C2121.49 (11)
C3—N1—H1127.8 (13)O3—C2—O4125.86 (11)
C3—N1—C4106.09 (11)O3—C2—C1119.53 (11)
C4—N1—H1126.1 (13)O4—C2—C1114.60 (10)
N3—N2—H2120.4 (13)N1—C3—H3126.3
C3—N2—H2128.5 (13)N2—C3—N1107.36 (12)
C3—N2—N3111.11 (11)N2—C3—H3126.3
C4—N3—N2103.62 (11)N1—C4—H4124.1
O1—C1—C2112.90 (10)N3—C4—N1111.81 (12)
O2—C1—O1125.61 (12)N3—C4—H4124.1
O1—C1—C2—O33.15 (18)N3—N2—C3—N10.08 (15)
O1—C1—C2—O4177.26 (11)C3—N1—C4—N30.23 (17)
O2—C1—C2—O3177.27 (13)C3—N2—N3—C40.06 (15)
O2—C1—C2—O42.3 (2)C4—N1—C3—N20.18 (15)
N2—N3—C4—N10.18 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.94 (2)1.61 (2)2.5447 (13)175.0 (18)
N1—H1···O30.91 (2)1.81 (2)2.7199 (15)175.4 (18)
N2—H2···O4ii0.96 (2)1.80 (2)2.7443 (15)167.3 (19)
C3—H3···O2iii0.932.403.1717 (17)141
C3—H3···N3iv0.932.583.3939 (18)146
C4—H4···O10.932.453.0289 (16)120
C4—H4···O3i0.932.303.1625 (17)153
Symmetry codes: (i) x1, y, z; (ii) x1, y1, z1; (iii) x, y1, z1; (iv) x+1, y, z.
 

Acknowledgements

The authors thank the Faculty of Science and Technology, Thammasat University, for funds to purchase the X-ray diffractometer.

Funding information

Funding for this research was provided by: The National Research Council of Thailand grant provided by the Thammasat University (grant No. 4/2561).

References

First citationAbraham, F., Arab-Chapelet, B., Rivenet, M., Tamain, C. & Grandjean, S. (2014). Coord. Chem. Rev. 266–267, 28–68.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClemente-León, M., Coronado, E., Martí-Gastaldo, C. & Romero, F. M. (2011). Chem. Soc. Rev. 40, 473–497.  Web of Science PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEssid, M., Marouani, H., Al-Deyab, S. S. & Rzaigui, M. (2013). Acta Cryst. E69, o1279.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGruselle, M., Train, C., Boubekeur, K., Gredin, P. & Ovanesyan, N. (2006). Coord. Chem. Rev. 250, 2491–2500.  Web of Science CrossRef CAS Google Scholar
First citationMacDonald, J. C., Dorrestein, P. C. & Pilley, M. M. (2001). Cryst. Growth Des. 1, 29–38.  Web of Science CSD CrossRef CAS Google Scholar
First citationMatulková, I., Němec, I., Teubner, K., Němec, P. & Mička, Z. (2008). J. Mol. Struct. 873, 46–60.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationPrasad, R. A., Neeraj, S., Vaidhyanathan, R. & Natarajan, S. (2002). J. Solid State Chem. 166, 128–141.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationZhu, R.-Q. (2011). Acta Cryst. E67, o1627.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds