research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a polymorph of μ-oxido-bis­­[(5,10,15,20-tetra­phenyl­porphyrinato)iron(III)]

CROSSMARK_Color_square_no_text.svg

aOtto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität Kiel, Otto-Hahn-Platz 4, D-24098 Kiel, Germany, and bInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: rherges@oc.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 17 April 2019; accepted 24 May 2019; online 31 May 2019)

The title compound, [Fe2(C44H28N4O)2O], was obtained as a by-product during the synthesis of FeIII tetra­phenyl­porphyrin perchlorate. It crystallizes as a new polymorphic modification in addition to the ortho­rhom­bic form previously reported [Hoffman et al. (1972[Hoffman, A. U., Collins, D. M., Day, V. W., Fleischer, E. B., Srivastava, T. S. & Hoard, J. L. (1972). J. Am. Chem. Soc. 94, 3620-3626.]). J. Am. Chem. Soc. 94, 3620–3626; Swepston & Ibers (1985[Swepston, P. N. & Ibers, J. A. (1985). Acta Cryst. C41, 671-673.]) Acta Cryst. C41, 671–673; Kooijmann et al. (2007[Kooijmann, H., Spek, A. L., van Strijdonck, G. & Nolte, R. J. M. (2007). Private Communication (refcode 667666). CCDC, Cambridge, England.]). Private Communication (refcode 667666). CCDC, Cambridge, England]. In its crystal structure, the two crystallographically independent FeIII cations are coordinated in a square-planar environment by the four N atoms of a tetra­phenyl­porphyrin ligand. The FeIII-tetra­phenyl­porphyrine units are linked by a μ2-oxido ligand into a dimer with an Fe—O—Fe angle close to linearity. The final coordination sphere for each FeIII atom is square-pyramidal with the μ2-oxido ligand in the apical position. The crystal under investigation consisted of two domains in a ratio of 0.691 (3): 0.309 (3).

1. Chemical context

Porphyrins have a wide range of applications. For example, they are useful in photodynamic therapy (PDT) (Ethirajan et al., 2011[Ethirajan, M., Chen, Y., Joshi, P. & Pandey, R. K. (2011). Chem. Soc. Rev. 40, 340-362.]; Bonnett, 1995[Bonnett, R. (1995). Chem. Soc. Rev. 24, 19-33.]; Peters et al., 2018a[Peters, M. K., Röhricht, F., Näther, C. & Herges, R. (2018a). Org. Lett. 20, 7879-7883.]), as powerful catalysts in reduction processes in nature and in technologically important reactions (Li & Zamble, 2009[Li, Y. & Zamble, D. B. (2009). Chem. Rev. 109, 4617-4643.]; Peters & Herges, 2018[Peters, M. K. & Herges, R. (2018). Inorg. Chem. 57, 3177-3182.]; Gosden et al., 1978[Gosden, C., Healy, K. P. & Pletcher, D. (1978). J. Chem. Soc. Dalton Trans. pp. 972-976.]), or as responsive contrast agents in functional magnetic resonance imaging (fMRI) (Venkataramani et al., 2011[Venkataramani, S., Jana, U., Dommaschk, M., Sönnichsen, F. D., Tuczek, F. & Herges, R. (2011). Science, 331, 445-448.]; Dommaschk et al., 2015[Dommaschk, M., Peters, M., Gutzeit, F., Schütt, C., Näther, C., Sönnichsen, F. D., Tiwari, S., Riedel, C., Boretius, S. & Herges, R. (2015). J. Am. Chem. Soc. 137, 7552-7555.]; Peters et al., 2018b[Peters, M. K., Näther, C. & Herges, R. (2018b). Acta Cryst. E74, 1013-1016.]).

In a previous publication, we have reported the first light-controlled mol­ecular spin switch based on FeIII tetra­phenyl­porphyrin perchlorate (FeTPPClO4) (Shankar et al., 2018[Shankar, S., Peters, M., Steinborn, K., Krahwinkel, B., Sönnichsen, F. D., Grote, D., Sander, W., Lohmiller, T., Rüdiger, O. & Herges, R. (2018). Nat. Commun. 9, 1-12.]). The starting material FeTPPClO4 exists in the admixed-spin state (S = 3/2, 5/2). However, in a solution of acetone/dimethyl sulfoxide, a high-spin (S = 5/2) complex is formed (Shankar et al., 2018[Shankar, S., Peters, M., Steinborn, K., Krahwinkel, B., Sönnichsen, F. D., Grote, D., Sander, W., Lohmiller, T., Rüdiger, O. & Herges, R. (2018). Nat. Commun. 9, 1-12.]). The low-spin (S = 1/2) state can be induced by a photoswitchable azo­pyridine ligand and can be reversibly switched to the high-spin state by exposure to light (Shankar et al., 2018[Shankar, S., Peters, M., Steinborn, K., Krahwinkel, B., Sönnichsen, F. D., Grote, D., Sander, W., Lohmiller, T., Rüdiger, O. & Herges, R. (2018). Nat. Commun. 9, 1-12.]; Peters et al., 2019[Peters, M. K., Hamer, S., Jäkel, T., Röhricht, F., Sönnichsen, F. D., von Essen, C., Lahtinen, M., Naether, C., Rissanen, K. & Herges, R. (2019). Inorg. Chem. DOI: https://10.1021/acs.inorgchem.9b00349]). This system is reversible by using dimethyl sulfoxide and is neither oxygen nor water sensitive, and no fatigue was observed after more than 1000 switching cycles (Shankar et al., 2018[Shankar, S., Peters, M., Steinborn, K., Krahwinkel, B., Sönnichsen, F. D., Grote, D., Sander, W., Lohmiller, T., Rüdiger, O. & Herges, R. (2018). Nat. Commun. 9, 1-12.]). Unfortunately, without dimethyl sulfoxide, the switching is not reversible and a by-product is formed as indicated from the shift of the pyrrol protons observed in an NMR experiment. The amount of this by-product increases with increasing reaction time. To identify the nature of this by-product, we tried to obtain single crystals after very long reaction times, but without any success. If, however, 4-methyl­imidazole is used instead of a azo­pyridine ligand, dark red-coloured crystals of the same by-product were obtained. The crystals were subjected to single-crystal X-ray diffraction analysis, revealing that a dimer has formed where two FeIII cations are bridged by a μ2-oxido ligand. The source of oxygen is still unknown but it is likely that it possibly originates from water or from hygroscopic 4-methyl­imidazole. It is noted that a crystal structure of this compound has already been reported (Strauss et al., 1987[Strauss, S. H., Pawlik, M. J., Skowyra, J., Kennedy, J. R., Anderson, O. P., Spartalian, K. & Dye, J. L. (1987). Inorg. Chem. 26, 724-730.]) but this form crystallizes in the ortho­rhom­bic space group Aba2 (Hoffman et al., 1972[Hoffman, A. U., Collins, D. M., Day, V. W., Fleischer, E. B., Srivastava, T. S. & Hoard, J. L. (1972). J. Am. Chem. Soc. 94, 3620-3626.]; Swepston & Ibers, 1985[Swepston, P. N. & Ibers, J. A. (1985). Acta Cryst. C41, 671-673.]; Kooijmann et al. 2007[Kooijmann, H., Spek, A. L., van Strijdonck, G. & Nolte, R. J. M. (2007). Private Communication (refcode 667666). CCDC, Cambridge, England.]). Therefore, the new polymorph of the title compound was further investigated, and its crystal structure is reported in this communication.

[Scheme 1]

2. Structural commentary

In the crystal structure of the triclinic polymorph of the title compound, the two crystallographically independent FeIII cations are each coordinated by the four N atoms of tetra­phenyl­porphyrin ligands in a square-planar environment (Figs. 1[link] and 2[link]). These complexes are linked into dimers via a μ2-oxido O atom, leading to a final square-pyramidal coordination for each of the FeIII cations (Fig. 2[link]), with τ5 values (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) of 0.04 (Fe1) and 0.01 (Fe2), indicating only slight deviations from the ideal geometry for which τ5 = 0. For Fe1 the Fe—N bond lengths are very similar, whereas for Fe2 they are slightly different (Table 1[link]). There are also small differences in the Fe—O distances, which shows that the bridge is not symmetrical [the Fe—O—Fe angle is 177.71 (18)°]. This is in contrast to the ortho­rhom­bic form where both Fe—O distances are identical because of symmetry restrictions as this complex is located on a twofold rotation axis (Hoffman et al., 1972[Hoffman, A. U., Collins, D. M., Day, V. W., Fleischer, E. B., Srivastava, T. S. & Hoard, J. L. (1972). J. Am. Chem. Soc. 94, 3620-3626.]; Swepston & Ibers, 1985[Swepston, P. N. & Ibers, J. A. (1985). Acta Cryst. C41, 671-673.]; Kooijmann et al. 2007[Kooijmann, H., Spek, A. L., van Strijdonck, G. & Nolte, R. J. M. (2007). Private Communication (refcode 667666). CCDC, Cambridge, England.]). Nevertheless, the ortho­rhom­bic form likewise shows a small distortion of the coordination polyhedron around FeIII, and in both modifications the FeIII cations are shifted out of the porphyrine plane in direction towards the O atoms [0.366 (1) Å for Fe1 and 0.399 (1) Å for Fe2 in the monoclinic structure of the title compound; Fig. 2[link]]. The porphyrine ring planes in the title compound are rotated by 28.5 (5)° against each other, whereas in the ortho­rhom­bic form they exhibit an almost staggered arrangement of the Fe—N bonds, close to D4d symmetry.

Table 1
Selected geometric parameters (Å, °)

Fe1—O1 1.766 (3) O1—Fe2 1.757 (3)
Fe1—N3 2.069 (3) Fe2—N51 2.078 (3)
Fe1—N2 2.078 (3) Fe2—N53 2.080 (3)
Fe1—N1 2.079 (3) Fe2—N54 2.084 (3)
Fe1—N4 2.084 (3) Fe2—N52 2.091 (3)
       
O1—Fe1—N3 103.31 (13) O1—Fe2—N51 103.46 (13)
O1—Fe1—N2 102.11 (13) O1—Fe2—N53 104.50 (13)
N3—Fe1—N2 87.38 (13) N51—Fe2—N53 152.04 (13)
O1—Fe1—N1 103.37 (13) O1—Fe2—N54 103.78 (13)
N2—Fe1—N1 87.14 (13) N51—Fe2—N54 86.63 (13)
O1—Fe1—N4 102.12 (13) N53—Fe2—N54 86.85 (13)
N3—Fe1—N4 87.27 (13) O1—Fe2—N52 103.63 (13)
N2—Fe1—N4 155.77 (13) N51—Fe2—N52 86.99 (13)
N1—Fe1—N4 87.10 (13) N53—Fe2—N52 86.40 (13)
Fe2—O1—Fe1 177.71 (18) N54—Fe2—N52 152.59 (13)
[Figure 1]
Figure 1
Mol­ecular structure of the title compound with atom labelling and displacement ellipsoids drawn at the 50% probability level. The H atoms are omitted for clarity; the disorder of one of the phenyl rings is shown with full and open bonds.
[Figure 2]
Figure 2
Top and side view of the mol­ecular structure of the title compound showing the coordination around the FeIII atoms. The disorder of one of the phenyl rings is omitted for clarity.

3. Supra­molecular features

In the crystal structure of the title compound, the dimers are arranged in columns that elongate parallel to the b axis (Fig. 3[link]). There are no hydrogen bonds between the dimers, and there is also no hint of significant ππ inter­actions. Therefore, the packing appears to be dominated by non-directed van der Waals inter­actions. It is noted that the packing of the dimers is completely different in the two polymorphic forms. In the ortho­rhom­bic form, the dimers are also arranged in columns but neighbouring columns are shifted relative to each other; for comparison of the two polymorphs, see Figs. 3[link] and 4[link]. The density of the triclinic polymorph is slightly higher than that of the ortho­rhom­bic form, indicating that the former most probably represents the thermodynamic stable form at absolute zero.

[Figure 3]
Figure 3
Crystal structure of the title compound in a view along the b axis. The disorder of one of the phenyl rings is omitted for clarity.
[Figure 4]
Figure 4
Crystal structure of the ortho­rhom­bic form of the title compound in a view along the c axis.

4. Database survey

According to a search in the Cambridge Structural Database (CSD, version 5.40, updated Feb. 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), 1010 structures with iron porphyrins have been reported. Similar μ2-oxido-bridged iron porphyrins are known. For example, (μ2-oxido)-bis­(5,10,15,20-tetra­phenyl­porph­yr­in­ato)iron(III) with C70 fullerene (Konarev et al., 2010[Konarev, D. V., Khasanov, S. S. & Lyubovskaya, R. N. (2010). J. Porphyrins Phthalocyanines, 14, 293-297.]) and C60 fullerene (Litvinov et al., 2003[Litvinov, A. L., Konarev, D. V., Kovalevsky, A. Y., Lapshin, A. N., Yudanova, E. I., Drichko, N. V., Coppens, P. & Lyubovskaya, R. N. (2003). Eur. J. Inorg. Chem. pp. 3914-3917.], 2004[Litvinov, A. L., Konarev, D. V., Kovalevsky, A. Y., Lapshin, A. N., Yudanova, E. I., Coppens, P. & Lyubovskaya, R. N. (2004). Fullerenes, Nanotubes, Carbon Nanostruct. 12, 215-219.]). Other μ2-oxido iron porphyrins include 5,10,15,20-tetra-p-tolyl­porphyrinato)iron(III) (Li et al., 1999[Li, A.-R., Wei, H.-H. & Gang, L.-L. (1999). Inorg. Chim. Acta, 290, 51-56.]), 5,10,15,20-tetra­kis­(penta­fluoro­phen­yl)porphinatoiron(III) (Gold et al., 1988[Gold, A., Jayaraj, K., Doppelt, P., Fischer, J. & Weiss, R. (1988). Inorg. Chim. Acta, 150, 177-181.]), tetra­kis­(2,6-di­fluoro­phen­yl)porphyrinato)iron(III) (Karlin et al., 1994[Karlin, K. D., Nanthakumar, A., Fox, S., Murthy, N. N., Ravi, N., Huynh, B. H., Orosz, R. D. & Day, E. P. (1994). J. Am. Chem. Soc. 116, 4753-4763.]), 5,10,15,20-tetra­kis­(4-bromo­phen­yl)porphyrinato)iron(III) (Hou et al., 2015[Hou, Y., Zhu, Y., Sun, J., Zhang, X., Tian, Y. & Jiang, J. (2015). CrystEngComm, 17, 4699-4704.]) and 5,10,15,20-tetra­kis­(4-chloro­phen­yl)porphyrinato)iron(III) (Jiao et al., 1997[Jiao, X.-D., Huang, J.-W., Ji, L., Luo, B.-S. & Chen, L.-R. (1997). J. Inorg. Biochem. 65, 229-233.]). As already noted, an ortho­rhom­bic polymorph of the title compound has previously been structurally characterized (Hoffman et al., 1972[Hoffman, A. U., Collins, D. M., Day, V. W., Fleischer, E. B., Srivastava, T. S. & Hoard, J. L. (1972). J. Am. Chem. Soc. 94, 3620-3626.]; Swepston & Ibers, 1985[Swepston, P. N. & Ibers, J. A. (1985). Acta Cryst. C41, 671-673.]; Kooijmann et al., 2007[Kooijmann, H., Spek, A. L., van Strijdonck, G. & Nolte, R. J. M. (2007). Private Communication (refcode 667666). CCDC, Cambridge, England.]).

5. Synthesis and crystallization

FeTPPClO4 was synthesized as reported (Shankar et al., 2018[Shankar, S., Peters, M., Steinborn, K., Krahwinkel, B., Sönnichsen, F. D., Grote, D., Sander, W., Lohmiller, T., Rüdiger, O. & Herges, R. (2018). Nat. Commun. 9, 1-12.]). The layering technique was used for crystallization. The lower layer consisted of FeTPPClO4 dissolved in di­chloro­methane to which 50 µl 4-methyl­imidazole were added, and n-heptane was used as the upper anti­solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Fe2(C44H28N4O)2O]
Mr 1353.10
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 170
a, b, c (Å) 14.4477 (4), 14.5325 (4), 17.9076 (5)
α, β, γ (°) 71.266 (2), 75.725 (2), 70.506 (2)
V3) 3315.42 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.50
Crystal size (mm) 0.3 × 0.2 × 0.15
 
Data collection
Diffractometer Stoe IPDS2
No. of measured, independent and observed [I > 2σ(I)] reflections 14436, 14436, 12017
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.075, 0.214, 1.05
No. of reflections 14436
No. of parameters 938
No. of restraints 12
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.52, −0.67
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2014[Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

All crystals consisted of more than one domain, but the structure could be solved in space group P[\overline{1}] neglecting the presence of two domains. However, these refinement runs led to poor reliability factors and several electron density maxima were observed that could not be resolved. The TwinRotMat option in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) suggested a twofold rotation axis as twin element with the matrix ([\overline{1}] 0 0, 0 [\overline{1}] 0, −0.389, −0.663 1). Several data sets in HKLF-5 format were generated using different sizes of the integration box in X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) and different overlap criteria in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) until the best data set was obtained. The final refinement using this data set led to a ratio of the two domains of 0.691 (3): 0.309 (3) and acceptable reliability factors.

The C—H hydrogen atoms were located in a difference Fourier map but were positioned with idealized geometry and refined with with Uiso(H) = 1.2Ueq(C) using a riding model with C—H = 0.95 Å. One of the phenyl rings is disordered over two orientations (ratio 0.55:0.45) and was refined using a split model with restraints for the bond lengths (DFIX).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

µ-Oxido-bis[(5,10,15,20-tetraphenylporphyrinato)iron(III)] top
Crystal data top
[Fe2(C44H28N4)O]Z = 2
Mr = 1353.10F(000) = 1400
Triclinic, P1Dx = 1.355 Mg m3
a = 14.4477 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.5325 (4) ÅCell parameters from 37885 reflections
c = 17.9076 (5) Åθ = 1.2–27.0°
α = 71.266 (2)°µ = 0.50 mm1
β = 75.725 (2)°T = 170 K
γ = 70.506 (2)°Block, dark red
V = 3315.42 (17) Å30.3 × 0.2 × 0.15 mm
Data collection top
Stoe IPDS-2
diffractometer
θmax = 27.0°, θmin = 1.2°
ω scansh = 1818
14436 measured reflectionsk = 1818
14436 independent reflectionsl = 1522
12017 reflections with I > 2σ(I)
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.075H-atom parameters constrained
wR(F2) = 0.214 w = 1/[σ2(Fo2) + (0.0892P)2 + 3.7143P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
14436 reflectionsΔρmax = 0.52 e Å3
938 parametersΔρmin = 0.67 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.57714 (4)0.35357 (4)0.13707 (3)0.04270 (15)
O10.5511 (2)0.3176 (2)0.24234 (16)0.0487 (6)
N10.7312 (2)0.3020 (3)0.1133 (2)0.0475 (7)
N20.5944 (2)0.4969 (2)0.1144 (2)0.0457 (7)
N30.4378 (2)0.4242 (2)0.1037 (2)0.0462 (7)
N40.5732 (2)0.2275 (3)0.1077 (2)0.0451 (7)
C10.7471 (3)0.1258 (3)0.1179 (3)0.0514 (9)
C20.7848 (3)0.2041 (3)0.1138 (3)0.0500 (9)
C30.8882 (3)0.1932 (4)0.1092 (3)0.0564 (10)
H30.94120.13350.10740.068*
C40.8964 (3)0.2839 (3)0.1079 (3)0.0530 (10)
H40.95610.29990.10470.064*
C50.7978 (3)0.3512 (3)0.1123 (2)0.0468 (8)
C60.7743 (3)0.4499 (3)0.1189 (2)0.0467 (8)
C70.6788 (3)0.5167 (3)0.1221 (2)0.0476 (9)
C80.6514 (3)0.6133 (3)0.1381 (3)0.0511 (9)
H80.69530.64480.14560.061*
C90.5522 (3)0.6520 (3)0.1408 (3)0.0524 (9)
H90.51310.71460.15170.063*
C100.5168 (3)0.5798 (3)0.1240 (2)0.0469 (8)
C110.4176 (3)0.5938 (3)0.1179 (2)0.0471 (8)
C120.3838 (3)0.5233 (3)0.1026 (2)0.0468 (8)
C130.2858 (3)0.5409 (3)0.0863 (3)0.0501 (9)
H130.23460.60290.08120.060*
C140.2801 (3)0.4530 (3)0.0796 (3)0.0499 (9)
H140.22430.44200.06840.060*
C150.3739 (3)0.3796 (3)0.0924 (2)0.0457 (8)
C160.3958 (3)0.2770 (3)0.0950 (2)0.0472 (8)
C170.4880 (3)0.2063 (3)0.1043 (2)0.0457 (8)
C180.5099 (3)0.1001 (3)0.1115 (3)0.0531 (10)
H180.46450.06550.11160.064*
C190.6082 (3)0.0583 (3)0.1181 (3)0.0539 (10)
H190.64410.01080.12340.065*
C200.6472 (3)0.1382 (3)0.1157 (2)0.0474 (9)
C210.8180 (3)0.0232 (3)0.1272 (3)0.0550 (10)
C220.8500 (9)0.0263 (8)0.2022 (7)0.062 (3)0.55
H220.82550.00730.24370.074*0.55
C230.9166 (11)0.1232 (11)0.2173 (11)0.072 (4)0.55
H230.94020.15280.26710.086*0.55
C240.9477 (14)0.1756 (13)0.1589 (9)0.056 (4)0.55
H240.98600.24440.16970.067*0.55
C250.9211 (10)0.1244 (8)0.0851 (8)0.070 (3)0.55
H250.94870.15600.04260.084*0.55
C260.8556 (11)0.0283 (9)0.0701 (9)0.070 (4)0.55
H260.83650.00230.01870.084*0.55
C22'0.8218 (11)0.0500 (10)0.1954 (10)0.083 (6)0.45
H22'0.77430.03830.24100.100*0.45
C23'0.8935 (13)0.1424 (13)0.2014 (14)0.086 (6)0.45
H23'0.89450.19400.25010.103*0.45
C24'0.9640 (16)0.1580 (15)0.1345 (12)0.057 (5)0.44
H24'1.01890.21690.14030.068*0.44
C25'0.9566 (12)0.0911 (11)0.0608 (11)0.083 (5)0.45
H25'0.99970.10710.01450.099*0.45
C26'0.8833 (11)0.0018 (12)0.0560 (10)0.072 (5)0.45
H26'0.87670.05040.00600.086*0.45
C270.8573 (3)0.4845 (3)0.1267 (2)0.0477 (9)
C280.8822 (3)0.5697 (4)0.0720 (3)0.0572 (10)
H280.84670.60630.02850.069*
C290.9591 (4)0.6004 (4)0.0815 (3)0.0664 (12)
H290.97550.65830.04430.080*
C301.0118 (4)0.5479 (4)0.1443 (3)0.0661 (12)
H301.06420.56960.15020.079*
C310.9882 (3)0.4648 (4)0.1977 (3)0.0623 (11)
H311.02450.42860.24080.075*
C320.9117 (3)0.4325 (3)0.1899 (3)0.0535 (10)
H320.89610.37460.22780.064*
C330.3424 (3)0.6881 (3)0.1312 (2)0.0474 (8)
C340.2621 (3)0.6829 (4)0.1923 (3)0.0542 (10)
H340.25510.61860.22410.065*
C350.1920 (3)0.7693 (4)0.2082 (3)0.0624 (11)
H350.13800.76380.25060.075*
C360.2010 (4)0.8631 (4)0.1621 (3)0.0630 (12)
H360.15230.92240.17210.076*
C370.2809 (4)0.8711 (4)0.1012 (3)0.0616 (11)
H370.28770.93580.07020.074*
C380.3512 (3)0.7838 (3)0.0856 (3)0.0523 (9)
H380.40560.78950.04360.063*
C390.3128 (3)0.2391 (3)0.0918 (3)0.0518 (9)
C400.3189 (3)0.1953 (3)0.0312 (3)0.0556 (10)
H400.37540.19140.00950.067*
C410.2431 (4)0.1574 (4)0.0301 (4)0.0671 (13)
H410.24750.12830.01170.080*
C420.1617 (4)0.1616 (4)0.0890 (4)0.0697 (14)
H420.11030.13500.08820.084*
C430.1544 (3)0.2043 (4)0.1492 (4)0.0663 (13)
H430.09810.20660.19000.080*
C440.2295 (3)0.2445 (3)0.1507 (3)0.0576 (11)
H440.22340.27520.19180.069*
Fe20.52632 (4)0.28620 (4)0.34713 (3)0.04271 (15)
N510.5793 (2)0.1295 (2)0.3793 (2)0.0457 (7)
N520.6548 (2)0.2886 (2)0.3796 (2)0.0462 (7)
N530.4596 (2)0.4245 (2)0.3749 (2)0.0447 (7)
N540.3845 (2)0.2660 (2)0.3737 (2)0.0463 (7)
C510.4304 (3)0.0883 (3)0.3684 (2)0.0480 (9)
C520.5318 (3)0.0641 (3)0.3736 (3)0.0478 (9)
C530.6006 (3)0.0334 (3)0.3762 (3)0.0553 (10)
H530.58660.09130.37290.066*
C540.6895 (3)0.0286 (3)0.3842 (3)0.0572 (10)
H540.74900.08250.38880.069*
C550.6769 (3)0.0734 (3)0.3846 (2)0.0476 (9)
C560.7525 (3)0.1104 (3)0.3891 (3)0.0483 (9)
C570.7402 (3)0.2102 (3)0.3889 (3)0.0479 (9)
C580.8165 (3)0.2458 (3)0.3997 (3)0.0536 (10)
H580.88220.20670.40820.064*
C590.7771 (3)0.3451 (3)0.3956 (3)0.0527 (9)
H590.81010.38900.40050.063*
C600.6761 (3)0.3724 (3)0.3825 (2)0.0472 (8)
C610.6104 (3)0.4692 (3)0.3748 (2)0.0467 (8)
C620.5093 (3)0.4929 (3)0.3700 (2)0.0459 (8)
C630.4407 (3)0.5919 (3)0.3654 (3)0.0514 (9)
H630.45650.65240.35990.062*
C640.3489 (3)0.5822 (3)0.3702 (3)0.0524 (9)
H640.28810.63440.36970.063*
C650.3610 (3)0.4776 (3)0.3763 (2)0.0475 (9)
C660.2824 (3)0.4377 (3)0.3825 (2)0.0474 (8)
C670.2946 (3)0.3389 (3)0.3802 (3)0.0485 (9)
C680.2149 (3)0.2987 (3)0.3842 (3)0.0548 (10)
H680.14590.33270.39050.066*
C690.2568 (3)0.2030 (3)0.3773 (3)0.0551 (10)
H690.22240.15780.37680.066*
C700.3625 (3)0.1819 (3)0.3709 (2)0.0468 (8)
C710.3930 (3)0.0095 (3)0.3583 (3)0.0476 (9)
C720.3945 (3)0.0815 (3)0.4165 (3)0.0530 (9)
H720.41940.09470.46440.064*
C730.3592 (4)0.1533 (3)0.4041 (3)0.0591 (11)
H730.36030.21540.44370.071*
C740.3231 (4)0.1344 (3)0.3352 (3)0.0615 (11)
H740.29960.18370.32730.074*
C750.3205 (4)0.0441 (4)0.2770 (3)0.0629 (11)
H750.29560.03110.22920.076*
C760.3552 (3)0.0273 (3)0.2899 (3)0.0566 (10)
H760.35270.08980.25060.068*
C770.8533 (3)0.0381 (3)0.3974 (3)0.0551 (10)
C780.9336 (4)0.0471 (6)0.3369 (4)0.0883 (19)
H780.92440.09940.28890.106*
C791.0274 (5)0.0199 (7)0.3459 (5)0.106 (3)
H791.08210.01230.30460.128*
C801.0409 (5)0.0974 (5)0.4149 (5)0.093 (2)
H801.10440.14440.42100.112*
C810.9637 (5)0.1051 (5)0.4726 (5)0.113 (3)
H810.97220.15800.52030.135*
C820.8705 (4)0.0369 (5)0.4640 (4)0.094 (2)
H820.81710.04360.50680.112*
C830.6503 (3)0.5529 (3)0.3715 (2)0.0471 (8)
C840.6136 (3)0.6077 (3)0.4290 (3)0.0511 (9)
H840.56270.59120.47160.061*
C850.6509 (4)0.6860 (3)0.4243 (3)0.0562 (10)
H850.62550.72300.46370.067*
C860.7252 (3)0.7106 (4)0.3624 (3)0.0600 (11)
H860.75010.76480.35900.072*
C870.7629 (3)0.6564 (4)0.3057 (3)0.0595 (11)
H870.81370.67330.26320.071*
C880.7266 (3)0.5774 (3)0.3108 (3)0.0526 (9)
H880.75410.53920.27250.063*
C890.1794 (3)0.5053 (3)0.3934 (3)0.0500 (9)
C900.1151 (3)0.5333 (3)0.3388 (3)0.0565 (10)
H900.13630.50810.29270.068*
C910.0208 (3)0.5973 (4)0.3505 (4)0.0682 (13)
H910.02260.61510.31280.082*
C920.0109 (4)0.6354 (4)0.4164 (4)0.0737 (15)
H920.07550.68040.42370.088*
C930.0514 (4)0.6079 (4)0.4721 (4)0.0698 (13)
H930.02950.63340.51800.084*
C940.1463 (3)0.5429 (4)0.4607 (3)0.0579 (10)
H940.18890.52390.49920.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0391 (3)0.0422 (3)0.0472 (3)0.0118 (2)0.0078 (2)0.0109 (2)
O10.0467 (14)0.0497 (15)0.0506 (15)0.0151 (12)0.0077 (12)0.0125 (12)
N10.0419 (17)0.0441 (17)0.0568 (19)0.0140 (14)0.0066 (14)0.0122 (14)
N20.0400 (16)0.0437 (17)0.0533 (18)0.0132 (13)0.0103 (13)0.0086 (14)
N30.0444 (17)0.0423 (17)0.0532 (18)0.0125 (14)0.0095 (14)0.0121 (14)
N40.0382 (16)0.0463 (17)0.0516 (18)0.0115 (13)0.0086 (13)0.0130 (14)
C10.042 (2)0.048 (2)0.063 (2)0.0116 (17)0.0065 (17)0.0141 (18)
C20.041 (2)0.047 (2)0.061 (2)0.0091 (16)0.0062 (17)0.0180 (18)
C30.042 (2)0.053 (2)0.075 (3)0.0097 (18)0.0085 (19)0.021 (2)
C40.0385 (19)0.055 (2)0.068 (3)0.0123 (17)0.0089 (18)0.020 (2)
C50.0386 (19)0.049 (2)0.054 (2)0.0155 (16)0.0059 (16)0.0141 (17)
C60.044 (2)0.045 (2)0.052 (2)0.0150 (16)0.0079 (16)0.0113 (16)
C70.044 (2)0.045 (2)0.054 (2)0.0142 (16)0.0100 (16)0.0096 (17)
C80.048 (2)0.048 (2)0.061 (2)0.0150 (17)0.0130 (18)0.0151 (18)
C90.048 (2)0.046 (2)0.065 (3)0.0123 (17)0.0116 (19)0.0160 (19)
C100.045 (2)0.044 (2)0.053 (2)0.0143 (16)0.0103 (16)0.0086 (16)
C110.046 (2)0.046 (2)0.050 (2)0.0136 (17)0.0099 (16)0.0100 (16)
C120.0430 (19)0.044 (2)0.053 (2)0.0103 (16)0.0119 (16)0.0113 (17)
C130.043 (2)0.047 (2)0.060 (2)0.0101 (17)0.0133 (17)0.0124 (18)
C140.043 (2)0.053 (2)0.057 (2)0.0130 (17)0.0131 (17)0.0151 (18)
C150.0389 (18)0.047 (2)0.051 (2)0.0123 (16)0.0090 (15)0.0110 (16)
C160.0419 (19)0.046 (2)0.055 (2)0.0155 (16)0.0089 (16)0.0098 (17)
C170.0424 (19)0.046 (2)0.052 (2)0.0133 (16)0.0082 (16)0.0163 (17)
C180.045 (2)0.049 (2)0.068 (3)0.0155 (17)0.0087 (18)0.0149 (19)
C190.048 (2)0.043 (2)0.071 (3)0.0125 (17)0.0098 (19)0.0156 (19)
C200.045 (2)0.043 (2)0.054 (2)0.0123 (16)0.0052 (16)0.0137 (16)
C210.040 (2)0.049 (2)0.078 (3)0.0121 (17)0.0098 (19)0.017 (2)
C220.065 (7)0.040 (5)0.069 (6)0.013 (4)0.001 (5)0.009 (4)
C230.072 (9)0.058 (7)0.079 (7)0.003 (6)0.024 (6)0.014 (6)
C240.054 (10)0.035 (5)0.078 (9)0.018 (5)0.011 (7)0.008 (6)
C250.088 (9)0.049 (6)0.085 (8)0.004 (5)0.033 (7)0.033 (5)
C260.083 (9)0.057 (7)0.086 (8)0.007 (5)0.038 (6)0.034 (6)
C22'0.059 (8)0.041 (7)0.122 (13)0.020 (6)0.021 (8)0.005 (7)
C23'0.060 (9)0.049 (8)0.114 (18)0.002 (7)0.002 (10)0.001 (9)
C24'0.032 (6)0.044 (10)0.093 (14)0.013 (6)0.006 (9)0.015 (9)
C25'0.068 (9)0.077 (11)0.123 (14)0.008 (7)0.022 (9)0.057 (10)
C26'0.070 (9)0.066 (10)0.089 (10)0.007 (7)0.037 (8)0.041 (8)
C270.0413 (19)0.050 (2)0.054 (2)0.0143 (16)0.0057 (16)0.0157 (17)
C280.056 (2)0.055 (2)0.065 (3)0.022 (2)0.013 (2)0.013 (2)
C290.065 (3)0.065 (3)0.079 (3)0.032 (2)0.003 (2)0.023 (2)
C300.048 (2)0.073 (3)0.090 (4)0.024 (2)0.007 (2)0.033 (3)
C310.051 (2)0.064 (3)0.078 (3)0.009 (2)0.020 (2)0.028 (2)
C320.045 (2)0.054 (2)0.064 (3)0.0136 (18)0.0110 (18)0.017 (2)
C330.0425 (19)0.047 (2)0.053 (2)0.0088 (16)0.0129 (16)0.0144 (17)
C340.047 (2)0.056 (2)0.059 (2)0.0151 (19)0.0067 (18)0.0150 (19)
C350.047 (2)0.069 (3)0.072 (3)0.009 (2)0.009 (2)0.027 (2)
C360.058 (3)0.056 (3)0.075 (3)0.002 (2)0.016 (2)0.026 (2)
C370.072 (3)0.045 (2)0.068 (3)0.011 (2)0.021 (2)0.013 (2)
C380.056 (2)0.046 (2)0.053 (2)0.0129 (18)0.0086 (18)0.0117 (17)
C390.045 (2)0.045 (2)0.066 (3)0.0146 (17)0.0162 (18)0.0076 (18)
C400.052 (2)0.050 (2)0.069 (3)0.0177 (19)0.017 (2)0.012 (2)
C410.060 (3)0.050 (2)0.099 (4)0.016 (2)0.031 (3)0.017 (2)
C420.055 (3)0.048 (2)0.109 (4)0.018 (2)0.027 (3)0.009 (3)
C430.040 (2)0.061 (3)0.092 (4)0.016 (2)0.011 (2)0.010 (3)
C440.043 (2)0.054 (2)0.072 (3)0.0133 (18)0.0118 (19)0.010 (2)
Fe20.0415 (3)0.0400 (3)0.0470 (3)0.0110 (2)0.0083 (2)0.0113 (2)
N510.0442 (17)0.0418 (17)0.0522 (18)0.0120 (13)0.0107 (14)0.0112 (14)
N520.0434 (17)0.0402 (17)0.0537 (18)0.0081 (13)0.0094 (14)0.0128 (14)
N530.0430 (16)0.0405 (16)0.0513 (17)0.0103 (13)0.0085 (13)0.0135 (13)
N540.0447 (17)0.0420 (17)0.0517 (18)0.0118 (14)0.0066 (14)0.0127 (14)
C510.048 (2)0.044 (2)0.053 (2)0.0151 (17)0.0072 (17)0.0126 (17)
C520.046 (2)0.043 (2)0.055 (2)0.0117 (16)0.0063 (17)0.0149 (17)
C530.054 (2)0.044 (2)0.069 (3)0.0117 (18)0.008 (2)0.0197 (19)
C540.048 (2)0.044 (2)0.079 (3)0.0064 (18)0.013 (2)0.020 (2)
C550.044 (2)0.0409 (19)0.055 (2)0.0064 (16)0.0122 (17)0.0111 (16)
C560.045 (2)0.042 (2)0.054 (2)0.0068 (16)0.0108 (17)0.0121 (17)
C570.044 (2)0.042 (2)0.056 (2)0.0096 (16)0.0117 (17)0.0114 (17)
C580.046 (2)0.052 (2)0.067 (3)0.0111 (18)0.0182 (19)0.017 (2)
C590.048 (2)0.047 (2)0.067 (3)0.0108 (17)0.0152 (19)0.0172 (19)
C600.048 (2)0.0411 (19)0.055 (2)0.0115 (16)0.0121 (17)0.0129 (16)
C610.045 (2)0.045 (2)0.052 (2)0.0121 (16)0.0095 (16)0.0150 (17)
C620.047 (2)0.0420 (19)0.053 (2)0.0146 (16)0.0119 (16)0.0121 (16)
C630.050 (2)0.040 (2)0.065 (3)0.0111 (17)0.0121 (19)0.0128 (18)
C640.043 (2)0.045 (2)0.069 (3)0.0081 (17)0.0130 (18)0.0157 (19)
C650.043 (2)0.045 (2)0.053 (2)0.0070 (16)0.0104 (16)0.0142 (17)
C660.044 (2)0.046 (2)0.052 (2)0.0115 (17)0.0095 (16)0.0134 (17)
C670.044 (2)0.045 (2)0.054 (2)0.0101 (16)0.0059 (16)0.0137 (17)
C680.044 (2)0.048 (2)0.072 (3)0.0116 (17)0.0057 (19)0.019 (2)
C690.046 (2)0.048 (2)0.076 (3)0.0191 (18)0.0074 (19)0.017 (2)
C700.043 (2)0.0414 (19)0.057 (2)0.0135 (16)0.0060 (16)0.0136 (16)
C710.046 (2)0.0394 (19)0.057 (2)0.0128 (16)0.0069 (17)0.0118 (16)
C720.057 (2)0.047 (2)0.055 (2)0.0181 (19)0.0052 (18)0.0125 (18)
C730.065 (3)0.045 (2)0.069 (3)0.022 (2)0.003 (2)0.014 (2)
C740.058 (3)0.048 (2)0.085 (3)0.020 (2)0.011 (2)0.020 (2)
C750.067 (3)0.058 (3)0.074 (3)0.019 (2)0.023 (2)0.019 (2)
C760.061 (3)0.047 (2)0.065 (3)0.020 (2)0.017 (2)0.0085 (19)
C770.049 (2)0.048 (2)0.071 (3)0.0086 (18)0.017 (2)0.019 (2)
C780.060 (3)0.110 (5)0.073 (3)0.003 (3)0.010 (3)0.024 (3)
C790.052 (3)0.142 (7)0.102 (5)0.010 (4)0.002 (3)0.047 (5)
C800.059 (3)0.073 (4)0.134 (6)0.010 (3)0.028 (4)0.030 (4)
C810.057 (3)0.084 (4)0.146 (7)0.003 (3)0.027 (4)0.028 (4)
C820.051 (3)0.080 (4)0.108 (5)0.005 (3)0.015 (3)0.020 (3)
C830.045 (2)0.044 (2)0.054 (2)0.0108 (16)0.0116 (17)0.0153 (17)
C840.053 (2)0.047 (2)0.053 (2)0.0129 (18)0.0118 (18)0.0126 (17)
C850.062 (3)0.049 (2)0.065 (3)0.014 (2)0.018 (2)0.019 (2)
C860.054 (2)0.050 (2)0.084 (3)0.0174 (19)0.018 (2)0.020 (2)
C870.047 (2)0.055 (2)0.080 (3)0.0195 (19)0.008 (2)0.018 (2)
C880.046 (2)0.052 (2)0.062 (2)0.0142 (18)0.0060 (18)0.0202 (19)
C890.0382 (19)0.044 (2)0.068 (3)0.0117 (16)0.0070 (17)0.0141 (18)
C900.049 (2)0.052 (2)0.070 (3)0.0145 (19)0.013 (2)0.015 (2)
C910.045 (2)0.059 (3)0.096 (4)0.010 (2)0.021 (2)0.011 (3)
C920.043 (2)0.062 (3)0.107 (4)0.004 (2)0.009 (3)0.024 (3)
C930.053 (3)0.061 (3)0.095 (4)0.008 (2)0.006 (2)0.033 (3)
C940.045 (2)0.056 (2)0.075 (3)0.0114 (19)0.007 (2)0.026 (2)
Geometric parameters (Å, º) top
Fe1—O11.766 (3)C41—H410.9500
Fe1—N32.069 (3)C42—C431.374 (8)
Fe1—N22.078 (3)C42—H420.9500
Fe1—N12.079 (3)C43—C441.402 (6)
Fe1—N42.084 (3)C43—H430.9500
O1—Fe21.757 (3)C44—H440.9500
N1—C51.370 (5)Fe2—N512.078 (3)
N1—C21.372 (5)Fe2—N532.080 (3)
N2—C101.370 (5)Fe2—N542.084 (3)
N2—C71.391 (5)Fe2—N522.091 (3)
N3—C151.376 (5)N51—C551.382 (5)
N3—C121.386 (5)N51—C521.384 (5)
N4—C201.370 (5)N52—C601.371 (5)
N4—C171.384 (5)N52—C571.374 (5)
C1—C21.393 (6)N53—C651.373 (5)
C1—C201.403 (6)N53—C621.379 (5)
C1—C211.485 (6)N54—C701.380 (5)
C2—C31.433 (6)N54—C671.381 (5)
C3—C41.354 (6)C51—C701.393 (6)
C3—H30.9500C51—C521.407 (6)
C4—C51.434 (6)C51—C711.494 (5)
C4—H40.9500C52—C531.428 (6)
C5—C61.397 (6)C53—C541.355 (6)
C6—C71.396 (6)C53—H530.9500
C6—C271.497 (5)C54—C551.432 (6)
C7—C81.429 (6)C54—H540.9500
C8—C91.348 (6)C55—C561.398 (6)
C8—H80.9500C56—C571.399 (6)
C9—C101.445 (6)C56—C771.494 (6)
C9—H90.9500C57—C581.440 (6)
C10—C111.405 (6)C58—C591.347 (6)
C11—C121.395 (6)C58—H580.9500
C11—C331.485 (6)C59—C601.436 (6)
C12—C131.437 (6)C59—H590.9500
C13—C141.352 (6)C60—C611.396 (6)
C13—H130.9500C61—C621.402 (6)
C14—C151.435 (5)C61—C831.491 (6)
C14—H140.9500C62—C631.440 (6)
C15—C161.405 (6)C63—C641.359 (6)
C16—C171.394 (6)C63—H630.9500
C16—C391.496 (5)C64—C651.442 (6)
C17—C181.437 (6)C64—H640.9500
C18—C191.364 (6)C65—C661.404 (6)
C18—H180.9500C66—C671.401 (6)
C19—C201.435 (6)C66—C891.491 (5)
C19—H190.9500C67—C681.433 (6)
C21—C22'1.337 (14)C68—C691.351 (6)
C21—C261.357 (13)C68—H680.9500
C21—C221.415 (11)C69—C701.436 (6)
C21—C26'1.441 (15)C69—H690.9500
C22—C231.400 (14)C71—C761.377 (6)
C22—H220.9500C71—C721.393 (6)
C23—C241.389 (15)C72—C731.400 (6)
C23—H230.9500C72—H720.9500
C24—C251.369 (15)C73—C741.368 (7)
C24—H240.9500C73—H730.9500
C25—C261.387 (14)C74—C751.385 (7)
C25—H250.9500C74—H740.9500
C26—H260.9500C75—C761.392 (6)
C22'—C23'1.386 (16)C75—H750.9500
C22'—H22'0.9500C76—H760.9500
C23'—C24'1.394 (17)C77—C821.342 (7)
C23'—H23'0.9500C77—C781.388 (8)
C24'—C25'1.370 (16)C78—C791.392 (8)
C24'—H24'0.9500C78—H780.9500
C25'—C26'1.403 (15)C79—C801.383 (10)
C25'—H25'0.9500C79—H790.9500
C26'—H26'0.9500C80—C811.329 (10)
C27—C321.402 (6)C80—H800.9500
C27—C281.402 (6)C81—C821.390 (8)
C28—C291.391 (6)C81—H810.9500
C28—H280.9500C82—H820.9500
C29—C301.383 (8)C83—C881.394 (6)
C29—H290.9500C83—C841.397 (6)
C30—C311.365 (7)C84—C851.385 (6)
C30—H300.9500C84—H840.9500
C31—C321.388 (6)C85—C861.388 (7)
C31—H310.9500C85—H850.9500
C32—H320.9500C86—C871.380 (7)
C33—C341.389 (6)C86—H860.9500
C33—C381.398 (6)C87—C881.382 (6)
C34—C351.385 (6)C87—H870.9500
C34—H340.9500C88—H880.9500
C35—C361.378 (7)C89—C901.388 (6)
C35—H350.9500C89—C941.395 (6)
C36—C371.387 (7)C90—C911.380 (6)
C36—H360.9500C90—H900.9500
C37—C381.395 (6)C91—C921.376 (8)
C37—H370.9500C91—H910.9500
C38—H380.9500C92—C931.383 (8)
C39—C441.389 (6)C92—H920.9500
C39—C401.397 (6)C93—C941.391 (6)
C40—C411.387 (6)C93—H930.9500
C40—H400.9500C94—H940.9500
C41—C421.371 (8)
O1—Fe1—N3103.31 (13)C41—C42—C43120.1 (5)
O1—Fe1—N2102.11 (13)C41—C42—H42119.9
N3—Fe1—N287.38 (13)C43—C42—H42119.9
O1—Fe1—N1103.37 (13)C42—C43—C44120.4 (5)
N3—Fe1—N1153.32 (14)C42—C43—H43119.8
N2—Fe1—N187.14 (13)C44—C43—H43119.8
O1—Fe1—N4102.12 (13)C39—C44—C43119.7 (5)
N3—Fe1—N487.27 (13)C39—C44—H44120.2
N2—Fe1—N4155.77 (13)C43—C44—H44120.2
N1—Fe1—N487.10 (13)O1—Fe2—N51103.46 (13)
Fe2—O1—Fe1177.71 (18)O1—Fe2—N53104.50 (13)
C5—N1—C2106.6 (3)N51—Fe2—N53152.04 (13)
C5—N1—Fe1126.6 (3)O1—Fe2—N54103.78 (13)
C2—N1—Fe1125.4 (3)N51—Fe2—N5486.63 (13)
C10—N2—C7106.2 (3)N53—Fe2—N5486.85 (13)
C10—N2—Fe1123.3 (3)O1—Fe2—N52103.63 (13)
C7—N2—Fe1125.1 (3)N51—Fe2—N5286.99 (13)
C15—N3—C12106.1 (3)N53—Fe2—N5286.40 (13)
C15—N3—Fe1127.4 (3)N54—Fe2—N52152.59 (13)
C12—N3—Fe1125.6 (3)C55—N51—C52105.7 (3)
C20—N4—C17106.8 (3)C55—N51—Fe2126.5 (3)
C20—N4—Fe1124.3 (3)C52—N51—Fe2124.8 (3)
C17—N4—Fe1125.4 (3)C60—N52—C57106.7 (3)
C2—C1—C20124.0 (4)C60—N52—Fe2126.3 (3)
C2—C1—C21116.8 (4)C57—N52—Fe2126.2 (3)
C20—C1—C21119.2 (4)C65—N53—C62106.1 (3)
N1—C2—C1126.6 (4)C65—N53—Fe2126.3 (3)
N1—C2—C3109.5 (4)C62—N53—Fe2124.7 (3)
C1—C2—C3123.9 (4)C70—N54—C67106.0 (3)
C4—C3—C2107.2 (4)C70—N54—Fe2125.3 (3)
C4—C3—H3126.4C67—N54—Fe2127.4 (3)
C2—C3—H3126.4C70—C51—C52124.2 (4)
C3—C4—C5107.0 (4)C70—C51—C71117.5 (4)
C3—C4—H4126.5C52—C51—C71118.2 (4)
C5—C4—H4126.5N51—C52—C51125.6 (4)
N1—C5—C6126.0 (4)N51—C52—C53109.8 (4)
N1—C5—C4109.6 (4)C51—C52—C53124.6 (4)
C6—C5—C4124.3 (4)C54—C53—C52107.6 (4)
C7—C6—C5124.9 (4)C54—C53—H53126.2
C7—C6—C27117.9 (4)C52—C53—H53126.2
C5—C6—C27117.2 (4)C53—C54—C55106.9 (4)
N2—C7—C6125.0 (4)C53—C54—H54126.5
N2—C7—C8109.3 (4)C55—C54—H54126.5
C6—C7—C8125.6 (4)N51—C55—C56125.2 (4)
C9—C8—C7107.9 (4)N51—C55—C54110.0 (4)
C9—C8—H8126.1C56—C55—C54124.8 (4)
C7—C8—H8126.1C55—C56—C57124.8 (4)
C8—C9—C10106.9 (4)C55—C56—C77118.0 (4)
C8—C9—H9126.6C57—C56—C77117.2 (4)
C10—C9—H9126.6N52—C57—C56126.2 (4)
N2—C10—C11125.5 (4)N52—C57—C58109.4 (4)
N2—C10—C9109.8 (3)C56—C57—C58124.3 (4)
C11—C10—C9124.7 (4)C59—C58—C57107.0 (4)
C12—C11—C10124.4 (4)C59—C58—H58126.5
C12—C11—C33117.1 (4)C57—C58—H58126.5
C10—C11—C33118.4 (4)C58—C59—C60107.6 (4)
N3—C12—C11125.4 (4)C58—C59—H59126.2
N3—C12—C13109.4 (4)C60—C59—H59126.2
C11—C12—C13125.2 (4)N52—C60—C61125.8 (4)
C14—C13—C12107.3 (4)N52—C60—C59109.3 (3)
C14—C13—H13126.3C61—C60—C59124.9 (4)
C12—C13—H13126.3C60—C61—C62124.3 (4)
C13—C14—C15107.3 (4)C60—C61—C83117.8 (4)
C13—C14—H14126.3C62—C61—C83117.9 (4)
C15—C14—H14126.3N53—C62—C61125.5 (4)
N3—C15—C16125.3 (4)N53—C62—C63110.0 (3)
N3—C15—C14109.8 (3)C61—C62—C63124.3 (4)
C16—C15—C14124.9 (4)C64—C63—C62106.8 (4)
C17—C16—C15125.0 (4)C64—C63—H63126.6
C17—C16—C39117.3 (4)C62—C63—H63126.6
C15—C16—C39117.7 (4)C63—C64—C65107.1 (4)
N4—C17—C16125.3 (4)C63—C64—H64126.4
N4—C17—C18109.2 (3)C65—C64—H64126.4
C16—C17—C18125.5 (4)N53—C65—C66126.0 (4)
C19—C18—C17107.1 (4)N53—C65—C64109.9 (4)
C19—C18—H18126.4C66—C65—C64124.1 (4)
C17—C18—H18126.4C67—C66—C65124.4 (4)
C18—C19—C20107.2 (4)C67—C66—C89118.3 (4)
C18—C19—H19126.4C65—C66—C89117.4 (4)
C20—C19—H19126.4N54—C67—C66125.3 (4)
N4—C20—C1126.0 (4)N54—C67—C68110.0 (4)
N4—C20—C19109.7 (4)C66—C67—C68124.6 (4)
C1—C20—C19124.3 (4)C69—C68—C67106.8 (4)
C26—C21—C22116.4 (9)C69—C68—H68126.6
C22'—C21—C26'119.0 (10)C67—C68—H68126.6
C22'—C21—C1124.5 (8)C68—C69—C70107.8 (4)
C26—C21—C1126.1 (7)C68—C69—H69126.1
C22—C21—C1117.5 (6)C70—C69—H69126.1
C26'—C21—C1116.5 (8)N54—C70—C51125.9 (4)
C23—C22—C21122.0 (11)N54—C70—C69109.3 (3)
C23—C22—H22119.0C51—C70—C69124.7 (4)
C21—C22—H22119.0C76—C71—C72118.9 (4)
C24—C23—C22119.5 (15)C76—C71—C51119.2 (4)
C24—C23—H23120.3C72—C71—C51121.8 (4)
C22—C23—H23120.3C71—C72—C73119.7 (4)
C25—C24—C23117.4 (16)C71—C72—H72120.1
C25—C24—H24121.3C73—C72—H72120.1
C23—C24—H24121.3C74—C73—C72120.3 (4)
C24—C25—C26122.6 (13)C74—C73—H73119.9
C24—C25—H25118.7C72—C73—H73119.9
C26—C25—H25118.7C73—C74—C75120.8 (4)
C21—C26—C25121.6 (12)C73—C74—H74119.6
C21—C26—H26119.2C75—C74—H74119.6
C25—C26—H26119.2C74—C75—C76118.7 (5)
C21—C22'—C23'121.7 (15)C74—C75—H75120.7
C21—C22'—H22'119.1C76—C75—H75120.7
C23'—C22'—H22'119.1C71—C76—C75121.7 (4)
C22'—C23'—C24'118.6 (19)C71—C76—H76119.2
C22'—C23'—H23'120.7C75—C76—H76119.2
C24'—C23'—H23'120.7C82—C77—C78117.3 (5)
C25'—C24'—C23'122 (2)C82—C77—C56121.6 (5)
C25'—C24'—H24'119.0C78—C77—C56121.2 (5)
C23'—C24'—H24'119.0C77—C78—C79120.5 (6)
C24'—C25'—C26'117.7 (18)C77—C78—H78119.7
C24'—C25'—H25'121.1C79—C78—H78119.7
C26'—C25'—H25'121.1C80—C79—C78120.1 (6)
C25'—C26'—C21119.9 (15)C80—C79—H79120.0
C25'—C26'—H26'120.1C78—C79—H79120.0
C21—C26'—H26'120.1C81—C80—C79118.9 (6)
C32—C27—C28118.2 (4)C81—C80—H80120.6
C32—C27—C6120.4 (4)C79—C80—H80120.6
C28—C27—C6121.4 (4)C80—C81—C82120.8 (6)
C29—C28—C27119.9 (4)C80—C81—H81119.6
C29—C28—H28120.0C82—C81—H81119.6
C27—C28—H28120.0C77—C82—C81122.4 (6)
C30—C29—C28120.9 (5)C77—C82—H82118.8
C30—C29—H29119.6C81—C82—H82118.8
C28—C29—H29119.6C88—C83—C84118.5 (4)
C31—C30—C29119.6 (4)C88—C83—C61120.3 (4)
C31—C30—H30120.2C84—C83—C61121.3 (4)
C29—C30—H30120.2C85—C84—C83120.4 (4)
C30—C31—C32120.8 (5)C85—C84—H84119.8
C30—C31—H31119.6C83—C84—H84119.8
C32—C31—H31119.6C84—C85—C86120.1 (4)
C31—C32—C27120.5 (4)C84—C85—H85119.9
C31—C32—H32119.7C86—C85—H85119.9
C27—C32—H32119.7C87—C86—C85120.1 (4)
C34—C33—C38118.0 (4)C87—C86—H86120.0
C34—C33—C11119.9 (4)C85—C86—H86120.0
C38—C33—C11122.1 (4)C86—C87—C88119.8 (4)
C35—C34—C33121.7 (4)C86—C87—H87120.1
C35—C34—H34119.2C88—C87—H87120.1
C33—C34—H34119.2C87—C88—C83121.1 (4)
C36—C35—C34119.7 (5)C87—C88—H88119.5
C36—C35—H35120.2C83—C88—H88119.5
C34—C35—H35120.2C90—C89—C94118.5 (4)
C35—C36—C37120.2 (4)C90—C89—C66122.6 (4)
C35—C36—H36119.9C94—C89—C66118.9 (4)
C37—C36—H36119.9C91—C90—C89120.8 (5)
C36—C37—C38119.8 (4)C91—C90—H90119.6
C36—C37—H37120.1C89—C90—H90119.6
C38—C37—H37120.1C92—C91—C90120.5 (5)
C37—C38—C33120.7 (4)C92—C91—H91119.8
C37—C38—H38119.7C90—C91—H91119.8
C33—C38—H38119.7C91—C92—C93119.8 (5)
C44—C39—C40119.0 (4)C91—C92—H92120.1
C44—C39—C16120.3 (4)C93—C92—H92120.1
C40—C39—C16120.7 (4)C92—C93—C94119.9 (5)
C41—C40—C39120.4 (5)C92—C93—H93120.1
C41—C40—H40119.8C94—C93—H93120.1
C39—C40—H40119.8C93—C94—C89120.6 (5)
C42—C41—C40120.4 (5)C93—C94—H94119.7
C42—C41—H41119.8C89—C94—H94119.7
C40—C41—H41119.8
 

Acknowledgements

We thank Professor Dr. Wolfgang Bensch for access to his experimental facility.

Funding information

The authors gratefully acknowledge financial support by the Deutsche Forschungsgesellschaft within the Sonderforschungsbereich 677.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBonnett, R. (1995). Chem. Soc. Rev. 24, 19–33.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDommaschk, M., Peters, M., Gutzeit, F., Schütt, C., Näther, C., Sönnichsen, F. D., Tiwari, S., Riedel, C., Boretius, S. & Herges, R. (2015). J. Am. Chem. Soc. 137, 7552–7555.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEthirajan, M., Chen, Y., Joshi, P. & Pandey, R. K. (2011). Chem. Soc. Rev. 40, 340–362.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGold, A., Jayaraj, K., Doppelt, P., Fischer, J. & Weiss, R. (1988). Inorg. Chim. Acta, 150, 177–181.  CrossRef CAS Google Scholar
First citationGosden, C., Healy, K. P. & Pletcher, D. (1978). J. Chem. Soc. Dalton Trans. pp. 972–976.  CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHoffman, A. U., Collins, D. M., Day, V. W., Fleischer, E. B., Srivastava, T. S. & Hoard, J. L. (1972). J. Am. Chem. Soc. 94, 3620–3626.  CrossRef CAS PubMed Google Scholar
First citationHou, Y., Zhu, Y., Sun, J., Zhang, X., Tian, Y. & Jiang, J. (2015). CrystEngComm, 17, 4699–4704.  CrossRef CAS Google Scholar
First citationJiao, X.-D., Huang, J.-W., Ji, L., Luo, B.-S. & Chen, L.-R. (1997). J. Inorg. Biochem. 65, 229–233.  CrossRef CAS Google Scholar
First citationKarlin, K. D., Nanthakumar, A., Fox, S., Murthy, N. N., Ravi, N., Huynh, B. H., Orosz, R. D. & Day, E. P. (1994). J. Am. Chem. Soc. 116, 4753–4763.  CrossRef CAS Google Scholar
First citationKonarev, D. V., Khasanov, S. S. & Lyubovskaya, R. N. (2010). J. Porphyrins Phthalocyanines, 14, 293–297.  CrossRef CAS Google Scholar
First citationKooijmann, H., Spek, A. L., van Strijdonck, G. & Nolte, R. J. M. (2007). Private Communication (refcode 667666). CCDC, Cambridge, England.  Google Scholar
First citationLi, A.-R., Wei, H.-H. & Gang, L.-L. (1999). Inorg. Chim. Acta, 290, 51–56.  CrossRef CAS Google Scholar
First citationLi, Y. & Zamble, D. B. (2009). Chem. Rev. 109, 4617–4643.  CrossRef PubMed CAS Google Scholar
First citationLitvinov, A. L., Konarev, D. V., Kovalevsky, A. Y., Lapshin, A. N., Yudanova, E. I., Coppens, P. & Lyubovskaya, R. N. (2004). Fullerenes, Nanotubes, Carbon Nanostruct. 12, 215–219.  Google Scholar
First citationLitvinov, A. L., Konarev, D. V., Kovalevsky, A. Y., Lapshin, A. N., Yudanova, E. I., Drichko, N. V., Coppens, P. & Lyubovskaya, R. N. (2003). Eur. J. Inorg. Chem. pp. 3914–3917.  Web of Science CSD CrossRef Google Scholar
First citationPeters, M. K., Hamer, S., Jäkel, T., Röhricht, F., Sönnichsen, F. D., von Essen, C., Lahtinen, M., Naether, C., Rissanen, K. & Herges, R. (2019). Inorg. Chem. DOI: https://10.1021/acs.inorgchem.9b00349  Google Scholar
First citationPeters, M. K. & Herges, R. (2018). Inorg. Chem. 57, 3177–3182.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPeters, M. K., Näther, C. & Herges, R. (2018b). Acta Cryst. E74, 1013–1016.  CrossRef IUCr Journals Google Scholar
First citationPeters, M. K., Röhricht, F., Näther, C. & Herges, R. (2018a). Org. Lett. 20, 7879–7883.  CrossRef CAS PubMed Google Scholar
First citationShankar, S., Peters, M., Steinborn, K., Krahwinkel, B., Sönnichsen, F. D., Grote, D., Sander, W., Lohmiller, T., Rüdiger, O. & Herges, R. (2018). Nat. Commun. 9, 1–12.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationStrauss, S. H., Pawlik, M. J., Skowyra, J., Kennedy, J. R., Anderson, O. P., Spartalian, K. & Dye, J. L. (1987). Inorg. Chem. 26, 724–730.  CrossRef CAS Google Scholar
First citationSwepston, P. N. & Ibers, J. A. (1985). Acta Cryst. C41, 671–673.  CrossRef CAS IUCr Journals Google Scholar
First citationVenkataramani, S., Jana, U., Dommaschk, M., Sönnichsen, F. D., Tuczek, F. & Herges, R. (2011). Science, 331, 445–448.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds