research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of Sr2PdO3 from single-crystal X-ray data

CROSSMARK_Color_square_no_text.svg

aMax Planck Institut for Chemical Physics of Solids, Nöthnitzer Straβe 40, 01187, Dresden, Germany, bInstitute for Chemistry of New Materials, University of Osnabrück, Barbarastrasse, 7, 49076 Osnabrück, Germany, and cMax Planck Institut for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
*Correspondence e-mail: gohil.thakur@cpfs.mpg.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 9 November 2018; accepted 3 December 2018; online 1 January 2019)

The crystal structure redetermination of Sr2PdO3 (distrontium palladium trioxide) was carried out using high-quality single-crystal X-ray data. The Sr2PdO3 structure has been described previously in at least three reports [Wasel-Nielen & Hoppe (1970[Wasel-Nielen, H. D. & Hoppe, R. (1970). Z. Anorg. Allg. Chem. 375, 209-213.]). Z. Anorg. Allg. Chem. 375, 209–213; Muller & Roy (1971[Muller, O. & Roy, R. (1971). Adv. Chem. Ser. 98, 28-38.]). Adv. Chem. Ser. 98, 28–38; Nagata et al. (2002[Nagata, Y., Taniguchi, T., Tanaka, G., Satho, M. & Samata, H. (2002). J. Alloys Compd, 346, 50-56.]). J. Alloys Compd. 346, 50–56], all based on powder X-ray diffraction data. The current structure refinement of Sr2PdO3, as compared to previous powder data refinements, leads to more precise cell parameters and fractional coordinates, together with anisotropic displacement parameters for all sites. The compound is confirmed to have the ortho­rhom­bic Sr2CuO3 structure type (space group Immm) as reported previously. The structure consists of infinite chains of corner-sharing PdO4 plaquettes inter­spersed by SrII atoms. A brief comparison of Sr2PdO3 with the related K2NiF4 structure type is given.

1. Chemical context

Low-dimensional transition-metal oxides with chain structures have received attention since they can enable inter­esting physical phenomena such as spin 1/2 anti­ferromagnetic Heisenberg coupling (Motoyama et al., 1996[Motoyama, N., Eisaki, H. & Uchida, S. (1996). Phys. Rev. Lett. 76, 3212-3215.]; Takigawa et al., 1996[Takigawa, M., Motoyama, N., Eisaki, H. & Uchida, S. (1996). Phys. Rev. Lett. 76, 4612-4615.]), superconductivity (Hiroi et al., 1993[Hiroi, Z., Takano, M., Azuma, M. & Takeda, Y. (1993). Nature, 364, 315-317.]), ultrafast non-linear optical response (Ogasawara et al., 2000[Ogasawara, T., Ashida, M., Motoyama, N., Eisaki, H., Uchida, S., Tokura, Y., Ghosh, H., Shukla, A., Mazumdar, S. & Kuwata-Gonokami, M. (2000). Phys. Rev. Lett. 85, 2204-2207.]) or even glucose sensing (El-Ads et al., 2016[El-Ads, E. H., Galal, A. & Atta, N. F. (2016). RSC Adv. 6, 16183-16196.]). The particularly relevant sub-family based on square-planar MO4 (M = divalent metal) primary building units is dominated by oxidocuprates(II), while the chemistry of respective palladates(II), showing the same preference for a square-planar coordination by oxygen, is much less explored.

Here we address Sr2PdO3, which has previously been obtained as a microcrystalline material (Wasel-Nielen & Hoppe, 1970[Wasel-Nielen, H. D. & Hoppe, R. (1970). Z. Anorg. Allg. Chem. 375, 209-213.]; Muller & Roy, 1971[Muller, O. & Roy, R. (1971). Adv. Chem. Ser. 98, 28-38.]; Nagata et al., 2002[Nagata, Y., Taniguchi, T., Tanaka, G., Satho, M. & Samata, H. (2002). J. Alloys Compd, 346, 50-56.]). Based on evaluations of powder X-ray diffractograms, Sr2PdO3 was identified as being isostructural with Sr2CuO3 (Teske & Müller-Buschbaum, 1969[Teske, C. L. & Müller-Buschbaum, Hk. (1969). Z. Anorg. Allg. Chem. 371, 325-332.]; Weller & Lines, 1989[Weller, M. T. & Lines, D. R. (1989). J. Solid State Chem. 82, 21-29.]) and Sr2FeO3 (Tassel et al., 2013[Tassel, C., Seinberg, L., Hayashi, N., Ganesanpotti, S., Ajiro, Y., Kobayashi, Y. & Kageyama, H. (2013). Inorg. Chem. 52, 6096-6102.]). However, structural details derived from the given atomic parameters have only been reported with large uncertainties (Muller & Roy, 1971[Muller, O. & Roy, R. (1971). Adv. Chem. Ser. 98, 28-38.]; Nagata et al., 2002[Nagata, Y., Taniguchi, T., Tanaka, G., Satho, M. & Samata, H. (2002). J. Alloys Compd, 346, 50-56.]). Therefore, a redetermination of Sr2PdO3 based on single crystal X-ray data seemed appropriate.

2. Structural commentary

The crystal structure of Sr2PdO3 is essentially the same as determined previously (Wasel-Nielen & Hoppe, 1970[Wasel-Nielen, H. D. & Hoppe, R. (1970). Z. Anorg. Allg. Chem. 375, 209-213.]; Muller & Roy, 1971[Muller, O. & Roy, R. (1971). Adv. Chem. Ser. 98, 28-38.]; Nagata et al., 2002[Nagata, Y., Taniguchi, T., Tanaka, G., Satho, M. & Samata, H. (2002). J. Alloys Compd, 346, 50-56.]). The lattice parameters (Table 1[link]) are almost identical to those in the previous reports but with higher precision. The PdII atom occupies the 2d crystallographic sites with mmm site symmetry. We would like to point out that we chose a different cell setting as compared to all the previous reports, where the PdII atom was chosen to be located at the cell origin (site 2a; 0, 0, 0; hence the different site designations). The PdII atom forms distorted PdO4 square planes, which are linked by sharing oxygen atoms in the trans-position to form infinite chains extending along the b-axis direction as shown in Fig. 1[link]. Corresponding to this connectivity pattern, the Pd—O bond lengths are longer for the shared oxygen atoms, 2.052 (2) Å, and shorter for the terminal ones, 1.9911 (2) Å. The Sr atom is situated at the 4j Wyckoff site having mm2 site symmetry. It is seven-coordinate in a monocapped trigonal–prismatic fashion by oxygen with three different bond lengths (Table 1[link], Fig. 2[link]). In addition to the square-planar first coordination of PdII with oxygen, the second consists of eight SrII atoms present at the corner of a cuboid with dimension 3.5342 (2) × 3.7887 (2) × 3.9822 (3) Å3 (Fig. 2[link]). Of the two kinds of oxygen atoms, both surrounded by six metal ions that form distorted octa­hedra, O1 is coordinated by one PdII atom [2.052 (2) Å] and five SrII atoms with one short [2.474 (2) Å] and four long distances [2.6668 (2) Å] (Fig. 3[link]). O2 is connected to four equidistant SrII [2.5906 (3) Å] and two PdII atoms [1.9911 (2) Å] (Fig. 3[link]). In our current structure determination, much more precise values of the cell parameters along with the z parameters of Sr and O1 have been determined, consequently, yielding very precise values for the bond lengths (see Table 1[link]). The quality of the current refinement is also clearly reflected by better reliability factors (see Table 2[link]) as compared to the previous refinements. The atomic arrangement described here is same as provided by Wasel-Nielen & Hoppe (1970[Wasel-Nielen, H. D. & Hoppe, R. (1970). Z. Anorg. Allg. Chem. 375, 209-213.]).

Table 1
Comparison of lattice parameters and bond lengths (Å) in Sr2PdO3 determined in different studies

  1970 worka 1971 workb 2002 workc This work
a 3.977 3.97 3.985 3.5342 (2)
b 3.53 3.544 3.539 3.9822 (3)
c 12.82 12.84 12.847 12.8414 (8)
Pd—O1 (×2) 2.08 2.045 2.068 2.052 (2)
Pd—O2 (×2) 1.99 1.985 1.993 1.9911 (1)
Sr—O1 2.45 2.504 2.467 2.474 (2)
Sr—O1 (×4) 2.67 2.668 2.671 2.6668 (2)
Sr—O2 (×2) 2.58 2.57 2.588 2.5906 (3)
References: (a) Wasel-Nielen & Hoppe (1970[Wasel-Nielen, H. D. & Hoppe, R. (1970). Z. Anorg. Allg. Chem. 375, 209-213.]); (b) Muller & Roy (1971[Muller, O. & Roy, R. (1971). Adv. Chem. Ser. 98, 28-38.]); (c) Nagata et al. (2002[Nagata, Y., Taniguchi, T., Tanaka, G., Satho, M. & Samata, H. (2002). J. Alloys Compd, 346, 50-56.]).

Table 2
Experimental details

Crystal data
Chemical formula Sr2PdO3
Mr 329.64
Crystal system, space group Orthorhombic, Immm
Temperature (K) 296
a, b, c (Å) 3.5342 (2), 3.9822 (3), 12.8414 (8)
V3) 180.73 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 34.15
Crystal size (mm) 0.18 × 0.16 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.062, 0.102
No. of measured, independent and observed [I > 2σ(I)] reflections 8304, 178, 176
Rint 0.035
(sin θ/λ)max−1) 0.702
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.009, 0.021, 1.27
No. of reflections 178
No. of parameters 16
Δρmax, Δρmin (e Å−3) 0.43, −0.51
Computer programs: APEX2 and, SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).
[Figure 1]
Figure 1
Crystal structure of Sr2PdO3 viewed along the a axis (left) and along the b axis (right).
[Figure 2]
Figure 2
Coordination around the SrII (left) and PdII atoms (right). All atoms are drawn with displacement ellipsoids at the 80% probability level. Distances are in Å.
[Figure 3]
Figure 3
Coordination polyhedra of two types of oxygen atoms, O1 (left) and O2 (right). All atoms are drawn with displacement ellipsoids at the 80% probability level. Distances are in Å.

The structural features discussed above are closely related to those of the K2NiF4 type of structure, which is regarded as the prototype structure for all the high Tc cuprates. K2NiF4 consists of layers of corner-shared NiF6 octa­hedra extending in the ab plane. One can derive the Sr2PdO3 structure from the K2NiF4 structure by systematically removing the bridging F atoms from the NiF6 octa­hedra lying in the a-axis direction (Fig. 4[link]). This would reduce the dimensionality of the layer, resulting in linear chains of square planes connected by edges along only one direction.

[Figure 4]
Figure 4
Inter­conversion of the Sr2PdO3 and K2NiF4 structures.

3. Synthesis and crystallization

Millimeter-sized block-shaped crystals of dark-yellow colour with composition Sr2PdO3 as confirmed by SEM–EDS, were obtained from a mixture of different phases while attempting to synthesize SrPd3O4 using a KOH flux (Smallwood et al., 2000[Smallwood, P. L., Smith, M. D. & zur Loye, H. C. (2000). J. Cryst. Growth, 216, 299-303.]). SrCO3 and Pd metal powder were mixed in the molar ratio of 2:3, placed in an alumina crucible, and 15 grams of KOH pellets were added on top. The crucible was heated in a muffle furnace to 1023 K in 24 h with a 6 h dwell time. The furnace was then cooled slowly to 873 K over 125 h after which it was switched off and allowed to cool naturally. The product was washed several times with water to remove the solidified flux and subsequently rinsed with ethanol.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Distrontium palladium trioxide top
Crystal data top
Sr2PdO3Dx = 6.057 Mg m3
Mr = 329.64Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, ImmmCell parameters from 1490 reflections
a = 3.5342 (2) Åθ = 3.2–29.9°
b = 3.9822 (3) ŵ = 34.15 mm1
c = 12.8414 (8) ÅT = 296 K
V = 180.73 (2) Å3Block, yellow-brown
Z = 20.18 × 0.16 × 0.12 mm
F(000) = 292
Data collection top
Bruker APEXII CCD
diffractometer
176 reflections with I > 2σ(I)
φ and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 29.9°, θmin = 3.2°
Tmin = 0.062, Tmax = 0.102h = 44
8304 measured reflectionsk = 55
178 independent reflectionsl = 1818
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0092P)2 + 0.2817P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.009(Δ/σ)max < 0.001
wR(F2) = 0.021Δρmax = 0.43 e Å3
S = 1.27Δρmin = 0.51 e Å3
178 reflectionsExtinction correction: SHELXL-2014/7 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
16 parametersExtinction coefficient: 0.0059 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.50000.00000.50000.00493 (11)
Sr10.50000.00000.14752 (2)0.00656 (11)
O10.50000.00000.34021 (18)0.0085 (5)
O20.50000.50000.50000.0128 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.00765 (19)0.00396 (17)0.00320 (18)0.0000.0000.000
Sr10.00752 (17)0.00760 (16)0.00456 (17)0.0000.0000.000
O10.0117 (13)0.0101 (12)0.0037 (11)0.0000.0000.000
O20.021 (2)0.0035 (15)0.0134 (18)0.0000.0000.000
Geometric parameters (Å, º) top
Pd1—O2i1.9911 (1)Sr1—O1ix2.6668 (2)
Pd1—O21.9911 (1)Sr1—O1vii2.6668 (2)
Pd1—O12.052 (2)Sr1—Pd1xi3.2674 (2)
Pd1—O1ii2.052 (2)Sr1—Pd1xii3.2674 (2)
Pd1—Sr1iii3.2674 (2)Sr1—Pd1xiii3.2674 (2)
Pd1—Sr1iv3.2674 (2)Sr1—Pd1xiv3.2674 (2)
Pd1—Sr1v3.2674 (2)Sr1—Sr1xv3.5342 (2)
Pd1—Sr1vi3.2674 (2)O1—Sr1viii2.6668 (2)
Pd1—Sr1vii3.2674 (2)O1—Sr1iii2.6668 (2)
Pd1—Sr1viii3.2674 (2)O1—Sr1vii2.6668 (2)
Pd1—Sr1ix3.2674 (2)O1—Sr1ix2.6668 (2)
Pd1—Sr1x3.2674 (2)O2—Pd1xvi1.9911 (1)
Sr1—O12.474 (2)O2—Sr1ix2.5906 (3)
Sr1—O2xi2.5906 (3)O2—Sr1iv2.5906 (3)
Sr1—O2xii2.5906 (3)O2—Sr1viii2.5906 (3)
Sr1—O1viii2.6668 (2)O2—Sr1vi2.5906 (3)
Sr1—O1iii2.6668 (2)
O2i—Pd1—O2180.0O1—Sr1—O1vii86.61 (5)
O2i—Pd1—O190.0O2xi—Sr1—O1vii119.68 (4)
O2—Pd1—O190.0O2xii—Sr1—O1vii65.87 (4)
O2i—Pd1—O1ii90.0O1viii—Sr1—O1vii96.597 (9)
O2—Pd1—O1ii90.0O1iii—Sr1—O1vii83.000 (8)
O1—Pd1—O1ii180.0O1ix—Sr1—O1vii173.22 (10)
O2i—Pd1—Sr1iii52.455 (3)O1—Sr1—Pd1xi125.435 (5)
O2—Pd1—Sr1iii127.545 (3)O2xi—Sr1—Pd1xi37.546 (3)
O1—Pd1—Sr1iii54.565 (5)O2xii—Sr1—Pd1xi86.845 (8)
O1ii—Pd1—Sr1iii125.435 (5)O1viii—Sr1—Pd1xi147.95 (5)
O2i—Pd1—Sr1iv127.545 (3)O1iii—Sr1—Pd1xi38.82 (5)
O2—Pd1—Sr1iv52.455 (3)O1ix—Sr1—Pd1xi97.52 (3)
O1—Pd1—Sr1iv125.435 (5)O1vii—Sr1—Pd1xi86.43 (3)
O1ii—Pd1—Sr1iv54.565 (5)O1—Sr1—Pd1xii125.435 (5)
Sr1iii—Pd1—Sr1iv180.0O2xi—Sr1—Pd1xii86.845 (8)
O2i—Pd1—Sr1v52.455 (4)O2xii—Sr1—Pd1xii37.546 (3)
O2—Pd1—Sr1v127.545 (3)O1viii—Sr1—Pd1xii97.52 (3)
O1—Pd1—Sr1v125.435 (5)O1iii—Sr1—Pd1xii86.43 (3)
O1ii—Pd1—Sr1v54.565 (5)O1ix—Sr1—Pd1xii147.95 (5)
Sr1iii—Pd1—Sr1v70.871 (10)O1vii—Sr1—Pd1xii38.82 (5)
Sr1iv—Pd1—Sr1v109.129 (10)Pd1xi—Sr1—Pd1xii65.481 (6)
O2i—Pd1—Sr1vi127.545 (3)O1—Sr1—Pd1xiii125.435 (5)
O2—Pd1—Sr1vi52.455 (4)O2xi—Sr1—Pd1xiii86.845 (9)
O1—Pd1—Sr1vi125.435 (5)O2xii—Sr1—Pd1xiii37.546 (3)
O1ii—Pd1—Sr1vi54.565 (5)O1viii—Sr1—Pd1xiii38.82 (5)
Sr1iii—Pd1—Sr1vi114.520 (6)O1iii—Sr1—Pd1xiii147.95 (5)
Sr1iv—Pd1—Sr1vi65.480 (6)O1ix—Sr1—Pd1xiii86.43 (3)
Sr1v—Pd1—Sr1vi75.090 (7)O1vii—Sr1—Pd1xiii97.52 (3)
O2i—Pd1—Sr1vii52.455 (3)Pd1xi—Sr1—Pd1xiii109.130 (10)
O2—Pd1—Sr1vii127.545 (3)Pd1xii—Sr1—Pd1xiii75.091 (7)
O1—Pd1—Sr1vii54.565 (5)O1—Sr1—Pd1xiv125.435 (5)
O1ii—Pd1—Sr1vii125.435 (5)O2xi—Sr1—Pd1xiv37.546 (3)
Sr1iii—Pd1—Sr1vii65.480 (5)O2xii—Sr1—Pd1xiv86.845 (8)
Sr1iv—Pd1—Sr1vii114.520 (6)O1viii—Sr1—Pd1xiv86.43 (3)
Sr1v—Pd1—Sr1vii104.910 (7)O1iii—Sr1—Pd1xiv97.52 (3)
Sr1vi—Pd1—Sr1vii180.0O1ix—Sr1—Pd1xiv38.82 (5)
O2i—Pd1—Sr1viii127.545 (3)O1vii—Sr1—Pd1xiv147.95 (5)
O2—Pd1—Sr1viii52.455 (3)Pd1xi—Sr1—Pd1xiv75.091 (7)
O1—Pd1—Sr1viii54.565 (5)Pd1xii—Sr1—Pd1xiv109.130 (10)
O1ii—Pd1—Sr1viii125.435 (5)Pd1xiii—Sr1—Pd1xiv65.481 (6)
Sr1iii—Pd1—Sr1viii109.129 (10)O1—Sr1—Sr1xv90.0
Sr1iv—Pd1—Sr1viii70.871 (10)O2xi—Sr1—Sr1xv133.011 (5)
Sr1v—Pd1—Sr1viii180.0O2xii—Sr1—Sr1xv46.991 (5)
Sr1vi—Pd1—Sr1viii104.910 (7)O1viii—Sr1—Sr1xv48.500 (3)
Sr1vii—Pd1—Sr1viii75.090 (7)O1iii—Sr1—Sr1xv131.500 (4)
O2i—Pd1—Sr1ix127.545 (4)O1ix—Sr1—Sr1xv131.500 (4)
O2—Pd1—Sr1ix52.455 (3)O1vii—Sr1—Sr1xv48.500 (4)
O1—Pd1—Sr1ix54.565 (5)Pd1xi—Sr1—Sr1xv122.741 (3)
O1ii—Pd1—Sr1ix125.435 (5)Pd1xii—Sr1—Sr1xv57.260 (3)
Sr1iii—Pd1—Sr1ix75.090 (7)Pd1xiii—Sr1—Sr1xv57.260 (3)
Sr1iv—Pd1—Sr1ix104.910 (7)Pd1xiv—Sr1—Sr1xv122.741 (3)
Sr1v—Pd1—Sr1ix114.520 (6)Pd1—O1—Sr1180.0
Sr1vi—Pd1—Sr1ix70.871 (10)Pd1—O1—Sr1viii86.61 (5)
Sr1vii—Pd1—Sr1ix109.129 (10)Sr1—O1—Sr1viii93.39 (5)
Sr1viii—Pd1—Sr1ix65.480 (6)Pd1—O1—Sr1iii86.61 (5)
O2i—Pd1—Sr1x52.455 (3)Sr1—O1—Sr1iii93.39 (5)
O2—Pd1—Sr1x127.545 (3)Sr1viii—O1—Sr1iii173.23 (10)
O1—Pd1—Sr1x125.435 (5)Pd1—O1—Sr1vii86.61 (5)
O1ii—Pd1—Sr1x54.565 (5)Sr1—O1—Sr1vii93.39 (5)
Sr1iii—Pd1—Sr1x104.910 (7)Sr1viii—O1—Sr1vii96.597 (9)
Sr1iv—Pd1—Sr1x75.090 (7)Sr1iii—O1—Sr1vii83.001 (8)
Sr1v—Pd1—Sr1x65.480 (5)Pd1—O1—Sr1ix86.61 (5)
Sr1vi—Pd1—Sr1x109.129 (10)Sr1—O1—Sr1ix93.39 (5)
Sr1vii—Pd1—Sr1x70.871 (10)Sr1viii—O1—Sr1ix83.001 (8)
Sr1viii—Pd1—Sr1x114.520 (6)Sr1iii—O1—Sr1ix96.597 (9)
Sr1ix—Pd1—Sr1x180.0Sr1vii—O1—Sr1ix173.23 (10)
O1—Sr1—O2xi136.990 (5)Pd1xvi—O2—Pd1180.0
O1—Sr1—O2xii136.990 (5)Pd1xvi—O2—Sr1ix90.0
O2xi—Sr1—O2xii86.020 (11)Pd1—O2—Sr1ix90.0
O1—Sr1—O1viii86.61 (5)Pd1xvi—O2—Sr1iv90.0
O2xi—Sr1—O1viii119.68 (4)Pd1—O2—Sr1iv90.0
O2xii—Sr1—O1viii65.87 (4)Sr1ix—O2—Sr1iv180.0
O1—Sr1—O1iii86.61 (5)Pd1xvi—O2—Sr1viii90.0
O2xi—Sr1—O1iii65.87 (4)Pd1—O2—Sr1viii90.0
O2xii—Sr1—O1iii119.68 (4)Sr1ix—O2—Sr1viii86.018 (11)
O1viii—Sr1—O1iii173.22 (10)Sr1iv—O2—Sr1viii93.982 (11)
O1—Sr1—O1ix86.61 (5)Pd1xvi—O2—Sr1vi90.0
O2xi—Sr1—O1ix65.87 (4)Pd1—O2—Sr1vi90.0
O2xii—Sr1—O1ix119.68 (4)Sr1ix—O2—Sr1vi93.982 (11)
O1viii—Sr1—O1ix83.000 (8)Sr1iv—O2—Sr1vi86.018 (11)
O1iii—Sr1—O1ix96.597 (9)Sr1viii—O2—Sr1vi180.0
Symmetry codes: (i) x, y1, z; (ii) x+1, y, z+1; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y1/2, z+1/2; (vi) x1/2, y+1/2, z+1/2; (vii) x+3/2, y1/2, z+1/2; (viii) x+3/2, y+1/2, z+1/2; (ix) x+1/2, y+1/2, z+1/2; (x) x+1/2, y1/2, z+1/2; (xi) x1/2, y1/2, z1/2; (xii) x+1/2, y1/2, z1/2; (xiii) x+1/2, y+1/2, z1/2; (xiv) x1/2, y+1/2, z1/2; (xv) x+1, y, z; (xvi) x, y+1, z.
Comparison of lattice parameters and bond lengths (Å) in Sr2PdO3 determined in different studies top
1970 worka1971 workb2002 workcThis work
a3.9773.973.9853.5342 (2)
b3.533.5443.5393.9822 (3)
c12.8212.8412.84712.8414 (8)
Pd—O1 (×2)2.082.0452.0682.052 (2)
Pd—O2 (×2)1.991.9851.9931.9911 (1)
Sr—O12.452.5042.4672.474 (2)
Sr—O1 (×4)2.672.6682.6712.6668 (2)
Sr—O2 (×2)2.582.572.5882.5906 (3)
References: (a) Wasel-Nielen & Hoppe (1970); (b) Muller & Roy (1971); (c) Nagata et al. (2002).
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Ads, E. H., Galal, A. & Atta, N. F. (2016). RSC Adv. 6, 16183–16196.  Google Scholar
First citationHiroi, Z., Takano, M., Azuma, M. & Takeda, Y. (1993). Nature, 364, 315–317.  CrossRef Google Scholar
First citationMotoyama, N., Eisaki, H. & Uchida, S. (1996). Phys. Rev. Lett. 76, 3212–3215.  CrossRef Google Scholar
First citationMuller, O. & Roy, R. (1971). Adv. Chem. Ser. 98, 28–38.  CrossRef Google Scholar
First citationNagata, Y., Taniguchi, T., Tanaka, G., Satho, M. & Samata, H. (2002). J. Alloys Compd, 346, 50–56.  CrossRef Google Scholar
First citationOgasawara, T., Ashida, M., Motoyama, N., Eisaki, H., Uchida, S., Tokura, Y., Ghosh, H., Shukla, A., Mazumdar, S. & Kuwata-Gonokami, M. (2000). Phys. Rev. Lett. 85, 2204–2207.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmallwood, P. L., Smith, M. D. & zur Loye, H. C. (2000). J. Cryst. Growth, 216, 299–303.  CrossRef Google Scholar
First citationTakigawa, M., Motoyama, N., Eisaki, H. & Uchida, S. (1996). Phys. Rev. Lett. 76, 4612–4615.  CrossRef Google Scholar
First citationTassel, C., Seinberg, L., Hayashi, N., Ganesanpotti, S., Ajiro, Y., Kobayashi, Y. & Kageyama, H. (2013). Inorg. Chem. 52, 6096–6102.  CrossRef Google Scholar
First citationTeske, C. L. & Müller-Buschbaum, Hk. (1969). Z. Anorg. Allg. Chem. 371, 325–332.  CrossRef Google Scholar
First citationWasel-Nielen, H. D. & Hoppe, R. (1970). Z. Anorg. Allg. Chem. 375, 209–213.  Google Scholar
First citationWeller, M. T. & Lines, D. R. (1989). J. Solid State Chem. 82, 21–29.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds