research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, electrochemical and spectroscopic investigation of mer-tris­­[2-(1H-imidazol-2-yl-κN3)pyrimidine-κN1]ruthenium(II) bis­­(hexa­fluorido­phosphate) trihydrate

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry, University of Campinas – UNICAMP, PO Box 6154, 13083-970, Campinas, SP, Brazil
*Correspondence e-mail: formiga@g.unicamp.br

Edited by M. Weil, Vienna University of Technology, Austria (Received 14 May 2018; accepted 30 May 2018; online 5 June 2018)

The crystal structure of the title compound, [Ru(C7H6N4)3](PF6)2·3H2O, a novel RuII complex with the bidentate ligand 2-(1H-imidazol-2-yl)pyrimidine, comprises a complex cation in the meridional form exclusively, with a distorted octa­hedral geometry about the ruthenium(II) cation. The Ru—N bonds involving imidazole N atoms are comparatively shorter than the Ru—N bonds from pyrimidine because of the stronger basicity of the imidazole moiety. The three-dimensional hydrogen-bonded network involves all species in the lattice with water mol­ecules inter­acting with both counter-ions and NH hydrogen atoms from the complex. The supra­molecular structure of the crystal also shows that two units of the complex bind strongly through a mutual N—H⋯N bond. The electronic absorption spectrum of the complex displays an asymmetric band at 421 nm, which might point to the presence of two metal-to-ligand charge-transfer (MLCT) bands. Electrochemical measurements show a quasi-reversible peak referring to the RuIII/RuII reduction at 0.87 V versus Ag/AgCl.

1. Chemical context

Since the first preparation of the tris­(2,2-bi­pyridine) ruth­enium(II) complex by Burstall (1936[Burstall, F. H. (1936). J. Chem. Soc. pp. 173-175.]), its inter­esting electrochemical and photochemical properties have stimulated the preparation and characterization of numerous analogous ruthenium(II) complexes (Le-Quang et al., 2018[Le-Quang, L., Farran, R., Lattach, Y., Bonnet, H., Jamet, H., Guérente, L., Maisonhaute, E. & Chauvin, J. (2018). Langmuir, 34, 5193-5203.]; Dong et al., 2018[Dong, X., Zhao, G., Liu, L., Li, X., Wei, Q. & Cao, W. (2018). Biosens. Bioelectron. 110, 201-206.]; Linares et al., 2013[Linares, E. M., Formiga, A. L. B., Kubota, L. T., Galembeck, F. & Thalhammer, S. (2013). J. Mater. Chem. B, 1, 2236-2244.]). When asymmetric bidentate ligands are used to obtain homoleptic complexes, facial and meridional isomers can be obtained, depending on steric and electronic properties with important implications on chemical reactivity and spectroscopy (Metherell et al., 2014[Metherell, A. J., Cullen, W., Stephenson, A., Hunter, C. A. & Ward, M. D. (2014). Dalton Trans. 43, 71-84.]). An inter­esting class of asymmetric ligands are hetero­aryl-imidazoles, since a combination of electron-rich and electron-poor rings can be used to tune the electronic properties of the final complexes (Ratier de Arruda et al., 2017[Ratier de Arruda, E. G., de Farias, M. A., Venturinelli Jannuzzi, S. A., de Almeida Gonsales, S., Timm, R. A., Sharma, S., Zoppellaro, G., Kubota, L. T., Knobel, M. & Formiga, A. L. B. (2017). Inorg. Chim. Acta, 466, 456-463.]; Nakahata et al., 2017[Nakahata, D. H., Ribeiro, M. A., Corbi, P. P., Machado, D., Lancellotti, M., Lustri, W. R., da Costa Ferreira, A. M. & Formiga, A. L. B. (2017). Inorg. Chim. Acta, 458, 224-232.]).

In this context, we have devised a synthetic procedure to obtain exclusively the meridional isomer of the first reported homoleptic RuII complex with the bidentate 2-(1H-imidazol-2-yl)pyrimidine (impm) ligand containing imidazole (im) and pyrimidine (pm) rings in the same unit.

[Scheme 1]

2. Structural commentary

The title complex crystallizes with two hexa­fluorido­phosphates counter-anions and three lattice water mol­ecules. The total +2 charge for the complex is in very good agreement with molar conductivity and mass spectrometry measurements. We can conclude that all three ligands in the complex are neutral, not showing the typical ionization of the imidazole hydrogen atom. The mol­ecular structure of the cationic complex is shown in Fig. 1[link]. It reveals a distorted octa­hedral configuration with meridional stereochemistry, with two imidazole units trans to each other as well as two pyrimidine units trans to each other. There is no correlation between the trans–cis orientation and bond lengths. For example, all Ru—Nim bond lengths are essentially the same within their standard uncertainties, and the same observation is valid for Ru—Npm bond lengths. However, Ru—Nim bond lengths are systematically shorter than Ru—Npm bonds by 0.03 Å, as expected from the stronger Lewis basicity of the imidazole unit. Averaged bond lengths are 2.054 (10) Å for Ru—Nim and 2.083 (8) Å for Ru—Npm. As a result of the bidentate nature of the ligands, coordination angles differ from the ideal 90° value with Nim—Ru—Npm angles ranging from 78.5 (2) to 78.7 (2)°, the latter being the main cause for the distorted octa­hedral configuration.

[Figure 1]
Figure 1
The mol­ecular structure of the homoleptic cationic complex [Ru(L)3]2+ (L = C7H6N4) with the atom-numbering scheme. Displacement ellipsoids are plotted at the 50% probability level.

3. Supra­molecular features

Although hydrogen atoms were not modelled for the three water mol­ecules present in the crystal structure, it is clear that a three-dimensional hydrogen-bonded network is formed by all species. Water mol­ecules cluster in triads and are close to two hexa­fluorido­phosphate anions in the lattice. The supra­molecular arrangement of water mol­ecules and PF6 anions may result in different hydrogen-bonded patterns, and the disorder in hydrogen-atom positions may explain the absence of electron densities close to oxygen atoms in difference maps. Possible donor–acceptor pairs involving the water oxygen atoms are included in Table 1[link]. One of the water mol­ecules (O3) is hydrogen bonded to two N—H imidazole units, N6 and N10, Fig. 2[link] and Table 1[link]. A rather strong mutual inter­molecular inter­action between two [Ru(impm)3]2+ units through one of the ligands involving centrosymmetric N—H⋯N pairs completes the three-dimensional hydrogen-bonded network (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N4i 0.88 2.13 2.935 (7) 152
N6—H6⋯O3ii 0.88 2.00 2.871 (10) 171
N10—H10⋯O3iii 0.88 1.94 2.809 (10) 167
O1⋯F9     3.198 (11)  
O1⋯F12iv     2.793 (7)  
O2⋯O1v     2.703 (7)  
O2⋯F3vi     2.895 (10)  
O3⋯O2     2.784 (9)  
O3⋯F11vii     2.909 (8)  
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+2; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Outline of the unit cell with axes showing all mol­ecular entities in the crystal. Details of the hydrogen bonds found for the [Ru(L)3]2+ unit are also shown. Dashed lines indicate the mutual N—H⋯N array between two symmetric complexes through one of the heteroaryl-imidazole ligands and two hydrogen bonds with water mol­ecules. Symmetry codes: (i) −x + 1, −y + 2, −z + 2; (ii) x + [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (iii) −x + 1, −y + 1, −z + 2; (iv) −x + 1, −y + 2, −z + 1. Water H atoms were not found, see text for details. Atoms of the PF6 anion in the upper right corner have symmetry code (ii).

4. Electrochemistry and electronic spectroscopy

The RuIII/RuII potential for the [Ru(impm)3]2+ complex (0.87 V versus Ag/AgCl) was found to be inter­mediate between those reported for [Ru(im)6]2+ (0.295 V; Clarke et al., 1996[Clarke, M. J., Bailey, V. M., Doan, P. E., Hiller, C. D., LaChance-Galang, K. J., Daghlian, H., Mandal, S., Bastos, C. M. & Lang, D. (1996). Inorg. Chem. 35, 4896-4903.]), and [Ru(bpm)3]2+ (1.72 V; Ernst & Kaim, 1989[Ernst, S. D. & Kaim, W. (1989). Inorg. Chem. 28, 1520-1528.]), in which bpm stands for 2,2′-bi­pyrimidine. Since the reduction potential can be directly related to the t2g orbitals of the complex, i.e. the HOMO (Possato et al., 2017[Possato, B., Deflon, V. M., Naal, Z., Formiga, A. L. B. & Nikolaou, S. (2017). Dalton Trans. 46, 7926-7938.]; Eberlin et al., 2006[Eberlin, M. N., Tomazela, D. M., Araki, K., Alexiou, A. D. P., Formiga, A. L. B., Toma, H. E. & Nikolaou, S. (2006). Organometallics, 25, 3245-3250.]; Nunes et al., 2006[Nunes, G. S., Alexiou, A. D. P., Araki, K., Formiga, A. L. B., Rocha, R. C. & Toma, H. E. (2006). Eur. J. Inorg. Chem. pp. 1487-1495.]), the changes in potential can be accounted for by the high imidazole electron σ-donor ability, which tends to increase the energy of the HOMO, leading to a decrease of the reduction potential. Conversely, pyrimidine is a better π-receptor, decreasing the HOMO energy, therefore increasing the reduction potential (Lever, 1990[Lever, A. B. P. (1990). Inorg. Chem. 29, 1271-1285.]). The electrochemical results reveal that the impm ligand was successfully used to tune these effects by combining them, as we had intended. The electronic spectrum of [Ru(impm)3]2+ revealed an asymmetric band centered at 421 nm (log = 4.14), indicating that two superimposed metal-to-ligand charge-transfer (MLCT) bands may be present. This could be explained if two transitions from the RuII t2g to two π* orbitals are observed. Moreover, the MLCT in [Ru(bpm)3]2+ is observed at 454 nm (Ernst & Kaim, 1989[Ernst, S. D. & Kaim, W. (1989). Inorg. Chem. 28, 1520-1528.]); this is an indication that the π* orbitals involved in the [Ru(impm)3]2+ transitions lie higher in energy.

5. Database survey

Surveys of the Cambridge Structural Database (CSD, Version 5.38, last update February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) and SciFinder (SciFinder, 2018[SciFinder (2018). Chemical Abstracts Service: Columbus, OH, 2010; RN 58-08-2 (accessed May 11, 2018).]) revealed no hits. To the best of our knowledge, this is the first crystal structure reported for a homoleptic ruthenium complex with heteroaryl-imidazoles. The survey revealed the synthesis of the cationic complex [Ru(impy)3]2+ (Stupka et al., 2005[Stupka, G., Gremaud, L. & Williams, A. F. (2005). Helv. Chim. Acta, 88, 487-495.]), in which impy is 2-(1H-imidazol-2-yl)pyridine, but no crystal structure was reported. However, we could relate to other similar crystals containing related cations [Ru(bpm)3]2+, [Ru(bpy)3]2+, or [Ru(bpz)3]2+, in which bpy is 2,2′-bi­pyridine and bpz is 2,2′-bi­pyrazine. [Ru(bpm)3]2+ contains a pyrimidine moiety with an Ru—N length of 2.067 (4) Å, similar to our complex, whereas [Ru(bpy)3]2+ and [Ru(bpz)3]2+ show Ru—N bond lengths of 2.056 (2) and 2.05 (1) Å, respectively (Rillema et al., 1992[Rillema, D. P., Jones, D. S., Woods, C. & Levy, H. A. (1992). Inorg. Chem. 31, 2935-2938.]). The only other complex in which impm appears as a ligand is with CuII and was reported by us (Nakahata et al., 2017[Nakahata, D. H., Ribeiro, M. A., Corbi, P. P., Machado, D., Lancellotti, M., Lustri, W. R., da Costa Ferreira, A. M. & Formiga, A. L. B. (2017). Inorg. Chim. Acta, 458, 224-232.]). In the latter, similar to what we have observed in this work, the Cu—Npm bond length is 2.078 (2) Å, which is a bit longer than that of Cu—Nim [1.975 (5) Å]. The mol­ecular structure of [Ru(im)6]2+ was found to have an average Ru—N length of 2.099 (2) Å (Baird et al., 1998[Baird, I. R., Rettig, S. J., James, B. R. & Skov, K. A. (1998). Can. J. Chem. 76, 1379-1388.]).

6. Synthesis and crystallization

The ligand was synthesized following the same procedure as reported in the literature (Nakahata et al., 2017[Nakahata, D. H., Ribeiro, M. A., Corbi, P. P., Machado, D., Lancellotti, M., Lustri, W. R., da Costa Ferreira, A. M. & Formiga, A. L. B. (2017). Inorg. Chim. Acta, 458, 224-232.]). The RuII complex was prepared by a mixture of one equivalent of RuCl3·3H2O (50 mg), 3.3 equivalents of the ligand (92 mg) and 10 ml of DMF. The mixture was stirred and heated to 423 K for 5 min, until the colour turned to green. After the addition of 45 µl of tri­ethyl­amine, the reaction mixture was kept under reflux for three h, resulting in a reddish purple mixture. This reaction mixture was filtered while still hot using a sintered glass funnel (G4). The filtrate was processed further with constant addition of ethanol and evaporation using a rotary evaporator until the volume reduced to almost 1.5 ml. The resulting reduced mixture was added dropwise to an aqueous solution of NH4PF6 (200 mg in 5 ml of milliQ water) and left in the refrigerator overnight to induce precipitation. Subsequently, the precipitate was filtered, washed with ice-cold water to remove excess NH4PF6 and dried in a desiccator. Yield: 83.42%. Analysis calculated for [Ru(C7H6N4)3](PF6)2: C, 30.41; H, 2.19; N, 20.26. Found: C, 30.51; H, 2.55; N, 19.78. ΛM (S cm2 mol−1): 162.44, within the typical range for a 1:2 electrolyte in water, 150–310 S cm2 mol−1 (Geary, 1971[Geary, W. J. (1971). Coord. Chem. Rev. 7, 81-122.]). ESI–MS (methanol): m/z 270.03 [M2+]. FT–IR (cm−1): 559, 708, 796, 844, 1102, 1409, 1629, 1590, 1551, 1471. Crystals of the title compound were obtained by slow evaporation of a methanol:water solution of the complex.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms bonded to carbon and nitro­gen atoms were added to the structure in idealized positions (N—H = 0.88, C—H = 0.95 Å) and further refined according to the riding model with Uiso(H) = 1.2Ueq(C,N). During the refinement process, electron densities near oxygen atoms were not found in difference maps, resulting in missing hydrogen atoms for water mol­ecules. This is probably a consequence of disordered hydrogen positions resulting from weak inter­molecular inter­actions between lattice water mol­ecules and anions in the structure. The crystal was a strong absorber and exposure times had to be increased in order to achieve a reasonable completeness. In the end, we tested three different absorption correction methods in order to avoid artefacts and the multi-scan method gave the best results. However, a residual positive density was still found close to ruthenium (less than 1 Å) as a consequence of this insufficient absorption correction (Spek, 2018[Spek, A. L. (2018). Inorg. Chim. Acta, 470, 232-237.]).

Table 2
Experimental details

Crystal data
Chemical formula [Ru(C7H6N4)3](PF6)2·3H2O
Mr 883.49
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 13.0162 (5), 13.6078 (5), 18.3382 (7)
β (°) 99.937 (2)
V3) 3199.4 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 6.02
Crystal size (mm) 0.10 × 0.07 × 0.07
 
Data collection
Diffractometer Bruker APEX CCD detector
Absorption correction Multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.625, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 25003, 5754, 4930
Rint 0.039
(sin θ/λ)max−1) 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.229, 1.08
No. of reflections 5754
No. of parameters 460
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 3.62, −0.58
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

mer-Tris[2-(1H-imidazol-2-yl-κN3)pyrimidine-κ2N1]ruthenium(II) bis(hexafluoridophosphate) trihydrate top
Crystal data top
[Ru(C7H6N4)3](PF6)2·3H2OF(000) = 1736
Mr = 883.49Dx = 1.822 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 13.0162 (5) ÅCell parameters from 9950 reflections
b = 13.6078 (5) Åθ = 3.9–68.3°
c = 18.3382 (7) ŵ = 6.02 mm1
β = 99.937 (2)°T = 150 K
V = 3199.4 (2) Å3Irregular, orange
Z = 40.10 × 0.07 × 0.07 mm
Data collection top
Bruker APEX CCD detector
diffractometer
5754 independent reflections
Radiation source: fine-focus sealed tube4930 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.039
φ and ω scansθmax = 68.9°, θmin = 3.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 1415
Tmin = 0.625, Tmax = 0.753k = 1416
25003 measured reflectionsl = 2022
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079H-atom parameters constrained
wR(F2) = 0.229 w = 1/[σ2(Fo2) + (0.1495P)2 + 5.4202P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
5754 reflectionsΔρmax = 3.62 e Å3
460 parametersΔρmin = 0.58 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.61116 (3)0.76501 (4)0.79791 (3)0.0579 (2)
N10.4844 (4)0.8111 (4)0.8410 (3)0.0657 (13)
N20.4208 (4)0.9042 (5)0.9198 (3)0.0718 (15)
H20.4167750.9489580.9538330.086*
N30.6712 (4)0.8865 (4)0.8591 (3)0.0566 (11)
N40.6301 (4)1.0022 (4)0.9467 (3)0.0582 (12)
N50.7422 (4)0.7349 (4)0.7524 (3)0.0615 (13)
N60.8342 (5)0.7645 (4)0.6655 (4)0.0724 (15)
H60.8541830.7900860.6261500.087*
N70.5863 (4)0.8536 (4)0.7038 (3)0.0602 (12)
N80.6760 (5)0.9208 (4)0.6123 (3)0.0756 (15)
N90.6439 (5)0.6722 (4)0.8869 (3)0.0681 (13)
N100.6215 (6)0.5297 (5)0.9368 (4)0.0879 (19)
H100.6003080.4691100.9420010.105*
N110.5437 (4)0.6343 (4)0.7531 (3)0.0603 (12)
N120.5156 (5)0.4675 (4)0.7859 (4)0.0782 (16)
C10.5046 (5)0.8819 (5)0.8901 (3)0.0623 (15)
C20.3815 (6)0.7869 (7)0.8375 (5)0.081 (2)
H2A0.3442670.7386780.8060390.098*
C30.3421 (6)0.8436 (7)0.8866 (5)0.086 (2)
H30.2727830.8417560.8963680.103*
C40.6070 (4)0.9271 (5)0.9011 (3)0.0564 (13)
C50.7256 (5)1.0409 (5)0.9491 (3)0.0619 (14)
H50.7448921.0965570.9795910.074*
C60.7954 (5)1.0035 (5)0.9096 (4)0.0644 (15)
H6A0.8629981.0314260.9131310.077*
C70.7666 (5)0.9254 (5)0.8651 (4)0.0617 (14)
H70.8149770.8977820.8375430.074*
C80.7483 (5)0.7886 (5)0.6927 (4)0.0604 (14)
C90.8261 (5)0.6748 (5)0.7632 (4)0.0686 (16)
H90.8414530.6275850.8017610.082*
C100.8851 (5)0.6927 (6)0.7102 (4)0.0749 (19)
H10A0.9487870.6615640.7051150.090*
C110.6671 (5)0.8592 (5)0.6664 (4)0.0648 (15)
C120.5938 (8)0.9800 (6)0.5917 (5)0.086 (2)
H120.5957761.0259880.5530000.103*
C130.5090 (7)0.9766 (6)0.6239 (5)0.086 (2)
H130.4512471.0181060.6064090.103*
C140.5047 (6)0.9149 (6)0.6809 (5)0.0757 (19)
H140.4454350.9143990.7047420.091*
C150.6043 (6)0.5838 (5)0.8740 (4)0.0726 (17)
C160.6922 (7)0.6751 (6)0.9600 (4)0.080 (2)
H160.7290820.7294310.9843970.097*
C170.6779 (8)0.5869 (7)0.9907 (5)0.092 (2)
H170.7025210.5681181.0405990.111*
C180.5512 (5)0.5592 (5)0.8004 (4)0.0680 (16)
C190.4696 (6)0.4537 (6)0.7149 (5)0.082 (2)
H190.4433430.3900980.7005800.099*
C200.4588 (5)0.5240 (5)0.6637 (4)0.0718 (18)
H200.4259020.5104960.6143050.086*
C210.4959 (5)0.6162 (6)0.6833 (4)0.0662 (16)
H210.4878950.6674940.6475550.079*
P10.52669 (15)0.72394 (12)0.47516 (11)0.0672 (5)
F10.6051 (4)0.6755 (5)0.4292 (3)0.1094 (18)
F20.4541 (6)0.7727 (7)0.5259 (5)0.143 (3)
F30.5632 (6)0.8307 (4)0.4586 (3)0.120 (2)
F40.4894 (5)0.6168 (4)0.4927 (3)0.117 (2)
F50.4400 (5)0.7282 (4)0.4045 (4)0.119 (2)
F60.6122 (4)0.7171 (3)0.5476 (3)0.0905 (14)
P20.17757 (17)0.6704 (2)0.65300 (15)0.0922 (7)
F70.2160 (5)0.5967 (8)0.5979 (4)0.166 (4)
F80.1418 (6)0.7402 (6)0.7124 (7)0.161 (4)
F90.2594 (7)0.7480 (6)0.6365 (6)0.150 (3)
F100.0961 (5)0.5899 (5)0.6745 (4)0.129 (2)
F110.0909 (7)0.7042 (13)0.5912 (8)0.233 (6)
F120.2637 (5)0.6267 (5)0.7163 (4)0.1182 (19)
O10.2542 (8)0.9735 (9)0.6848 (6)0.165 (4)
O20.2613 (8)0.6190 (7)0.9169 (7)0.153 (3)
O30.4135 (6)0.6699 (5)1.0371 (4)0.112 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0485 (3)0.0616 (4)0.0631 (3)0.00170 (17)0.0080 (2)0.01872 (19)
N10.056 (3)0.069 (3)0.073 (3)0.013 (2)0.014 (2)0.027 (3)
N20.054 (3)0.081 (4)0.083 (3)0.014 (3)0.019 (3)0.037 (3)
N30.049 (2)0.059 (3)0.060 (3)0.001 (2)0.005 (2)0.013 (2)
N40.053 (3)0.062 (3)0.060 (3)0.005 (2)0.010 (2)0.015 (2)
N50.051 (3)0.069 (3)0.062 (3)0.004 (2)0.005 (2)0.018 (2)
N60.063 (3)0.078 (4)0.081 (4)0.006 (3)0.024 (3)0.016 (3)
N70.059 (3)0.053 (3)0.066 (3)0.003 (2)0.003 (2)0.014 (2)
N80.085 (4)0.059 (3)0.080 (4)0.011 (3)0.008 (3)0.009 (3)
N90.068 (3)0.072 (3)0.064 (3)0.007 (3)0.011 (2)0.009 (3)
N100.101 (5)0.068 (4)0.096 (4)0.005 (3)0.022 (4)0.007 (3)
N110.052 (3)0.060 (3)0.071 (3)0.002 (2)0.016 (2)0.014 (2)
N120.082 (4)0.062 (3)0.091 (4)0.002 (3)0.016 (3)0.016 (3)
C10.050 (3)0.072 (4)0.066 (3)0.006 (3)0.013 (3)0.020 (3)
C20.060 (4)0.093 (5)0.093 (5)0.027 (4)0.018 (4)0.039 (4)
C30.058 (4)0.106 (6)0.100 (5)0.020 (4)0.029 (4)0.047 (5)
C40.045 (3)0.062 (3)0.061 (3)0.001 (2)0.006 (2)0.013 (3)
C50.059 (3)0.064 (3)0.062 (3)0.011 (3)0.009 (3)0.012 (3)
C60.051 (3)0.069 (4)0.073 (4)0.008 (3)0.010 (3)0.008 (3)
C70.046 (3)0.068 (4)0.070 (3)0.001 (3)0.008 (3)0.009 (3)
C80.055 (3)0.060 (3)0.065 (3)0.001 (3)0.007 (3)0.016 (3)
C90.056 (3)0.072 (4)0.076 (4)0.008 (3)0.007 (3)0.015 (3)
C100.053 (4)0.080 (5)0.091 (5)0.007 (3)0.010 (3)0.018 (4)
C110.062 (3)0.060 (3)0.071 (4)0.008 (3)0.005 (3)0.019 (3)
C120.102 (6)0.064 (4)0.084 (5)0.001 (4)0.002 (4)0.005 (4)
C130.087 (5)0.067 (4)0.096 (5)0.009 (4)0.003 (4)0.001 (4)
C140.063 (4)0.069 (4)0.090 (5)0.009 (3)0.001 (3)0.020 (4)
C150.076 (4)0.065 (4)0.077 (4)0.001 (3)0.015 (3)0.002 (3)
C160.088 (5)0.084 (5)0.068 (4)0.017 (4)0.010 (4)0.009 (4)
C170.110 (6)0.094 (6)0.071 (4)0.003 (5)0.010 (4)0.012 (4)
C180.059 (3)0.065 (4)0.083 (4)0.004 (3)0.018 (3)0.026 (3)
C190.077 (4)0.072 (4)0.099 (5)0.012 (4)0.017 (4)0.033 (4)
C200.060 (4)0.069 (4)0.086 (4)0.006 (3)0.013 (3)0.027 (4)
C210.052 (3)0.075 (4)0.071 (4)0.004 (3)0.012 (3)0.023 (3)
P10.0650 (10)0.0576 (9)0.0735 (10)0.0126 (7)0.0032 (8)0.0036 (7)
F10.093 (3)0.132 (5)0.101 (3)0.020 (3)0.011 (3)0.038 (3)
F20.123 (5)0.171 (7)0.137 (6)0.051 (5)0.030 (5)0.020 (5)
F30.166 (6)0.067 (3)0.117 (4)0.012 (3)0.005 (4)0.010 (3)
F40.128 (4)0.083 (3)0.122 (4)0.031 (3)0.030 (3)0.013 (3)
F50.109 (4)0.105 (4)0.121 (4)0.005 (3)0.046 (4)0.020 (3)
F60.108 (3)0.064 (2)0.085 (3)0.007 (2)0.022 (3)0.014 (2)
P20.0638 (11)0.1057 (16)0.1053 (15)0.0035 (11)0.0099 (10)0.0108 (13)
F70.097 (4)0.252 (10)0.153 (6)0.040 (5)0.036 (4)0.118 (7)
F80.099 (5)0.140 (6)0.254 (11)0.001 (4)0.054 (6)0.085 (6)
F90.121 (6)0.168 (7)0.164 (7)0.038 (5)0.037 (5)0.003 (5)
F100.087 (3)0.122 (4)0.186 (6)0.016 (3)0.047 (4)0.048 (4)
F110.094 (5)0.350 (16)0.234 (12)0.002 (8)0.029 (6)0.112 (12)
F120.093 (3)0.135 (5)0.122 (4)0.011 (3)0.005 (3)0.025 (4)
O10.146 (8)0.188 (11)0.163 (8)0.016 (7)0.032 (7)0.032 (8)
O20.148 (8)0.113 (6)0.198 (9)0.018 (6)0.028 (7)0.019 (6)
O30.129 (5)0.081 (4)0.139 (5)0.006 (4)0.058 (5)0.002 (4)
Geometric parameters (Å, º) top
Ru1—N12.047 (5)C3—H30.9500
Ru1—N32.074 (5)C5—H50.9500
Ru1—N52.066 (6)C5—C61.355 (9)
Ru1—N72.084 (5)C6—H6A0.9500
Ru1—N92.050 (6)C6—C71.353 (9)
Ru1—N112.089 (5)C7—H70.9500
N1—C11.314 (8)C8—C111.449 (9)
N1—C21.370 (9)C9—H90.9500
N2—H20.8800C9—C101.362 (11)
N2—C11.335 (8)C10—H10A0.9500
N2—C31.373 (9)C12—H120.9500
N3—C41.349 (8)C12—C131.339 (13)
N3—C71.337 (8)C13—H130.9500
N4—C41.322 (8)C13—C141.350 (12)
N4—C51.344 (8)C14—H140.9500
N5—C81.330 (9)C15—C181.446 (10)
N5—C91.351 (9)C16—H160.9500
N6—H60.8800C16—C171.353 (13)
N6—C81.341 (9)C17—H170.9500
N6—C101.370 (11)C19—H190.9500
N7—C111.352 (9)C19—C201.331 (12)
N7—C141.359 (9)C20—H200.9500
N8—C111.320 (9)C20—C211.370 (10)
N8—C121.341 (11)C21—H210.9500
N9—C151.314 (10)P1—F11.576 (5)
N9—C161.379 (9)P1—F21.582 (7)
N10—H100.8800P1—F31.574 (6)
N10—C151.352 (10)P1—F41.587 (6)
N10—C171.369 (11)P1—F51.565 (5)
N11—C181.333 (10)P1—F61.581 (5)
N11—C211.346 (9)P2—F71.565 (7)
N12—C181.342 (9)P2—F81.575 (8)
N12—C191.349 (10)P2—F91.566 (8)
C1—C41.449 (8)P2—F101.619 (7)
C2—H2A0.9500P2—F111.526 (9)
C2—C31.352 (11)P2—F121.584 (7)
N1—Ru1—N378.47 (19)N5—C9—H9125.5
N1—Ru1—N5173.6 (2)N5—C9—C10109.1 (7)
N1—Ru1—N797.0 (2)C10—C9—H9125.5
N1—Ru1—N987.2 (2)N6—C10—H10A126.8
N1—Ru1—N1195.8 (2)C9—C10—N6106.3 (6)
N3—Ru1—N788.69 (19)C9—C10—H10A126.8
N3—Ru1—N11170.3 (2)N7—C11—C8112.4 (6)
N5—Ru1—N396.7 (2)N8—C11—N7126.5 (6)
N5—Ru1—N778.5 (2)N8—C11—C8121.1 (7)
N5—Ru1—N1189.6 (2)N8—C12—H12118.9
N7—Ru1—N1199.9 (2)C13—C12—N8122.3 (8)
N9—Ru1—N393.1 (2)C13—C12—H12118.9
N9—Ru1—N597.3 (2)C12—C13—H13119.7
N9—Ru1—N7175.6 (2)C12—C13—C14120.7 (8)
N9—Ru1—N1178.7 (2)C14—C13—H13119.7
C1—N1—Ru1114.2 (4)N7—C14—H14120.4
C1—N1—C2106.7 (6)C13—C14—N7119.1 (8)
C2—N1—Ru1139.0 (5)C13—C14—H14120.4
C1—N2—H2126.8N9—C15—N10110.0 (7)
C1—N2—C3106.4 (5)N9—C15—C18119.3 (7)
C3—N2—H2126.8N10—C15—C18130.6 (7)
C4—N3—Ru1115.0 (4)N9—C16—H16126.1
C7—N3—Ru1128.2 (4)C17—C16—N9107.9 (7)
C7—N3—C4116.7 (5)C17—C16—H16126.1
C4—N4—C5115.5 (5)N10—C17—H17126.3
C8—N5—Ru1113.2 (4)C16—C17—N10107.4 (8)
C8—N5—C9107.0 (6)C16—C17—H17126.3
C9—N5—Ru1139.7 (5)N11—C18—N12126.9 (6)
C8—N6—H6126.3N11—C18—C15113.5 (6)
C8—N6—C10107.4 (6)N12—C18—C15119.6 (7)
C10—N6—H6126.3N12—C19—H19118.1
C11—N7—Ru1115.4 (4)C20—C19—N12123.8 (7)
C11—N7—C14116.3 (6)C20—C19—H19118.1
C14—N7—Ru1127.8 (5)C19—C20—H20120.5
C11—N8—C12115.1 (7)C19—C20—C21119.0 (7)
C15—N9—Ru1113.5 (5)C21—C20—H20120.5
C15—N9—C16107.5 (7)N11—C21—C20120.0 (7)
C16—N9—Ru1138.9 (5)N11—C21—H21120.0
C15—N10—H10126.4C20—C21—H21120.0
C15—N10—C17107.2 (7)F1—P1—F2176.2 (4)
C17—N10—H10126.4F1—P1—F488.4 (4)
C18—N11—Ru1114.7 (4)F1—P1—F689.8 (3)
C18—N11—C21116.7 (6)F2—P1—F491.8 (5)
C21—N11—Ru1128.6 (5)F3—P1—F192.2 (4)
C18—N12—C19113.7 (7)F3—P1—F287.5 (5)
N1—C1—N2111.4 (5)F3—P1—F4179.3 (4)
N1—C1—C4118.5 (5)F3—P1—F691.4 (3)
N2—C1—C4130.0 (5)F5—P1—F190.8 (4)
N1—C2—H2A125.9F5—P1—F293.0 (4)
C3—C2—N1108.2 (6)F5—P1—F390.3 (3)
C3—C2—H2A125.9F5—P1—F490.0 (3)
N2—C3—H3126.3F5—P1—F6178.2 (4)
C2—C3—N2107.4 (6)F6—P1—F286.4 (4)
C2—C3—H3126.3F6—P1—F488.3 (3)
N3—C4—C1113.1 (5)F7—P2—F8176.5 (6)
N4—C4—N3125.6 (5)F7—P2—F990.2 (5)
N4—C4—C1121.2 (5)F7—P2—F1091.1 (4)
N4—C5—H5118.7F7—P2—F1288.2 (4)
N4—C5—C6122.6 (6)F8—P2—F1087.4 (4)
C6—C5—H5118.7F8—P2—F1288.6 (5)
C5—C6—H6A120.8F9—P2—F891.1 (5)
C7—C6—C5118.4 (6)F9—P2—F10177.0 (5)
C7—C6—H6A120.8F9—P2—F1288.6 (5)
N3—C7—C6121.2 (6)F11—P2—F789.5 (8)
N3—C7—H7119.4F11—P2—F893.6 (8)
C6—C7—H7119.4F11—P2—F995.4 (6)
N5—C8—N6110.1 (6)F11—P2—F1087.4 (6)
N5—C8—C11119.6 (6)F11—P2—F12175.4 (7)
N6—C8—C11130.2 (7)F12—P2—F1088.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N4i0.882.132.935 (7)152
N6—H6···O3ii0.882.002.871 (10)171
N10—H10···O3iii0.881.942.809 (10)167
O1···F93.198 (11)
O1···F12iv2.793 (7)
O2···O1v2.703 (7)
O2···F3vi2.895 (10)
O3···O22.784 (9)
O3···F11vii2.909 (8)
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+1/2, y+3/2, z1/2; (iii) x+1, y+1, z+2; (iv) x+1/2, y+1/2, z+3/2; (v) x+1/2, y1/2, z+3/2; (vi) x1/2, y+3/2, z+1/2; (vii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

ALBF would like to express gratitude to Professor Judith Howard, Dr Dmitrii Yufit and Dr Horst Puschmann for an insightful short visit to the Crystallography Group at Durham in April 2017.

Funding information

Funding for this research was provided by: FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo; award Nos. 2013/22127-2, 2014/50906-9); CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico); CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior); INOMAT (INCT for Science, Technology and Innovation in Functional Complex Materials); FAEPEX (Fundo de Apoio ao Ensino, à Pesquisa e Extensão).

References

First citationBaird, I. R., Rettig, S. J., James, B. R. & Skov, K. A. (1998). Can. J. Chem. 76, 1379–1388.  CrossRef Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurstall, F. H. (1936). J. Chem. Soc. pp. 173–175.  CrossRef Google Scholar
First citationClarke, M. J., Bailey, V. M., Doan, P. E., Hiller, C. D., LaChance-Galang, K. J., Daghlian, H., Mandal, S., Bastos, C. M. & Lang, D. (1996). Inorg. Chem. 35, 4896–4903.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDong, X., Zhao, G., Liu, L., Li, X., Wei, Q. & Cao, W. (2018). Biosens. Bioelectron. 110, 201–206.  Web of Science CrossRef Google Scholar
First citationEberlin, M. N., Tomazela, D. M., Araki, K., Alexiou, A. D. P., Formiga, A. L. B., Toma, H. E. & Nikolaou, S. (2006). Organometallics, 25, 3245–3250.  Web of Science CrossRef Google Scholar
First citationErnst, S. D. & Kaim, W. (1989). Inorg. Chem. 28, 1520–1528.  CrossRef Web of Science Google Scholar
First citationGeary, W. J. (1971). Coord. Chem. Rev. 7, 81–122.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLe-Quang, L., Farran, R., Lattach, Y., Bonnet, H., Jamet, H., Guérente, L., Maisonhaute, E. & Chauvin, J. (2018). Langmuir, 34, 5193–5203.  Google Scholar
First citationLever, A. B. P. (1990). Inorg. Chem. 29, 1271–1285.  CrossRef CAS Web of Science Google Scholar
First citationLinares, E. M., Formiga, A. L. B., Kubota, L. T., Galembeck, F. & Thalhammer, S. (2013). J. Mater. Chem. B, 1, 2236–2244.  Web of Science CrossRef Google Scholar
First citationMetherell, A. J., Cullen, W., Stephenson, A., Hunter, C. A. & Ward, M. D. (2014). Dalton Trans. 43, 71–84.  Web of Science CrossRef Google Scholar
First citationNakahata, D. H., Ribeiro, M. A., Corbi, P. P., Machado, D., Lancellotti, M., Lustri, W. R., da Costa Ferreira, A. M. & Formiga, A. L. B. (2017). Inorg. Chim. Acta, 458, 224–232.  Web of Science CrossRef Google Scholar
First citationNunes, G. S., Alexiou, A. D. P., Araki, K., Formiga, A. L. B., Rocha, R. C. & Toma, H. E. (2006). Eur. J. Inorg. Chem. pp. 1487–1495.  Web of Science CrossRef Google Scholar
First citationPossato, B., Deflon, V. M., Naal, Z., Formiga, A. L. B. & Nikolaou, S. (2017). Dalton Trans. 46, 7926–7938.  Web of Science CrossRef Google Scholar
First citationRatier de Arruda, E. G., de Farias, M. A., Venturinelli Jannuzzi, S. A., de Almeida Gonsales, S., Timm, R. A., Sharma, S., Zoppellaro, G., Kubota, L. T., Knobel, M. & Formiga, A. L. B. (2017). Inorg. Chim. Acta, 466, 456–463.  Web of Science CrossRef Google Scholar
First citationRillema, D. P., Jones, D. S., Woods, C. & Levy, H. A. (1992). Inorg. Chem. 31, 2935–2938.  CSD CrossRef CAS Web of Science Google Scholar
First citationSciFinder (2018). Chemical Abstracts Service: Columbus, OH, 2010; RN 58-08-2 (accessed May 11, 2018).  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2018). Inorg. Chim. Acta, 470, 232–237.  Web of Science CrossRef Google Scholar
First citationStupka, G., Gremaud, L. & Williams, A. F. (2005). Helv. Chim. Acta, 88, 487–495.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds