research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of the solid solutions Na3Zn0.912Cd0.088B5O10 and Na3Zn0.845Mg0.155B5O10

CROSSMARK_Color_square_no_text.svg

aCollege of Materials Science and Engineering, Beijing University of Technology, Ping Le Yuan 100, Beijing 100124, People's Republic of China, and bInstitute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Ping Le Yuan 100, Beijing 100124, People's Republic of China
*Correspondence e-mail: xueanchen@bjut.edu.cn

Edited by M. Weil, Vienna University of Technology, Austria (Received 11 October 2017; accepted 19 October 2017; online 24 October 2017)

Two new penta­borates, tris­odium zinc cadmium penta­borate, Na3Zn0.912Cd0.088B5O10, and tris­odium zinc magnesium penta­borate, Na3Zn0.845Mg0.155B5O10, have been synthesized by high-temperature solution reactions at 1023 K. Their crystal structures were determined by single-crystal X-ray diffraction. Both solid solutions crystallize in the ortho­rhom­bic form of the parent compound Na3ZnB5O10 (space group type Pbca, Z = 8) and contain the double ring [B5O10]5− anion composed of one BO4 tetra­hedron and four BO3 triangles as the basic structural motif. The anions are bridged by tetra­hedrally coordinated and occupationally disordered M2+ (M = Zn/Cd, Zn/Mg) cations via common O atoms to form [MB5O10]n3n layers. The intra­layer inter­secting channels and the inter­layer voids are occupied by Na+ cations to balance the charge.

1. Chemical context

Over the past few decades, borate materials have attracted increasing inter­est owing to their promising applications in non-linear optical materials, birefringent materials, ferroelectric and piezoelectric materials, and host materials for luminescence (Becker, 1998[Becker, P. (1998). Adv. Mater. 10, 979-992.]; Chen et al., 1999[Chen, C. T., Ye, N., Lin, J., Jiang, J., Zeng, W. R. & Wu, B. C. (1999). Adv. Mater. 11, 1071-1078.]). In general, boron atoms can be coordinated by either three or four oxygen atoms forming BO3 or BO4 groups, respectively. These groups may inter­connect with each other via common oxygen atoms to produce polyborate anionic groups that can adopt different coordination modes to bind to metal cations. The crystal chemistry of the resultant borates is rich, including infinite chains, sheets or networks for the anionic groups. For instance, in a series of penta­borates with general composition A3MB5O10 (A = Na, K; M = Mg, Zn, Cd, Co, and Fe), at least three kinds of structure types have been reported, including K2NaZnB5O10 in space group C2/c (Chen et al., 2010[Chen, X., Yang, C., Chang, X., Zang, H. & Xiao, W. (2010). J. Alloys Compd. 492, 543-547.]), α-Na3ZnB5O10, Na3CoB5O10 and K3MB5O10 (M = Zn, Cd) in space group P21/n (Chen et al., 2007a[Chen, X., Li, M., Chang, X., Zang, H. & Xiao, W. (2007a). J. Solid State Chem. 180, 1658-1663.]; Strauss et al., 2016[Strauss, F., Rousse, G., Sougrati, M. T., Dalla Corte, D. A., Courty, M., Dominko, R. & Tarascon, J.-M. (2016). Inorg. Chem. 55, 12775-12782.]; Wu et al., 2012[Wu, H., Pan, S., Yu, H., Chen, Z. & Zhang, F. (2012). Solid State Sci. 14, 936-940.]; Yu et al., 2011[Yu, H., Pan, S., Wu, H., Han, J., Dong, X. & Zhou, Z. (2011). J. Solid State Chem. 184, 1644-1648.]), and β-Na3ZnB5O10 as well as Na3MB5O10 (M = Mg, Fe) in space group Pbca (Chen et al., 2007b[Chen, X., Li, M., Zuo, J., Chang, X., Zang, H. & Xiao, W. (2007b). Solid State Sci. 9, 678-685.], 2012[Chen, S., Pan, S., Wu, H., Han, J., Zhang, M. & Zhang, F. (2012). J. Mol. Struct. 1021, 118-122.]; Strauss et al., 2016[Strauss, F., Rousse, G., Sougrati, M. T., Dalla Corte, D. A., Courty, M., Dominko, R. & Tarascon, J.-M. (2016). Inorg. Chem. 55, 12775-12782.]). All of the structures contain polyborate anionic groups [B5O10]5−, which combine with different A+ and M2+ cations. During our exploratory syntheses of novel borate materials to study their structure–property relationships, we have obtained two new members of this family of compounds, viz. the solid solutions Na3Zn0.912Cd0.088B5O10 and Na3Zn0.845Mg0.155B5O10. Single crystal X-ray structure analyses revealed that these two compounds crystallize in the ortho­rhom­bic Na3MB5O10 (M = Mg, Fe, Zn) structure type. Herein we describe their syntheses and crystal structures.

2. Structural commentary

Since Na3Zn0.912Cd0.088B5O10 and Na3Zn0.845Mg0.155B5O10 have similar structures, the discussion will be based mainly on the cadmium-containing compound. The fundamental building blocks in this structure are [(Zn/Cd)O4] tetra­hedra and [B5O10]5− groups, as illustrated in Fig. 1[link]. Each [B5O10]5− group has one BO4 tetra­hedron (T) and four BO3 triangles (Δ) condensed to a double ring via a common tetra­hedron, the connectivity of which can be formulated as 4Δ1T:<2ΔT> − <2ΔT> according to the nomenclature introduced by Burns et al. (1995[Burns, P. C., Grice, J. D. & Hawthorne, F. C. (1995). Can. Mineral. 33, 1131-1151.]). The penta­borate group comprises four terminal O atoms in its isolated form. Each [B5O10]5− group is linked to four different [(Zn/Cd)O4] tetra­hedra and likewise each [(Zn/Cd)O4] tetra­hedron is connected to four neighbouring [B5O10]5− groups through sharing all of the terminal O atoms, thus forming infinite sheets with an overall composition of [(Zn/Cd)B5O10]n3n, as depicted in Fig. 2[link]. The symmetry-equivalent (zinc/cadmium) borate sheets propagate in the ab plane and stack along the c axis. The sheets also afford inter­secting open channels running parallel to the a- and b-axis direc­tions. Fig. 3[link] shows a projection of the structure along [100]. Na2+ cations reside in these channels and Na1+ and Na3+ cations are situated at the voids between the sheets to provide charge compensation.

[Figure 1]
Figure 1
The asymmetric unit of Na3Zn0.912Cd0.088B5O10 supplemented by additional oxygen atoms to show the full coordination around the disordered M site (M = Zn0.912 (4)Cd0.088 (4)). Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) [{1\over 2}] − x, [{1\over 2}] + y, z; (ii) [{3\over 2}] − x, [{1\over 2}] + y, z; (iii) 1 − x, [{1\over 2}] + y, [{1\over 2}] − z.]
[Figure 2]
Figure 2
View of the [(Zn/Cd)B5O10]n3n layer approximately along [001]. (Zn/Cd) site: green spheres; BO3 groups: navy triangles; BO4 groups: magenta tetra­hedra.
[Figure 3]
Figure 3
The crystal structure of Na3Zn0.912Cd0.088B5O10 projected along [100]. Na1 atoms: violet spheres; Na2 atoms: blue spheres; Na3 atoms: grey spheres; (Zn/Cd) atoms: green spheres; BO3 groups: navy triangles; BO4 groups: magenta tetra­hedra.

The asymmetric unit of Na3Zn0.912Cd0.088B5O10 comprises 19 independent sites, i.e. three Na, one disordered (Zn/Cd), five B, and ten O sites, all occupying general positions. Of the three unique Na sites, Na1 is surrounded by seven O atoms with Na—O distances divided into two sets: a set of five short ones is in the range 2.310 (3)–2.700 (3) Å, while another set includes two longer separations [3.054 (3)–3.059 (3) Å, Table 1[link]]. Bond-valence-sum (BVS) calculations using Brown's formula (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) gave a BVS value of 0.89 valence units (v.u.) for the seven-coordinated Na1 cation, confirming that the long bonds participate in the overall metal coordination sphere. The coordination environment can be described as an irregular polyhedron. Similarly, Na2 and Na3 atoms have also adopted the seven-coordinated irregular polyhedral arrangement. This is different from the situation in monoclinic α-Na3ZnB5O10, where three distinct Na sites have coordination numbers of six, seven, and eight, respectively (Chen et al., 2007a[Chen, X., Li, M., Chang, X., Zang, H. & Xiao, W. (2007a). J. Solid State Chem. 180, 1658-1663.]). In the Na3Zn0.912Cd0.088B5O10 structure, the Na—O distances fall in the range 2.273 (3)–3.059 (3) Å (average range for the three sites 2.553–2.657 Å), which is similar to the value reported for the seven-coordinated Na+ cation in α-Na3ZnB5O10 [2.318 (2)–2.859 (3) Å, average 2.531 Å] (Chen et al., 2007a[Chen, X., Li, M., Chang, X., Zang, H. & Xiao, W. (2007a). J. Solid State Chem. 180, 1658-1663.]), and in agreement with the value of 2.50 Å computed from crystal radii sums for seven-coord­inated Na+ and four-coordinated O2− ions (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). In the Na3Zn0.912Cd0.088B5O10 structure, the M1 site is statistically disordered with Zn2+ and Cd2+ cations. The [Zn0.912 (4)Cd0.088 (4)O4] tetra­hedron exhibits a mean O—M1—O angle of 109.14°, close to the ideal value of 109.5°. M1—O bond lengths [1.974 (2)–2.000 (2) Å] are normal when compared with those observed in the related structures of CdZn2(BO3)2 [(Zn0.67Cd0.33)–O = 1.995 (14)–2.130 (15) Å, CN = 4] (Zhang et al., 2008[Zhang, F., Shen, D., Shen, G. & Wang, X. (2008). Z. Kristallogr. New Cryst. Stuct. 223, 3-4.]), Cd3Zn3(BO3)4 [(Zn0.5Cd0.5)–O = 2.015 (3)–2.131 (4) Å, CN = 4] (Sun et al., 2003[Sun, T.-Q., Pan, F., Wang, R.-J., Shen, G.-Q., Wang, X.-Q. & Shen, D.-Z. (2003). Acta Cryst. C59, i107-i108.]), and Cd1.17Zn0.83B2O5 [(Zn0.753Cd0.247)–O = 1.997 (7)–2.109 (6) Å, CN = 4] (Yuan et al., 2005[Yuan, X., Wang, R.-J., Shen, D.-Z., Wang, X.-Q. & Shen, G.-Q. (2005). Acta Cryst. E61, i196-i198.]). Of the boron sites, B3 has a tetra­hedral configuration, while other B sites are in triangular configurations. The BO4 and BO3 groups are rather regular, with average O—B—O angles being close to 109.5 or 120°, respectively. The B—O bond lengths in the tetra­hedron cover the range between 1.467 (4) and 1.472 (4) Å, and those in the triangles between 1.305 (5) and 1.407 (4) Å. The average B—O bond lengths (1.469 Å and 1.366–1.373 Å, respectively) are in good agreement with the data reviewed by Hawthorne et al. (1996[Hawthorne, F. C., Burns, P. C. & Grice, J. D. (1996). Rev. Mineral. 33, 41-115.]). The calculated BVS values concerning B atoms are around 3 v.u., ranging from 2.99 v.u. for B1 to 3.07 v.u. for B3.

Table 1
Selected geometric parameters (Å, °) for (I)

Na1—O1i 2.310 (3) Zn1—O5iii 1.974 (2)
Na1—O9ii 2.404 (3) Zn1—O9iv 1.985 (2)
Na1—O4 2.487 (3) Zn1—O10 2.000 (2)
Na1—O7 2.587 (3) Zn1—O1vi 2.000 (2)
Na1—O3iii 2.700 (3) B1—O1 1.335 (4)
Na1—O3i 3.054 (3) B1—O2 1.384 (4)
Na1—O8ii 3.059 (3) B1—O3 1.400 (4)
Na2—O2iv 2.355 (3) B2—O5 1.324 (4)
Na2—O6iii 2.381 (3) B2—O4 1.376 (4)
Na2—O10ii 2.388 (3) B2—O3 1.407 (4)
Na2—O6iv 2.550 (3) B3—O4 1.467 (4)
Na2—O4iii 2.618 (3) B3—O2 1.468 (4)
Na2—O10 2.719 (3) B3—O7 1.468 (4)
Na2—O8 2.859 (3) B3—O6 1.472 (4)
Na3—O5v 2.273 (3) B4—O9 1.337 (4)
Na3—O9 2.361 (3) B4—O6 1.369 (4)
Na3—O7ii 2.438 (3) B4—O8 1.395 (4)
Na3—O1iv 2.458 (3) B5—O10 1.305 (5)
Na3—O3v 2.786 (3) B5—O7 1.388 (4)
Na3—O10ii 2.868 (3) B5—O8 1.405 (5)
Na3—O2ii 2.910 (3)    
       
O5iii—Zn1—O9iv 111.39 (10) O4—B3—O2 110.6 (3)
O5iii—Zn1—O10 103.73 (11) O4—B3—O7 109.8 (3)
O9iv—Zn1—O10 112.42 (10) O2—B3—O7 109.4 (3)
O5iii—Zn1—O1vi 110.40 (9) O4—B3—O6 107.9 (3)
O9iv—Zn1—O1vi 120.23 (10) O2—B3—O6 108.8 (3)
O10—Zn1—O1vi 96.64 (12) O7—B3—O6 110.4 (3)
O1—B1—O2 121.5 (3) O9—B4—O6 123.6 (3)
O1—B1—O3 120.0 (3) O9—B4—O8 118.8 (3)
O2—B1—O3 118.4 (3) O6—B4—O8 117.6 (3)
O5—B2—O4 123.4 (3) O10—B5—O7 123.2 (3)
O5—B2—O3 117.4 (3) O10—B5—O8 118.1 (3)
O4—B2—O3 119.1 (3) O7—B5—O8 118.7 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

A comparison between the Na3Zn0.845Mg0.155B5O10 and Na3Zn0.912Cd0.088B5O10 structures reveals that the isovalent substitution of Mg2+ for Cd2+ ions in Na3Zn0.912Cd0.088B5O10 leads to a significant decrease in the cell volume [V = 1749.7 (3) Å3 for the (Zn/Mg) vs 1763.7 (5) Å3 for the (Zn/Cd) phase; V = 1745.50 (17) Å3 for unsubstituted Na3ZnB5O10 (Chen et al., 2012[Chen, S., Pan, S., Wu, H., Han, J., Zhang, M. & Zhang, F. (2012). J. Mol. Struct. 1021, 118-122.])]. In the two solid solutions, the [B5O10]5− groups show a similar configuration, with the dihedral angles between two hexa­gonal ring planes being identical within the experimental error [84.7 (1) vs 84.9 (1)°]. The geometric parameters of BO3 triangles and BO4 tetra­hedra remain basically unchanged from the (Zn/Cd) to the (Zn/Mg) phase, while the [NaO7] polyhedra in the (Zn/Mg) compound are slightly smaller compared with the corresponding ones in the (Zn/Cd) compound. In contrast, a remarkable difference in the coordination geometry around the divalent metal ions exists. The average (Zn/Mg)—O bond length is 1.962 Å, shorter than the average (Zn/Cd)—O bond length of 1.990 Å. The O—(Zn/Mg)—O angles are 98.11 (13)–119.58 (11)°, distinctly narrower than the O—(Zn/Cd)—O angles of 96.64 (12)–120.23 (10)°. The [(Zn/Mg)O4] tetra­hedron appears to be smaller and more regular than the [(Zn/Cd)O4] tetra­hedron, which follows the general trend of the respective ionic radii [r(Mg2+) = 0.72 < r(Zn2+) = 0.74 < r(Cd2+) = 0.92 Å, CN = 4] (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]).

As mentioned above, Na3ZnB5O10 was reported to exist in two structural variants, which we name in the following the α- and β-phases, respectively. The α-form crystallizes in space group P21/n, while the β-form in space group Pbca (Chen et al., 2007a[Chen, X., Li, M., Chang, X., Zang, H. & Xiao, W. (2007a). J. Solid State Chem. 180, 1658-1663.], 2012[Chen, S., Pan, S., Wu, H., Han, J., Zhang, M. & Zhang, F. (2012). J. Mol. Struct. 1021, 118-122.]). The relationship between their crystal structures follows a group–subgroup relation: β-Na3ZnB5O10 (Pbca, a, b, c, Z = 8) → α-Na3ZnB5O10 (P21/n, which is a maximal non-isomorphic subgroup of index 2 of Pbca, 0.5a + 0.5b, c, 0.5a − 0.5b, Z = 4). β-Na3ZnB5O10 is isotypic with Na3MB5O10 (M = Mg, Fe), and the title compounds which are substitutional solid solutions of β-Na3ZnB5O10. All structures comprise identical [MB5O10]n3n (M = Zn, Mg, Fe, (Zn/Mg), (Zn/Cd)) layers constructed by [B5O10]5− groups and MO4 tetra­hedra via common O atoms, and the coordin­ation environments around all cationic sites are very similar. The main differences pertain to the [MO4] tetra­hedra. For example, the average M—O bond lengths are 1.963, 1.963, 1.962, and 1.990 Å for β-Na3ZnB5O10, Na3MgB5O10, Na3Zn0.845Mg0.155B5O10, and Na3Zn0.912Cd0.088B5O10, respectively. The cell volumes show a similar trend.

For Na3ZnB5O10, the present study indicates that a partial replacement of Zn2+ by Cd2+ or Mg2+ is favourable for the formation of the ortho­rhom­bic Pbca phase. However, keeping the Na+ ions unchanged, the complete replacement of Zn2+ by larger Cd2+ ions does not result in the isotypic cadmium analogue. We have attempted to prepare a hypothetical compound with nominal composition `Na3CdB5O10' via a standard solid-state synthetic route by mixing stoichiometric amounts of Na2CO3, CdO, and H3BO3 powders followed by annealing the mixture at a temperature of 873 K in air for several weeks. No `Na3CdB5O10' has been obtained, only a mixture of known phases, viz. NaBO2 and Cd2B2O5, was formed instead, according to powder X-ray diffraction analyses. This indicates that the structural variants in the family of compounds A3MB5O10 depend strongly on sizes of A+ and M2+ cations.

3. Synthesis and crystallization

In a typical synthesis of the cadmium-containing compound, a powder mixture of the starting materials Na2B4O7·10H2O, ZnO, CdO, H3BO3 in the molar ratio Na:Zn:Cd:B = 3:2:1:7 was transferred to a platinum crucible of 40 mm in diameter and 40 mm in height. The sample was melted at 1023 K for one week, then cooled down to 773 K at a rate of 0.5 K h−1, to 573 K at 1.0 K h−1, followed by cooling to room temperature at 20 K h−1. Colourless prismatic crystals were isolated from the solidified melt. Energy-dispersive X-ray analyses (EDX) in a scanning electron microscope confirmed the existence of the heavy elements zinc and cadmium with an approximate atomic ratio of 8.2:1.5, close to the refined composition of the crystal (9.12: 0.88) (see Figs. S1–S2 and Table S1 in the Supporting information). The magnesium-containing compound was prepared in the same way, except that the starting materials were Na2B4O7·10H2O, ZnO, MgO, H3BO3 in the molar ratio Na:Zn:Mg:B = 2:2:1:6. EDX measurements for the Na3Zn0.845Mg0.155B5O10 crystal gave an approximate atomic ratio of Zn:Mg = 4.9:3.8, deviating significantly from the refined composition (8.45:1.55) (see Figs. S3–S4 and Table S2). This may be due to the fact that the Mg-peak in the EDX spectrum is very close to the main peak of Zn, which leads the calculations of the integrated intensities of the Zn and Mg peaks to be inaccurate, consequently producing an inaccurate Zn/Mg atomic ratio. The powder X-ray diffraction pattern of the ground crystals are in good agreement with those calculated from the single-crystal data.

The infrared spectra exhibit the characteristic absorption bands of both BO3 and BO4 groups for Na3Zn0.912Cd0.088B5O10 (Na3Zn0.845Mg0.155B5O10), i.e. BO3 asymmetric stretching vibrations in the frequency range 1400–1206 (1400–1201) cm−1, BO4 asymmetric stretching modes from 1077 to 1025 (1079 to 1026) cm−1, BO3 symmetric stretching modes lying at around 938 (939) cm−1, BO4 symmetric stretching mixed with BO3 out-of plane bending modes locating at about 776 (777) cm−1, and the overlapped BO3 and BO4 bending vibrations occurring below 722 (723) cm−1. These values correspond well to those reported in the literature (Filatov et al., 2004[Filatov, S., Shepelev, Y., Bubnova, R., Sennova, N., Egorysheva, A. V. & Kargin, Y. F. (2004). J. Solid State Chem. 177, 515-522.]). UV–VIS diffuse reflectance spectra indicated insulator character, with optical band gaps of about 2.95 and 3.10 eV for Na3Zn0.912Cd0.088B5O10 and Na3Zn0.845Mg0.155B5O10, respectively.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Based on the EDX measurements, cadmium and magnesium, respectively, was incorporated in the crystals. In fact, refinements of the occupancies of the zinc sites in the two structures revealed a small incorporation of cadmium and a somewhat higher incorporation of magnesium, respectively. For the final models, the occupancies of the disordered M sites (M = Zn, Cd and Zn, Mg, respectively) were constrained to 1.0, with the same coordinates and displacement parameters for the two types of metals. The refined ratios were Zn0.912 (4):Cd0.088 (4) and Zn0.845 (5):Mg0.155 (5), respectively. The largest residual electron densities in the final difference-Fourier map are below 1.59 e Å−3.

Table 2
Experimental details

  Na3Zn0.912Cd0.088B5O10 Na3Zn0.845Mg0.155B5O10
Crystal data
Mr 352.53 342.03
Crystal system, space group Orthorhombic, Pbca Orthorhombic, Pbca
Temperature (K) 293 293
a, b, c (Å) 7.9407 (14), 12.293 (2), 18.0684 (19) 7.8931 (12), 12.2555 (12), 18.0874 (11)
V3) 1763.7 (5) 1749.7 (3)
Z 8 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.95 2.60
Crystal size (mm) 0.30 × 0.10 × 0.10 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Rigaku AFC-7R Rigaku AFC-7R
Absorption correction ψ scan (Kopfmann & Huber, 1968[Kopfmann, G. & Huber, R. (1968). Acta Cryst. A24, 348-351.]) ψ scan (Kopfmann & Huber, 1968[Kopfmann, G. & Huber, R. (1968). Acta Cryst. A24, 348-351.])
Tmin, Tmax 0.703, 0.752 0.532, 0.603
No. of measured, independent and observed [I > 2σ(I)] reflections 3006, 2562, 1557 2982, 2542, 1496
Rint 0.061 0.053
(sin θ/λ)max−1) 0.703 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.072, 0.91 0.044, 0.113, 0.87
No. of reflections 2562 2542
No. of parameters 174 173
Δρmax, Δρmin (e Å−3) 0.45, −0.45 1.59, −0.70
Computer programs: Rigaku/AFC Diffractometer Control Software (Rigaku Corporation, 1994[Rigaku Corporation (1994). Rigaku/AFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ATOMS (Dowty, 1999[Dowty, E. (1999). ATOMS. Shape Software, 521 Hidden Valley Road, Kingsport, TN37663, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: Rigaku/AFC Diffractometer Control Software (Rigaku Corporation, 1994); cell refinement: Rigaku/AFC Diffractometer Control Software (Rigaku Corporation, 1994); data reduction: Rigaku/AFC Diffractometer Control Software (Rigaku Corporation, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ATOMS (Dowty, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Trisodium zinc cadmium pentaborate (I) top
Crystal data top
Na3Zn0.912Cd0.088B5O10Dx = 2.655 Mg m3
Mr = 352.53Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 25 reflections
a = 7.9407 (14) Åθ = 12.1–22.2°
b = 12.293 (2) ŵ = 2.95 mm1
c = 18.0684 (19) ÅT = 293 K
V = 1763.7 (5) Å3Prism, colorless
Z = 80.30 × 0.10 × 0.10 mm
F(000) = 1356.7
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.061
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.3°
2θω scansh = 011
Absorption correction: ψ scan
(Kopfmann & Huber, 1968)
k = 017
Tmin = 0.703, Tmax = 0.752l = 025
3006 measured reflections3 standard reflections every 150 reflections
2562 independent reflections intensity decay: 2.2%
1557 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0224P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.037(Δ/σ)max = 0.001
wR(F2) = 0.072Δρmax = 0.45 e Å3
S = 0.91Δρmin = 0.45 e Å3
2562 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
174 parametersExtinction coefficient: 0.00127 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10.8291 (2)0.41887 (12)0.07922 (8)0.0318 (4)
Na20.69268 (17)0.65268 (11)0.25478 (7)0.0248 (3)
Na30.79023 (18)0.42762 (12)0.42997 (7)0.0271 (4)
Zn10.42413 (4)0.67826 (3)0.09632 (2)0.01812 (12)0.912 (4)
Cd10.42413 (4)0.67826 (3)0.09632 (2)0.01812 (12)0.088 (4)
B10.4192 (5)0.1571 (3)0.0744 (2)0.0195 (8)
B20.7256 (5)0.1729 (4)0.07257 (19)0.0198 (8)
B30.5612 (5)0.2868 (3)0.16320 (19)0.0174 (7)
B40.5534 (5)0.3497 (3)0.2967 (2)0.0206 (8)
B50.4884 (6)0.4782 (3)0.1978 (2)0.0239 (9)
O10.2779 (3)0.1189 (2)0.04400 (13)0.0260 (6)
O20.4154 (3)0.22647 (18)0.13473 (12)0.0211 (5)
O30.5761 (3)0.1244 (2)0.04691 (13)0.0261 (6)
O40.7176 (3)0.2455 (2)0.13046 (12)0.0215 (5)
O50.8686 (3)0.1418 (2)0.04139 (13)0.0286 (6)
O60.5712 (3)0.27092 (17)0.24380 (12)0.0220 (5)
O70.5416 (3)0.40273 (18)0.14568 (12)0.0226 (6)
O80.5100 (4)0.4541 (2)0.27321 (13)0.0380 (8)
O90.5732 (3)0.33154 (19)0.36916 (11)0.0241 (5)
O100.4228 (4)0.5721 (2)0.18019 (14)0.0390 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0399 (9)0.0298 (8)0.0258 (8)0.0017 (7)0.0048 (7)0.0019 (6)
Na20.0245 (7)0.0292 (7)0.0206 (6)0.0011 (7)0.0013 (6)0.0035 (7)
Na30.0333 (8)0.0298 (8)0.0184 (6)0.0006 (7)0.0012 (6)0.0029 (6)
Zn10.01764 (18)0.01970 (19)0.01702 (17)0.00189 (18)0.00014 (17)0.00138 (16)
Cd10.01764 (18)0.01970 (19)0.01702 (17)0.00189 (18)0.00014 (17)0.00138 (16)
B10.0197 (17)0.0201 (19)0.0188 (16)0.0030 (19)0.0011 (17)0.0027 (14)
B20.0202 (18)0.026 (2)0.0135 (15)0.0030 (19)0.0009 (14)0.0027 (17)
B30.0195 (18)0.0194 (16)0.0134 (15)0.0001 (16)0.0001 (16)0.0009 (13)
B40.0191 (19)0.027 (2)0.0160 (17)0.0037 (17)0.0023 (15)0.0037 (15)
B50.028 (2)0.019 (2)0.025 (2)0.0007 (17)0.0021 (18)0.0050 (17)
O10.0208 (13)0.0307 (14)0.0266 (13)0.0029 (12)0.0025 (12)0.0080 (11)
O20.0178 (11)0.0250 (12)0.0204 (11)0.0016 (11)0.0011 (11)0.0049 (9)
O30.0212 (12)0.0332 (14)0.0239 (12)0.0000 (13)0.0006 (12)0.0142 (11)
O40.0187 (12)0.0255 (13)0.0204 (11)0.0009 (11)0.0005 (10)0.0092 (11)
O50.0214 (12)0.0390 (15)0.0253 (13)0.0061 (12)0.0001 (11)0.0140 (12)
O60.0318 (13)0.0200 (11)0.0142 (10)0.0056 (12)0.0008 (11)0.0002 (9)
O70.0358 (16)0.0149 (11)0.0173 (11)0.0007 (11)0.0015 (10)0.0009 (9)
O80.068 (2)0.0257 (14)0.0206 (13)0.0200 (14)0.0123 (14)0.0084 (11)
O90.0271 (12)0.0320 (13)0.0133 (10)0.0012 (14)0.0030 (11)0.0030 (10)
O100.061 (2)0.0242 (13)0.0322 (14)0.0203 (15)0.0125 (15)0.0114 (11)
Geometric parameters (Å, º) top
Na1—O1i2.310 (3)Zn1—Na1iii3.5615 (16)
Na1—O9ii2.404 (3)B1—O11.335 (4)
Na1—O42.487 (3)B1—O21.384 (4)
Na1—O72.587 (3)B1—O31.400 (4)
Na1—O3iii2.700 (3)B1—Cd1xi2.767 (4)
Na1—B4ii2.986 (4)B1—Na1xii3.015 (4)
Na1—B1i3.015 (4)B2—O51.324 (4)
Na1—O3i3.054 (3)B2—O41.376 (4)
Na1—O8ii3.059 (3)B2—O31.407 (4)
Na1—B33.076 (4)B2—Na3xiii2.903 (4)
Na1—B23.135 (5)B2—Na1v3.155 (5)
Na1—B2iii3.155 (5)B3—O41.467 (4)
Na1—Na3iv3.4250 (19)B3—O21.468 (4)
Na1—Cd1v3.5614 (16)B3—O71.468 (4)
Na2—O2vi2.355 (3)B3—O61.472 (4)
Na2—O6iii2.381 (3)B3—Na2xiv2.996 (4)
Na2—O10ii2.388 (3)B3—Na2v3.046 (4)
Na2—O6vi2.550 (3)B4—O91.337 (4)
Na2—O4iii2.618 (3)B4—O61.369 (4)
Na2—O102.719 (3)B4—O81.395 (4)
Na2—O82.859 (3)B4—Na1x2.986 (4)
Na2—B52.879 (4)B5—O101.305 (5)
Na2—B3vi2.996 (4)B5—O71.388 (4)
Na2—B3iii3.046 (4)B5—O81.405 (5)
Na2—Zn1ii3.2734 (14)B5—Na3x2.862 (4)
Na2—Cd1ii3.2734 (14)O1—Cd1xi2.000 (2)
Na3—O5vii2.273 (3)O1—Zn1xi2.000 (2)
Na3—O92.361 (3)O1—Na1xii2.310 (3)
Na3—O7ii2.438 (3)O1—Na3xiv2.458 (3)
Na3—O1vi2.458 (3)O2—Na2xiv2.355 (3)
Na3—O3vii2.786 (3)O2—Na3x2.910 (3)
Na3—B5ii2.862 (4)O3—Na1v2.700 (3)
Na3—O10ii2.868 (3)O3—Na3xiii2.786 (3)
Na3—B2vii2.903 (4)O4—Na2v2.618 (3)
Na3—O2ii2.910 (3)O5—Cd1v1.974 (2)
Na3—Cd1ii3.2938 (16)O5—Zn1v1.974 (2)
Na3—Zn1ii3.2938 (16)O5—Na3xiii2.273 (3)
Na3—Na1viii3.4250 (19)O6—Na2v2.381 (3)
Zn1—O5iii1.974 (2)O6—Na2xiv2.550 (3)
Zn1—O9vi1.985 (2)O7—Na3x2.438 (3)
Zn1—O102.000 (2)O9—Cd1xiv1.985 (2)
Zn1—O1ix2.000 (2)O9—Zn1xiv1.985 (2)
Zn1—Na2x3.2733 (14)O9—Na1x2.404 (3)
Zn1—Na3x3.2938 (16)O10—Na2x2.388 (3)
Zn1—Na3vi3.5382 (16)O10—Na3x2.868 (3)
O1i—Na1—O9ii115.21 (10)O10ii—Na3—Zn1ii37.07 (5)
O1i—Na1—O497.12 (10)B2vii—Na3—Zn1ii125.68 (9)
O9ii—Na1—O476.10 (9)O2ii—Na3—Zn1ii128.80 (7)
O1i—Na1—O7106.07 (10)Cd1ii—Na3—Zn1ii0.000 (13)
O9ii—Na1—O7119.81 (9)O5vii—Na3—Na1viii65.50 (8)
O4—Na1—O756.45 (8)O9—Na3—Na1viii116.11 (8)
O1i—Na1—O3iii91.64 (9)O7ii—Na3—Na1viii137.47 (8)
O9ii—Na1—O3iii106.08 (10)O1vi—Na3—Na1viii42.40 (6)
O4—Na1—O3iii169.04 (9)O3vii—Na3—Na1viii50.25 (6)
O7—Na1—O3iii114.72 (9)B5ii—Na3—Na1viii131.86 (10)
O1i—Na1—B4ii140.44 (12)O10ii—Na3—Na1viii107.87 (7)
O9ii—Na1—B4ii25.95 (9)B2vii—Na3—Na1viii59.13 (9)
O4—Na1—B4ii71.88 (10)O2ii—Na3—Na1viii151.51 (7)
O7—Na1—B4ii98.98 (10)Cd1ii—Na3—Na1viii71.79 (4)
O3iii—Na1—B4ii105.21 (10)Zn1ii—Na3—Na1viii71.79 (4)
O1i—Na1—B1i24.80 (10)O5iii—Zn1—O9vi111.39 (10)
O9ii—Na1—B1i91.57 (10)O5iii—Zn1—O10103.73 (11)
O4—Na1—B1i99.30 (10)O9vi—Zn1—O10112.42 (10)
O7—Na1—B1i127.81 (11)O5iii—Zn1—O1ix110.40 (9)
O3iii—Na1—B1i91.42 (10)O9vi—Zn1—O1ix120.23 (10)
B4ii—Na1—B1i117.46 (12)O10—Zn1—O1ix96.64 (12)
O1i—Na1—B3104.34 (11)O5iii—Zn1—Na2x149.29 (8)
O9ii—Na1—B397.50 (10)O9vi—Zn1—Na2x80.73 (7)
O4—Na1—B328.10 (9)O10—Zn1—Na2x46.49 (8)
O7—Na1—B328.40 (9)O1ix—Zn1—Na2x84.43 (7)
O3iii—Na1—B3142.49 (10)O5iii—Zn1—Na3x89.10 (8)
B4ii—Na1—B383.80 (11)O9vi—Zn1—Na3x159.51 (8)
B1i—Na1—B3117.05 (11)O10—Zn1—Na3x59.81 (9)
O1i—Na1—B273.94 (10)O1ix—Zn1—Na3x48.05 (8)
O9ii—Na1—B278.20 (10)Na2x—Zn1—Na3x81.22 (3)
O4—Na1—B225.10 (8)O5iii—Zn1—Na3vi122.04 (8)
O7—Na1—B273.29 (9)O9vi—Zn1—Na3vi39.19 (7)
O3iii—Na1—B2165.25 (10)O10—Zn1—Na3vi131.64 (8)
B4ii—Na1—B284.87 (11)O1ix—Zn1—Na3vi82.34 (8)
B1i—Na1—B274.22 (10)Na2x—Zn1—Na3vi85.61 (3)
B3—Na1—B247.84 (10)Na3x—Zn1—Na3vi129.47 (2)
O1i—Na1—B2iii97.93 (10)O5iii—Zn1—Na1iii71.71 (8)
O9ii—Na1—B2iii124.59 (10)O9vi—Zn1—Na1iii39.91 (7)
O4—Na1—B2iii144.44 (10)O10—Zn1—Na1iii127.64 (9)
O7—Na1—B2iii88.40 (10)O1ix—Zn1—Na1iii134.71 (8)
O3iii—Na1—B2iii26.37 (8)Na2x—Zn1—Na1iii117.39 (3)
B4ii—Na1—B2iii113.11 (11)Na3x—Zn1—Na1iii160.39 (3)
B1i—Na1—B2iii107.72 (11)Na3vi—Zn1—Na1iii62.20 (4)
B3—Na1—B2iii116.48 (11)O5iii—Zn1—Na283.43 (8)
B2—Na1—B2iii156.47 (6)O9vi—Zn1—Na279.97 (7)
O1i—Na1—Na3iv45.83 (7)O10—Zn1—Na248.75 (9)
O9ii—Na1—Na3iv140.76 (8)O1ix—Zn1—Na2145.37 (8)
O4—Na1—Na3iv131.83 (8)Na2x—Zn1—Na270.674 (14)
O7—Na1—Na3iv99.41 (7)Na3x—Zn1—Na2103.02 (3)
O3iii—Na1—Na3iv52.51 (6)Na3vi—Zn1—Na2118.00 (3)
B4ii—Na1—Na3iv155.89 (9)Na1iii—Zn1—Na279.33 (3)
B1i—Na1—Na3iv60.76 (8)O1—B1—O2121.5 (3)
B3—Na1—Na3iv119.19 (9)O1—B1—O3120.0 (3)
B2—Na1—Na3iv115.38 (8)O2—B1—O3118.4 (3)
B2iii—Na1—Na3iv52.17 (7)O1—B1—Cd1xi42.59 (16)
O1i—Na1—Cd1v90.77 (8)O2—B1—Cd1xi78.9 (2)
O9ii—Na1—Cd1v31.99 (6)O3—B1—Cd1xi162.6 (2)
O4—Na1—Cd1v56.75 (6)O1—B1—Na1xii46.55 (16)
O7—Na1—Cd1v112.43 (7)O2—B1—Na1xii155.6 (3)
O3iii—Na1—Cd1v129.97 (8)O3—B1—Na1xii78.18 (18)
B4ii—Na1—Cd1v50.97 (8)Cd1xi—B1—Na1xii85.80 (11)
B1i—Na1—Cd1v72.05 (8)O5—B2—O4123.4 (3)
B3—Na1—Cd1v84.23 (8)O5—B2—O3117.4 (3)
B2—Na1—Cd1v49.21 (8)O4—B2—O3119.1 (3)
B2iii—Na1—Cd1v154.29 (9)O5—B2—Na3xiii49.29 (16)
Na3iv—Na1—Cd1v132.69 (5)O4—B2—Na3xiii163.5 (3)
O2vi—Na2—O6iii97.04 (9)O3—B2—Na3xiii71.11 (17)
O2vi—Na2—O10ii91.24 (9)O5—B2—Na194.0 (2)
O6iii—Na2—O10ii72.03 (10)O4—B2—Na150.05 (18)
O2vi—Na2—O6vi58.16 (8)O3—B2—Na1130.0 (2)
O6iii—Na2—O6vi107.46 (9)Na3xiii—B2—Na1113.46 (13)
O10ii—Na2—O6vi149.35 (10)O5—B2—Na1v81.3 (2)
O2vi—Na2—O4iii131.20 (9)O4—B2—Na1v127.3 (2)
O6iii—Na2—O4iii56.51 (8)O3—B2—Na1v58.45 (19)
O10ii—Na2—O4iii113.25 (11)Na3xiii—B2—Na1v68.70 (10)
O6vi—Na2—O4iii89.07 (8)Na1—B2—Na1v171.50 (14)
O2vi—Na2—O10105.86 (10)O4—B3—O2110.6 (3)
O6iii—Na2—O10143.33 (9)O4—B3—O7109.8 (3)
O10ii—Na2—O10134.11 (12)O2—B3—O7109.4 (3)
O6vi—Na2—O1064.21 (8)O4—B3—O6107.9 (3)
O4iii—Na2—O1087.01 (8)O2—B3—O6108.8 (3)
O2vi—Na2—O892.59 (8)O7—B3—O6110.4 (3)
O6iii—Na2—O8158.52 (10)O4—B3—Na2xiv125.4 (2)
O10ii—Na2—O888.67 (10)O2—B3—Na2xiv50.56 (15)
O6vi—Na2—O893.94 (9)O7—B3—Na2xiv124.7 (2)
O4iii—Na2—O8127.59 (8)O6—B3—Na2xiv58.25 (17)
O10—Na2—O849.20 (7)O4—B3—Na2v59.21 (16)
O2vi—Na2—B5112.63 (11)O2—B3—Na2v115.0 (2)
O6iii—Na2—B5150.29 (11)O7—B3—Na2v135.3 (2)
O10ii—Na2—B5107.34 (12)O6—B3—Na2v49.90 (16)
O6vi—Na2—B588.01 (11)Na2xiv—B3—Na2v82.25 (9)
O4iii—Na2—B599.84 (10)O4—B3—Na152.99 (16)
O10—Na2—B526.77 (10)O2—B3—Na1129.7 (2)
O8—Na2—B528.35 (9)O7—B3—Na156.95 (17)
O2vi—Na2—B3vi28.77 (9)O6—B3—Na1121.4 (2)
O6iii—Na2—B3vi103.60 (10)Na2xiv—B3—Na1178.31 (15)
O10ii—Na2—B3vi119.98 (10)Na2v—B3—Na196.30 (12)
O6vi—Na2—B3vi29.39 (8)O9—B4—O6123.6 (3)
O4iii—Na2—B3vi111.57 (10)O9—B4—O8118.8 (3)
O10—Na2—B3vi85.15 (10)O6—B4—O8117.6 (3)
O8—Na2—B3vi94.07 (10)O9—B4—Na1x51.91 (17)
B5—Na2—B3vi102.00 (12)O6—B4—Na1x142.0 (3)
O2vi—Na2—B3iii119.08 (10)O8—B4—Na1x79.6 (2)
O6iii—Na2—B3iii28.21 (9)O10—B5—O7123.2 (3)
O10ii—Na2—B3iii90.05 (11)O10—B5—O8118.1 (3)
O6vi—Na2—B3iii102.95 (10)O7—B5—O8118.7 (3)
O4iii—Na2—B3iii28.77 (8)O10—B5—Na3x77.1 (2)
O10—Na2—B3iii115.71 (10)O7—B5—Na3x58.31 (18)
O8—Na2—B3iii148.33 (10)O8—B5—Na3x143.4 (3)
B5—Na2—B3iii124.77 (12)O10—B5—Na269.8 (2)
B3vi—Na2—B3iii113.74 (13)O7—B5—Na2124.7 (3)
O2vi—Na2—Zn1ii58.06 (6)O8—B5—Na275.0 (2)
O6iii—Na2—Zn1ii64.38 (6)Na3x—B5—Na2139.48 (16)
O10ii—Na2—Zn1ii37.41 (6)B1—O1—Cd1xi110.6 (2)
O6vi—Na2—Zn1ii113.47 (7)B1—O1—Zn1xi110.6 (2)
O4iii—Na2—Zn1ii120.70 (7)Cd1xi—O1—Zn1xi0.00 (2)
O10—Na2—Zn1ii152.26 (7)B1—O1—Na1xii108.6 (2)
O8—Na2—Zn1ii105.74 (6)Cd1xi—O1—Na1xii132.05 (12)
B5—Na2—Zn1ii132.99 (9)Zn1xi—O1—Na1xii132.05 (12)
B3vi—Na2—Zn1ii85.32 (8)B1—O1—Na3xiv116.3 (2)
B3iii—Na2—Zn1ii91.96 (8)Cd1xi—O1—Na3xiv94.70 (10)
O2vi—Na2—Cd1ii58.06 (6)Zn1xi—O1—Na3xiv94.70 (10)
O6iii—Na2—Cd1ii64.38 (6)Na1xii—O1—Na3xiv91.77 (10)
O10ii—Na2—Cd1ii37.41 (6)B1—O2—B3124.8 (3)
O6vi—Na2—Cd1ii113.47 (7)B1—O2—Na2xiv116.0 (2)
O4iii—Na2—Cd1ii120.70 (7)B3—O2—Na2xiv100.66 (18)
O10—Na2—Cd1ii152.26 (7)B1—O2—Na3x102.4 (2)
O8—Na2—Cd1ii105.74 (6)B3—O2—Na3x88.90 (18)
B5—Na2—Cd1ii132.99 (9)Na2xiv—O2—Na3x122.91 (10)
B3vi—Na2—Cd1ii85.32 (8)B1—O3—B2120.8 (3)
B3iii—Na2—Cd1ii91.96 (8)B1—O3—Na1v116.1 (2)
Zn1ii—Na2—Cd1ii0.000 (14)B2—O3—Na1v95.2 (2)
O5vii—Na3—O9115.10 (10)B1—O3—Na3xiii151.4 (2)
O5vii—Na3—O7ii103.02 (10)B2—O3—Na3xiii80.35 (18)
O9—Na3—O7ii105.90 (9)Na1v—O3—Na3xiii77.25 (7)
O5vii—Na3—O1vi104.47 (10)B2—O4—B3124.8 (3)
O9—Na3—O1vi114.00 (10)B2—O4—Na1104.9 (2)
O7ii—Na3—O1vi114.05 (9)B3—O4—Na198.91 (19)
O5vii—Na3—O3vii53.80 (8)B2—O4—Na2v110.9 (2)
O9—Na3—O3vii78.04 (8)B3—O4—Na2v92.02 (17)
O7ii—Na3—O3vii153.61 (9)Na1—O4—Na2v126.59 (10)
O1vi—Na3—O3vii86.56 (8)B2—O5—Cd1v115.8 (2)
O5vii—Na3—B5ii130.19 (12)B2—O5—Zn1v115.8 (2)
O9—Na3—B5ii97.75 (11)Cd1v—O5—Zn1v0.00 (2)
O7ii—Na3—B5ii28.97 (10)B2—O5—Na3xiii104.5 (2)
O1vi—Na3—B5ii93.86 (11)Cd1v—O5—Na3xiii139.36 (13)
O3vii—Na3—B5ii175.52 (12)Zn1v—O5—Na3xiii139.36 (13)
O5vii—Na3—O10ii138.30 (11)B4—O6—B3126.3 (3)
O9—Na3—O10ii104.76 (9)B4—O6—Na2v117.1 (2)
O7ii—Na3—O10ii52.28 (8)B3—O6—Na2v101.9 (2)
O1vi—Na3—O10ii67.74 (8)B4—O6—Na2xiv108.2 (2)
O3vii—Na3—O10ii153.17 (9)B3—O6—Na2xiv92.4 (2)
B5ii—Na3—O10ii26.34 (9)Na2v—O6—Na2xiv107.36 (9)
O5vii—Na3—B2vii26.19 (10)B5—O7—B3122.4 (3)
O9—Na3—B2vii94.07 (11)B5—O7—Na3x92.7 (2)
O7ii—Na3—B2vii126.07 (11)B3—O7—Na3x109.2 (2)
O1vi—Na3—B2vii101.45 (11)B5—O7—Na1122.1 (2)
O3vii—Na3—B2vii28.54 (9)B3—O7—Na194.7 (2)
B5ii—Na3—B2vii154.88 (13)Na3x—O7—Na1116.90 (9)
O10ii—Na3—B2vii160.82 (11)B4—O8—B5121.3 (3)
O5vii—Na3—O2ii86.75 (9)B4—O8—Na2134.1 (2)
O9—Na3—O2ii68.73 (8)B5—O8—Na276.6 (2)
O7ii—Na3—O2ii52.31 (8)B4—O9—Cd1xiv117.9 (2)
O1vi—Na3—O2ii164.75 (9)B4—O9—Zn1xiv117.9 (2)
O3vii—Na3—O2ii108.55 (8)Cd1xiv—O9—Zn1xiv0.00 (2)
B5ii—Na3—O2ii70.91 (10)B4—O9—Na3117.2 (2)
O10ii—Na3—O2ii97.01 (8)Cd1xiv—O9—Na3108.72 (10)
B2vii—Na3—O2ii93.16 (11)Zn1xiv—O9—Na3108.72 (10)
O5vii—Na3—Cd1ii112.99 (8)B4—O9—Na1x102.1 (2)
O9—Na3—Cd1ii129.54 (8)Cd1xiv—O9—Na1x108.10 (11)
O7ii—Na3—Cd1ii76.84 (7)Zn1xiv—O9—Na1x108.10 (11)
O1vi—Na3—Cd1ii37.25 (6)Na3—O9—Na1x100.64 (9)
O3vii—Na3—Cd1ii121.39 (7)B5—O10—Zn1139.4 (3)
B5ii—Na3—Cd1ii60.18 (9)B5—O10—Na2x123.5 (2)
O10ii—Na3—Cd1ii37.07 (5)Zn1—O10—Na2x96.10 (10)
B2vii—Na3—Cd1ii125.68 (9)B5—O10—Na283.5 (2)
O2ii—Na3—Cd1ii128.80 (7)Zn1—O10—Na297.68 (11)
O5vii—Na3—Zn1ii112.99 (8)Na2x—O10—Na2102.02 (10)
O9—Na3—Zn1ii129.54 (8)B5—O10—Na3x76.6 (2)
O7ii—Na3—Zn1ii76.84 (7)Zn1—O10—Na3x83.12 (10)
O1vi—Na3—Zn1ii37.25 (6)Na2x—O10—Na3x108.52 (12)
O3vii—Na3—Zn1ii121.39 (7)Na2—O10—Na3x149.21 (11)
B5ii—Na3—Zn1ii60.18 (9)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y, z+1/2; (iii) x+3/2, y+1/2, z; (iv) x+3/2, y+1, z1/2; (v) x+3/2, y1/2, z; (vi) x+1, y+1/2, z+1/2; (vii) x, y+1/2, z+1/2; (viii) x+3/2, y+1, z+1/2; (ix) x+1/2, y+1/2, z; (x) x1/2, y, z+1/2; (xi) x+1/2, y1/2, z; (xii) x1/2, y+1/2, z; (xiii) x, y+1/2, z1/2; (xiv) x+1, y1/2, z+1/2.
Trisodium zinc magnesium pentaborate (II) top
Crystal data top
Na3Zn0.845Mg0.155B5O10Dx = 2.597 Mg m3
Mr = 342.03Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 25 reflections
a = 7.8931 (12) Åθ = 10.2–22.2°
b = 12.2555 (12) ŵ = 2.60 mm1
c = 18.0874 (11) ÅT = 293 K
V = 1749.7 (3) Å3Prism, colorless
Z = 80.30 × 0.20 × 0.20 mm
F(000) = 1321.7
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.053
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.3°
2θω scansh = 011
Absorption correction: ψ scan
(Kopfmann & Huber, 1968)
k = 017
Tmin = 0.532, Tmax = 0.603l = 025
2982 measured reflections3 standard reflections every 150 reflections
2542 independent reflections intensity decay: 1.8%
1496 reflections with I > 2σ(I)
Refinement top
Refinement on F2173 parameters
Least-squares matrix: full0 restraints
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0554P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max < 0.001
S = 0.87Δρmax = 1.59 e Å3
2542 reflectionsΔρmin = 0.70 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10.8316 (2)0.41813 (15)0.07839 (9)0.0239 (4)
Na20.6897 (2)0.65191 (14)0.25456 (9)0.0206 (4)
Na30.7931 (2)0.42713 (14)0.42996 (9)0.0200 (4)
Zn10.42299 (6)0.67666 (4)0.09703 (3)0.01104 (14)0.845 (5)
Mg10.42299 (6)0.67666 (4)0.09703 (3)0.01104 (14)0.155 (5)
B10.4227 (6)0.1568 (3)0.0748 (2)0.0130 (8)
B20.7313 (6)0.1729 (4)0.0738 (2)0.0152 (9)
B30.5641 (6)0.2867 (4)0.1632 (2)0.0125 (8)
B40.5572 (5)0.3497 (4)0.2970 (2)0.0128 (8)
B50.4890 (6)0.4793 (4)0.1982 (2)0.0159 (9)
O10.2775 (3)0.1191 (2)0.04430 (15)0.0143 (6)
O20.4175 (3)0.2267 (2)0.13508 (15)0.0159 (6)
O30.5784 (4)0.1245 (2)0.04716 (15)0.0174 (6)
O40.7209 (4)0.2457 (2)0.13007 (15)0.0180 (6)
O50.8743 (4)0.1431 (3)0.04167 (16)0.0209 (7)
O60.5735 (4)0.2706 (2)0.24378 (14)0.0158 (6)
O70.5439 (4)0.4035 (2)0.14602 (14)0.0168 (6)
O80.5099 (5)0.4543 (2)0.27360 (15)0.0283 (8)
O90.5753 (3)0.3304 (2)0.36922 (13)0.0140 (5)
O100.4240 (4)0.5735 (2)0.17972 (16)0.0247 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0291 (10)0.0218 (9)0.0206 (9)0.0003 (8)0.0034 (7)0.0017 (7)
Na20.0211 (9)0.0221 (8)0.0186 (8)0.0020 (7)0.0004 (7)0.0022 (7)
Na30.0235 (9)0.0211 (9)0.0154 (7)0.0011 (8)0.0026 (7)0.0019 (6)
Zn10.0112 (2)0.0106 (2)0.0112 (2)0.0005 (2)0.0001 (2)0.00064 (19)
Mg10.0112 (2)0.0106 (2)0.0112 (2)0.0005 (2)0.0001 (2)0.00064 (19)
B10.0127 (18)0.015 (2)0.0114 (17)0.0013 (18)0.0066 (17)0.0031 (14)
B20.019 (2)0.012 (2)0.0146 (18)0.0023 (18)0.0120 (17)0.0025 (17)
B30.017 (2)0.0116 (17)0.0086 (17)0.0032 (17)0.0014 (17)0.0005 (14)
B40.0098 (19)0.0127 (19)0.016 (2)0.0025 (16)0.0006 (16)0.0045 (15)
B50.024 (2)0.012 (2)0.011 (2)0.0034 (18)0.0028 (18)0.0025 (16)
O10.0121 (13)0.0150 (14)0.0159 (13)0.0008 (11)0.0042 (11)0.0058 (11)
O20.0134 (13)0.0197 (14)0.0147 (13)0.0020 (12)0.0010 (12)0.0088 (11)
O30.0114 (12)0.0239 (15)0.0170 (13)0.0023 (13)0.0021 (12)0.0112 (11)
O40.0150 (14)0.0187 (14)0.0204 (14)0.0008 (12)0.0003 (12)0.0088 (12)
O50.0128 (13)0.0301 (16)0.0197 (15)0.0046 (12)0.0005 (12)0.0089 (13)
O60.0278 (15)0.0098 (12)0.0100 (12)0.0043 (12)0.0002 (12)0.0011 (10)
O70.0285 (17)0.0107 (13)0.0112 (12)0.0022 (11)0.0014 (11)0.0003 (10)
O80.058 (2)0.0135 (14)0.0133 (14)0.0107 (15)0.0080 (15)0.0036 (12)
O90.0204 (13)0.0116 (13)0.0101 (12)0.0002 (12)0.0023 (11)0.0004 (10)
O100.0411 (19)0.0148 (13)0.0181 (14)0.0109 (15)0.0040 (15)0.0050 (11)
Geometric parameters (Å, º) top
Na1—O1i2.305 (3)B1—O31.384 (5)
Na1—O9ii2.399 (3)B1—O21.388 (5)
Na1—O42.470 (3)B1—Mg1xi2.769 (5)
Na1—O72.586 (3)B1—Na1xii3.006 (5)
Na1—O3iii2.687 (3)B2—O51.321 (5)
Na1—B4ii2.992 (5)B2—O41.357 (5)
Na1—B1i3.006 (5)B2—O31.428 (5)
Na1—B33.067 (5)B2—Mg1v2.762 (5)
Na1—B23.110 (5)B2—Na3xiii2.916 (4)
Na1—B2iii3.162 (5)B2—Na1v3.162 (5)
Na1—Na3iv3.431 (2)B3—O21.462 (5)
Na1—Zn1v3.5530 (18)B3—O41.464 (5)
Na2—O2vi2.354 (3)B3—O61.473 (5)
Na2—O6iii2.377 (3)B3—O71.474 (5)
Na2—O10ii2.399 (4)B3—Na2xiv2.992 (5)
Na2—O6vi2.536 (3)B3—Na2v3.039 (5)
Na2—O4iii2.625 (3)B4—O91.335 (5)
Na2—O102.675 (4)B4—O61.372 (5)
Na2—O82.828 (4)B4—O81.400 (5)
Na2—B52.832 (5)B4—Mg1xiv2.863 (5)
Na2—B3vi2.992 (5)B4—Na1x2.992 (5)
Na2—B3iii3.039 (5)B5—O101.307 (5)
Na2—Zn1ii3.2693 (17)B5—O71.393 (5)
Na2—Mg1ii3.2693 (17)B5—O81.407 (5)
Na3—O5vii2.288 (3)B5—Na3x2.859 (5)
Na3—O92.360 (3)O1—Mg1xi1.978 (3)
Na3—O7ii2.427 (3)O1—Zn1xi1.978 (3)
Na3—O1vi2.462 (3)O1—Na1xii2.305 (3)
Na3—O3vii2.787 (3)O1—Na3xiv2.462 (3)
Na3—B5ii2.859 (5)O2—Na2xiv2.354 (3)
Na3—O10ii2.867 (4)O2—Na3x2.895 (3)
Na3—O2ii2.895 (3)O3—Na1v2.687 (3)
Na3—B2vii2.916 (4)O3—Na3xiii2.787 (3)
Na3—Mg1ii3.2620 (18)O4—Na2v2.625 (3)
Na3—Zn1ii3.2620 (18)O5—Mg1v1.932 (3)
Na3—Na1viii3.431 (2)O5—Zn1v1.932 (3)
Zn1—O5iii1.932 (3)O5—Na3xiii2.288 (3)
Zn1—O101.958 (3)O6—Na2v2.377 (3)
Zn1—O1ix1.978 (3)O6—Na2xiv2.536 (3)
Zn1—O9vi1.980 (3)O7—Na3x2.427 (3)
Zn1—Na3x3.2620 (18)O9—Mg1xiv1.980 (3)
Zn1—Na2x3.2692 (17)O9—Zn1xiv1.980 (3)
Zn1—Na3vi3.5456 (18)O9—Na1x2.399 (3)
Zn1—Na1iii3.5530 (19)O10—Na2x2.399 (4)
B1—O11.353 (5)O10—Na3x2.867 (4)
O1i—Na1—O9ii116.11 (11)O9—Na3—Na1viii115.65 (9)
O1i—Na1—O497.45 (11)O7ii—Na3—Na1viii137.98 (10)
O9ii—Na1—O475.55 (10)O1vi—Na3—Na1viii42.18 (7)
O1i—Na1—O7106.21 (11)O3vii—Na3—Na1viii49.89 (7)
O9ii—Na1—O7119.10 (11)B5ii—Na3—Na1viii131.76 (11)
O4—Na1—O756.72 (10)O10ii—Na3—Na1viii107.39 (8)
O1i—Na1—O3iii91.88 (10)O2ii—Na3—Na1viii152.15 (8)
O9ii—Na1—O3iii107.04 (11)B2vii—Na3—Na1viii59.09 (10)
O4—Na1—O3iii168.01 (11)Mg1ii—Na3—Na1viii71.89 (5)
O7—Na1—O3iii113.37 (11)Zn1ii—Na3—Na1viii71.89 (5)
O1i—Na1—B4ii141.23 (13)O5iii—Zn1—O10104.78 (13)
O9ii—Na1—B4ii25.79 (10)O5iii—Zn1—O1ix109.67 (11)
O4—Na1—B4ii71.67 (11)O10—Zn1—O1ix98.11 (13)
O7—Na1—B4ii98.45 (11)O5iii—Zn1—O9vi110.90 (12)
O3iii—Na1—B4ii105.36 (12)O10—Zn1—O9vi112.24 (11)
O1i—Na1—B1i25.40 (11)O1ix—Zn1—O9vi119.58 (11)
O9ii—Na1—B1i92.03 (12)O5iii—Zn1—Na3x89.02 (10)
O4—Na1—B1i99.92 (12)O10—Zn1—Na3x60.69 (10)
O7—Na1—B1i128.69 (12)O1ix—Zn1—Na3x48.85 (8)
O3iii—Na1—B1i91.74 (11)O9vi—Zn1—Na3x160.08 (9)
B4ii—Na1—B1i117.79 (13)O5iii—Zn1—Na2x150.73 (10)
O1i—Na1—B3104.49 (12)O10—Zn1—Na2x46.78 (9)
O9ii—Na1—B396.83 (12)O1ix—Zn1—Na2x84.96 (8)
O4—Na1—B328.11 (10)O9vi—Zn1—Na2x80.74 (8)
O7—Na1—B328.65 (10)Na3x—Zn1—Na2x81.89 (4)
O3iii—Na1—B3141.40 (12)O5iii—Zn1—Na3vi120.77 (10)
B4ii—Na1—B383.44 (12)O10—Zn1—Na3vi131.75 (9)
B1i—Na1—B3117.74 (13)O1ix—Zn1—Na3vi81.81 (8)
O1i—Na1—B274.68 (11)O9vi—Zn1—Na3vi38.94 (8)
O9ii—Na1—B277.38 (12)Na3x—Zn1—Na3vi129.78 (2)
O4—Na1—B224.94 (10)Na2x—Zn1—Na3vi85.55 (4)
O7—Na1—B273.87 (11)O5iii—Zn1—Na1iii71.14 (10)
O3iii—Na1—B2166.29 (12)O10—Zn1—Na1iii127.44 (10)
B4ii—Na1—B284.31 (13)O1ix—Zn1—Na1iii133.45 (9)
B1i—Na1—B274.99 (12)O9vi—Zn1—Na1iii39.93 (9)
B3—Na1—B247.96 (11)Na3x—Zn1—Na1iii159.71 (4)
O1i—Na1—B2iii98.09 (11)Na2x—Zn1—Na1iii117.54 (4)
O9ii—Na1—B2iii125.37 (12)Na3vi—Zn1—Na1iii61.85 (4)
O4—Na1—B2iii143.05 (13)O5iii—Zn1—Na284.66 (9)
O7—Na1—B2iii86.73 (12)O10—Zn1—Na247.97 (10)
O3iii—Na1—B2iii26.71 (10)O1ix—Zn1—Na2146.06 (9)
B4ii—Na1—B2iii112.96 (12)O9vi—Zn1—Na280.21 (8)
B1i—Na1—B2iii108.33 (13)Na3x—Zn1—Na2103.06 (4)
B3—Na1—B2iii115.08 (13)Na2x—Zn1—Na270.585 (14)
B2—Na1—B2iii156.02 (7)Na3vi—Zn1—Na2117.98 (4)
O1i—Na1—Na3iv45.81 (8)Na1iii—Zn1—Na279.88 (4)
O9ii—Na1—Na3iv141.90 (10)O1—B1—O3120.5 (3)
O4—Na1—Na3iv131.87 (9)O1—B1—O2120.4 (4)
O7—Na1—Na3iv99.00 (9)O3—B1—O2119.1 (4)
O3iii—Na1—Na3iv52.49 (7)O1—B1—Mg1xi41.80 (17)
B4ii—Na1—Na3iv156.20 (11)O3—B1—Mg1xi162.2 (3)
B1i—Na1—Na3iv61.07 (9)O2—B1—Mg1xi78.6 (2)
B3—Na1—Na3iv118.95 (10)O1—B1—Na1xii46.95 (18)
B2—Na1—Na3iv116.11 (10)O3—B1—Na1xii78.0 (2)
B2iii—Na1—Na3iv52.31 (8)O2—B1—Na1xii154.9 (3)
O1i—Na1—Zn1v91.58 (8)Mg1xi—B1—Na1xii85.69 (13)
O9ii—Na1—Zn1v32.00 (6)O5—B2—O4124.3 (4)
O4—Na1—Zn1v56.24 (7)O5—B2—O3117.3 (4)
O7—Na1—Zn1v112.11 (8)O4—B2—O3118.4 (3)
O3iii—Na1—Zn1v131.28 (9)O5—B2—Mg1v39.4 (2)
B4ii—Na1—Zn1v50.99 (9)O4—B2—Mg1v86.2 (3)
B1i—Na1—Zn1v72.70 (9)O3—B2—Mg1v153.3 (3)
B3—Na1—Zn1v83.71 (9)O5—B2—Na3xiii49.38 (19)
B2—Na1—Zn1v48.41 (9)O4—B2—Na3xiii162.9 (3)
B2iii—Na1—Zn1v155.55 (10)O3—B2—Na3xiii70.5 (2)
Na3iv—Na1—Zn1v133.71 (6)Mg1v—B2—Na3xiii88.71 (12)
O2vi—Na2—O6iii96.54 (11)O5—B2—Na193.5 (3)
O2vi—Na2—O10ii90.74 (11)O4—B2—Na150.1 (2)
O6iii—Na2—O10ii71.31 (11)O3—B2—Na1128.7 (3)
O2vi—Na2—O6vi58.14 (9)Mg1v—B2—Na174.21 (12)
O6iii—Na2—O6vi107.09 (11)Na3xiii—B2—Na1112.80 (14)
O10ii—Na2—O6vi148.77 (12)O5—B2—Na1v82.7 (3)
O2vi—Na2—O4iii130.80 (11)O4—B2—Na1v128.3 (3)
O6iii—Na2—O4iii56.64 (10)O3—B2—Na1v57.7 (2)
O10ii—Na2—O4iii113.16 (12)Mg1v—B2—Na1v99.65 (14)
O6vi—Na2—O4iii88.79 (10)Na3xiii—B2—Na1v68.60 (11)
O2vi—Na2—O10106.68 (11)Na1—B2—Na1v173.51 (18)
O6iii—Na2—O10142.66 (11)O2—B3—O4110.8 (3)
O10ii—Na2—O10135.35 (14)O2—B3—O6108.5 (3)
O6vi—Na2—O1064.51 (10)O4—B3—O6108.5 (3)
O4iii—Na2—O1086.21 (10)O2—B3—O7109.2 (3)
O2vi—Na2—O892.86 (10)O4—B3—O7109.8 (3)
O6iii—Na2—O8158.26 (12)O6—B3—O7110.1 (3)
O10ii—Na2—O889.05 (11)O2—B3—Na2xiv50.63 (17)
O6vi—Na2—O894.52 (10)O4—B3—Na2xiv125.5 (3)
O4iii—Na2—O8127.91 (10)O6—B3—Na2xiv57.85 (19)
O10—Na2—O850.26 (9)O7—B3—Na2xiv124.7 (3)
O2vi—Na2—B5113.27 (13)O2—B3—Na2v115.0 (2)
O6iii—Na2—B5150.17 (13)O4—B3—Na2v59.70 (19)
O10ii—Na2—B5108.08 (13)O6—B3—Na2v49.99 (18)
O6vi—Na2—B588.55 (12)O7—B3—Na2v135.4 (3)
O4iii—Na2—B599.71 (12)Na2xiv—B3—Na2v81.82 (11)
O10—Na2—B527.27 (11)O2—B3—Na1129.4 (2)
O8—Na2—B528.79 (11)O4—B3—Na152.65 (19)
O2vi—Na2—B3vi28.69 (10)O6—B3—Na1122.0 (3)
O6iii—Na2—B3vi103.26 (12)O7—B3—Na157.23 (19)
O10ii—Na2—B3vi119.39 (12)Na2xiv—B3—Na1178.11 (17)
O6vi—Na2—B3vi29.45 (10)Na2v—B3—Na196.73 (14)
O4iii—Na2—B3vi111.38 (12)O9—B4—O6123.5 (4)
O10—Na2—B3vi85.69 (12)O9—B4—O8119.1 (3)
O8—Na2—B3vi94.37 (12)O6—B4—O8117.3 (3)
B5—Na2—B3vi102.52 (14)O9—B4—Mg1xiv37.62 (17)
O2vi—Na2—B3iii118.64 (12)O6—B4—Mg1xiv86.7 (2)
O6iii—Na2—B3iii28.33 (10)O8—B4—Mg1xiv153.5 (3)
O10ii—Na2—B3iii89.67 (13)O9—B4—Na1x51.42 (19)
O6vi—Na2—B3iii102.61 (12)O6—B4—Na1x141.5 (3)
O4iii—Na2—B3iii28.79 (10)O8—B4—Na1x79.2 (2)
O10—Na2—B3iii114.92 (12)Mg1xiv—B4—Na1x74.69 (11)
O8—Na2—B3iii148.49 (12)O10—B5—O7122.5 (4)
B5—Na2—B3iii124.60 (13)O10—B5—O8119.1 (4)
B3vi—Na2—B3iii113.48 (16)O7—B5—O8118.3 (3)
O2vi—Na2—Zn1ii58.00 (7)O10—B5—Na269.6 (2)
O6iii—Na2—Zn1ii64.38 (7)O7—B5—Na2124.6 (3)
O10ii—Na2—Zn1ii36.50 (7)O8—B5—Na275.5 (2)
O6vi—Na2—Zn1ii113.47 (8)O10—B5—Na3x77.2 (2)
O4iii—Na2—Zn1ii120.82 (8)O7—B5—Na3x58.0 (2)
O10—Na2—Zn1ii152.94 (9)O8—B5—Na3x143.1 (3)
O8—Na2—Zn1ii105.19 (8)Na2—B5—Na3x139.58 (18)
B5—Na2—Zn1ii132.82 (11)B1—O1—Mg1xi111.1 (2)
B3vi—Na2—Zn1ii85.28 (9)B1—O1—Zn1xi111.1 (2)
B3iii—Na2—Zn1ii92.06 (9)Mg1xi—O1—Zn1xi0.00 (3)
O2vi—Na2—Mg1ii58.00 (7)B1—O1—Na1xii107.6 (2)
O6iii—Na2—Mg1ii64.38 (7)Mg1xi—O1—Na1xii133.06 (14)
O10ii—Na2—Mg1ii36.50 (7)Zn1xi—O1—Na1xii133.06 (14)
O6vi—Na2—Mg1ii113.47 (8)B1—O1—Na3xiv116.2 (2)
O4iii—Na2—Mg1ii120.82 (8)Mg1xi—O1—Na3xiv93.93 (11)
O10—Na2—Mg1ii152.94 (9)Zn1xi—O1—Na3xiv93.93 (11)
O8—Na2—Mg1ii105.19 (8)Na1xii—O1—Na3xiv92.00 (10)
B5—Na2—Mg1ii132.82 (11)B1—O2—B3124.1 (3)
B3vi—Na2—Mg1ii85.28 (9)B1—O2—Na2xiv115.9 (2)
B3iii—Na2—Mg1ii92.06 (9)B3—O2—Na2xiv100.7 (2)
Zn1ii—Na2—Mg1ii0.000 (19)B1—O2—Na3x102.4 (2)
O5vii—Na3—O9115.24 (12)B3—O2—Na3x89.0 (2)
O5vii—Na3—O7ii103.12 (12)Na2xiv—O2—Na3x123.59 (12)
O9—Na3—O7ii105.71 (11)B1—O3—B2120.6 (3)
O5vii—Na3—O1vi104.82 (12)B1—O3—Na1v115.3 (2)
O9—Na3—O1vi113.76 (11)B2—O3—Na1v95.6 (2)
O7ii—Na3—O1vi113.93 (11)B1—O3—Na3xiii151.6 (2)
O5vii—Na3—O3vii54.07 (9)B2—O3—Na3xiii80.6 (2)
O9—Na3—O3vii78.29 (10)Na1v—O3—Na3xiii77.62 (8)
O7ii—Na3—O3vii154.12 (11)B2—O4—B3125.7 (3)
O1vi—Na3—O3vii86.29 (10)B2—O4—Na1104.9 (3)
O5vii—Na3—B5ii130.45 (14)B3—O4—Na199.2 (2)
O9—Na3—B5ii97.41 (13)B2—O4—Na2v109.9 (3)
O7ii—Na3—B5ii29.12 (11)B3—O4—Na2v91.5 (2)
O1vi—Na3—B5ii93.56 (12)Na1—O4—Na2v127.18 (12)
O3vii—Na3—B5ii175.18 (13)B2—O5—Mg1v114.9 (3)
O5vii—Na3—O10ii138.21 (12)B2—O5—Zn1v114.9 (3)
O9—Na3—O10ii104.75 (10)Mg1v—O5—Zn1v0.00 (3)
O7ii—Na3—O10ii52.34 (9)B2—O5—Na3xiii104.6 (3)
O1vi—Na3—O10ii67.33 (9)Mg1v—O5—Na3xiii140.35 (15)
O3vii—Na3—O10ii152.54 (10)Zn1v—O5—Na3xiii140.35 (15)
B5ii—Na3—O10ii26.39 (11)B4—O6—B3126.6 (3)
O5vii—Na3—O2ii86.84 (11)B4—O6—Na2v116.6 (2)
O9—Na3—O2ii68.39 (9)B3—O6—Na2v101.7 (2)
O7ii—Na3—O2ii52.57 (9)B4—O6—Na2xiv108.7 (2)
O1vi—Na3—O2ii164.65 (10)B3—O6—Na2xiv92.7 (2)
O3vii—Na3—O2ii108.84 (9)Na2v—O6—Na2xiv106.97 (11)
B5ii—Na3—O2ii71.15 (11)B5—O7—B3122.6 (3)
O10ii—Na3—O2ii97.33 (9)B5—O7—Na3x92.9 (2)
O5vii—Na3—B2vii26.00 (12)B3—O7—Na3x108.9 (2)
O9—Na3—B2vii94.71 (13)B5—O7—Na1123.2 (3)
O7ii—Na3—B2vii126.27 (13)B3—O7—Na194.1 (2)
O1vi—Na3—B2vii101.24 (12)Na3x—O7—Na1116.11 (12)
O3vii—Na3—B2vii28.88 (11)B4—O8—B5121.6 (3)
B5ii—Na3—B2vii155.19 (14)B4—O8—Na2133.4 (3)
O10ii—Na3—B2vii160.11 (13)B5—O8—Na275.8 (2)
O2ii—Na3—B2vii93.60 (12)B4—O9—Mg1xiv118.1 (2)
O5vii—Na3—Mg1ii113.38 (10)B4—O9—Zn1xiv118.1 (2)
O9—Na3—Mg1ii129.07 (9)Mg1xiv—O9—Zn1xiv0.00 (4)
O7ii—Na3—Mg1ii76.74 (8)B4—O9—Na3116.4 (2)
O1vi—Na3—Mg1ii37.22 (6)Mg1xiv—O9—Na3109.23 (12)
O3vii—Na3—Mg1ii121.18 (8)Zn1xiv—O9—Na3109.23 (12)
B5ii—Na3—Mg1ii59.94 (10)B4—O9—Na1x102.8 (2)
O10ii—Na3—Mg1ii36.55 (6)Mg1xiv—O9—Na1x108.08 (12)
O2ii—Na3—Mg1ii128.91 (8)Zn1xiv—O9—Na1x108.08 (12)
B2vii—Na3—Mg1ii125.45 (11)Na3—O9—Na1x100.09 (11)
O5vii—Na3—Zn1ii113.38 (10)B5—O10—Zn1140.1 (3)
O9—Na3—Zn1ii129.07 (9)B5—O10—Na2x122.0 (3)
O7ii—Na3—Zn1ii76.74 (8)Zn1—O10—Na2x96.72 (12)
O1vi—Na3—Zn1ii37.22 (6)B5—O10—Na283.1 (3)
O3vii—Na3—Zn1ii121.18 (8)Zn1—O10—Na299.08 (13)
B5ii—Na3—Zn1ii59.94 (10)Na2x—O10—Na2102.12 (11)
O10ii—Na3—Zn1ii36.55 (6)B5—O10—Na3x76.5 (2)
O2ii—Na3—Zn1ii128.91 (8)Zn1—O10—Na3x82.76 (11)
B2vii—Na3—Zn1ii125.45 (11)Na2x—O10—Na3x108.41 (13)
Mg1ii—Na3—Zn1ii0.000 (17)Na2—O10—Na3x149.01 (13)
O5vii—Na3—Na1viii66.25 (9)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y, z+1/2; (iii) x+3/2, y+1/2, z; (iv) x+3/2, y+1, z1/2; (v) x+3/2, y1/2, z; (vi) x+1, y+1/2, z+1/2; (vii) x, y+1/2, z+1/2; (viii) x+3/2, y+1, z+1/2; (ix) x+1/2, y+1/2, z; (x) x1/2, y, z+1/2; (xi) x+1/2, y1/2, z; (xii) x1/2, y+1/2, z; (xiii) x, y+1/2, z1/2; (xiv) x+1, y1/2, z+1/2.
 

Funding information

Financial support by the National Natural Science Foundation of China (grant No. 20871012) is gratefully acknowledged.

References

First citationBecker, P. (1998). Adv. Mater. 10, 979–992.  CrossRef CAS
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals
First citationBurns, P. C., Grice, J. D. & Hawthorne, F. C. (1995). Can. Mineral. 33, 1131–1151.  CAS
First citationChen, X., Li, M., Chang, X., Zang, H. & Xiao, W. (2007a). J. Solid State Chem. 180, 1658–1663.  CrossRef CAS
First citationChen, X., Li, M., Zuo, J., Chang, X., Zang, H. & Xiao, W. (2007b). Solid State Sci. 9, 678–685.  CrossRef CAS
First citationChen, S., Pan, S., Wu, H., Han, J., Zhang, M. & Zhang, F. (2012). J. Mol. Struct. 1021, 118–122.  CSD CrossRef CAS
First citationChen, X., Yang, C., Chang, X., Zang, H. & Xiao, W. (2010). J. Alloys Compd. 492, 543–547.  CrossRef CAS
First citationChen, C. T., Ye, N., Lin, J., Jiang, J., Zeng, W. R. & Wu, B. C. (1999). Adv. Mater. 11, 1071–1078.  Web of Science CrossRef CAS
First citationDowty, E. (1999). ATOMS. Shape Software, 521 Hidden Valley Road, Kingsport, TN37663, USA.
First citationFilatov, S., Shepelev, Y., Bubnova, R., Sennova, N., Egorysheva, A. V. & Kargin, Y. F. (2004). J. Solid State Chem. 177, 515–522.  CrossRef CAS
First citationHawthorne, F. C., Burns, P. C. & Grice, J. D. (1996). Rev. Mineral. 33, 41–115.  CAS
First citationKopfmann, G. & Huber, R. (1968). Acta Cryst. A24, 348–351.  CrossRef IUCr Journals Web of Science
First citationRigaku Corporation (1994). Rigaku/AFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationStrauss, F., Rousse, G., Sougrati, M. T., Dalla Corte, D. A., Courty, M., Dominko, R. & Tarascon, J.-M. (2016). Inorg. Chem. 55, 12775–12782.  CrossRef CAS PubMed
First citationSun, T.-Q., Pan, F., Wang, R.-J., Shen, G.-Q., Wang, X.-Q. & Shen, D.-Z. (2003). Acta Cryst. C59, i107–i108.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals
First citationWu, H., Pan, S., Yu, H., Chen, Z. & Zhang, F. (2012). Solid State Sci. 14, 936–940.  CrossRef CAS
First citationYu, H., Pan, S., Wu, H., Han, J., Dong, X. & Zhou, Z. (2011). J. Solid State Chem. 184, 1644–1648.  CrossRef CAS
First citationYuan, X., Wang, R.-J., Shen, D.-Z., Wang, X.-Q. & Shen, G.-Q. (2005). Acta Cryst. E61, i196–i198.  CrossRef IUCr Journals
First citationZhang, F., Shen, D., Shen, G. & Wang, X. (2008). Z. Kristallogr. New Cryst. Stuct. 223, 3–4.  CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds