research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(4-benzoyl­pyridine-κN)bis­­(methanol-κO)bis­­(thio­cyanato-κN)cobalt(II)

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: ssuckert@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 19 March 2017; accepted 27 March 2017; online 31 March 2017)

The crystal structure of the title compound, [Co(NCS)2(C12H9NO)2(CH3OH)2], consists of cobalt(II) cations that are octa­hedrally coordinated by two N-terminal bonding thio­cyanato anions, two methanol mol­ecules and two 4-benzoyl­pyridine ligands into discrete complexes that are located on centres of inversion. These complexes are further linked by O—H⋯O hydrogen bonding between the hy­droxy H atom of the methanol ligand and the carbonyl O atom of the 4-benzoyl­pyridine ligand of a neighboring complex into layers parallel to (101). No pronounced inter­molecular inter­actions are observed between these layers.

1. Chemical context

The synthesis of magnetic coordination compounds is still a major topic in coordination chemistry. For example, compounds in which the metal cations are linked by small-sized anionic ligands are of special inter­est because cooperative magnetic properties can be expected (Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Massoud et al., 2013[Massoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2013). Polyhedron, 54, 26-33.]). In this context, we and others have reported on a number of one- or two-dimensional thio­cyanate coordination compounds that, dependent on the nature of the metal cation and the neutral co-ligand, show different magnetic properties (Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Massoud et al., 2013[Massoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2013). Polyhedron, 54, 26-33.]; Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]; Werner et al., 2015a[Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). Inorg. Chem. 54, 2893-2901.],b[Werner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015b). Eur. J. Inorg. Chem. 2015, 3236-3245.],c[Werner, J., Tomkowicz, Z., Reinert, T. & Näther, C. (2015c). Eur. J. Inorg. Chem. pp. 3066-3075.],d[Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015d). Dalton Trans. 44, 14149-14158.]). In the majority of compounds having a chain structure, the metal cations are linked by pairs of anionic ligands, whereby the co-ligands as well as the N and the S atoms of the thio­cyanate anions are always trans-coordinating. Surprisingly, with 4-benzoyl­pyridine and cobalt thio­cyanate we obtained a compound in which the N-donor co-ligands are still trans to each other, whereas the N and the S atoms of the anionic ligands show a cis-arrangement (Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. submitted.]). Like many other Co chain polymers, this compound represent an anti­ferromagnetic phase of single chain magnets with magnetic properties similar to that of related cobalt compounds with an all trans-coordination. Later on, we accidentally obtained a further crystalline phase with 4-benzoyl­pyridine as a co-ligand by reaction in methanol. Here we report on these results.

2. Structural commentary

The asymmetric unit of the title compound, [Co(NCS)2(C12H9NO)2(CH3OH)2], consists of one cobalt(II) cation that is located on a center of inversion as well as of one thio­cyanate anion, one methanol mol­ecule and one neutral 4-benzoyl­pyridine ligand in general positions. The CoII cation is octa­hedrally coordinated by two terminal N-bonded anionic ligands, the O atoms of two methanol mol­ecules and the N atoms of two 4-benzoyl­pyridine ligands (Fig. 1[link]). The Co—N bond lengths to the thio­cyanate anions are significantly shorter [2.062 (2) Å] than those to the pyridine N atom of the neutral 4-benzoyl­pyridine ligand [2.1875 (18) Å]. This is expected and in agreement with bond lengths reported in the closely related structure of [Co(NCS)2(C12H9NO)2(CH3CN)2] (Suckert et al., 2017[Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Acta Cryst. E73, 365-368.]) where methanol is replaced by aceto­nitrile, and also for related compounds reported in the literature (Soliman et al., 2014[Soliman, S. M., Elzawy, Z. B., Abu-Youssef, M. A. M., Albering, J., Gatterer, K., Öhrström, L. & Kettle, S. F. A. (2014). Acta Cryst. B70, 115-125.]). The 4-benzoyl­pyridine ligand is not planar, with the phenyl rings inclined by 61.34 (9)°. This value is in agreement with those retrieved from literature which vary between 40.4 and 74.8° (Escuer et al., 2004[Escuer, A., Sanz, N., Mautner, F. A. & Vicente, R. (2004). Eur. J. Inorg. Chem. pp. 309-316.]).

[Scheme 1]
[Figure 1]
Figure 1
View of one discrete complex with labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x + 1, −y, −z + 1.]

3. Supra­molecular features

In the crystal structure of the title compound, the discrete complexes are linked by inter­molecular O—H⋯O hydrogen bonds between the hydroxyl H atom of the methanol mol­ecule and the carbonyl oxygen atom of a 4-benzoyl­pyridine ligand of a neighboring complex. Each of the complexes is linked to four symmetry-related complexes into layers parallel to (101) (Fig. 2[link] and Table 1[link]). Between these layers no pronounced inter­molecular inter­actions are observed (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O11i 0.84 1.92 2.752 (3) 173
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal structure of the title compound in a view onto the O—H⋯O hydrogen-bonded layers (shown as dashed lines).
[Figure 3]
Figure 3
Crystal structure of the title compound in a view perpendicular to the hydrogen-bonded layers along the crystallographic b axis. Inter­molecular O—H⋯O hydrogen bonds are shown as dashed lines.

4. Database survey

Altogether, there are 22 coordination compounds with 4-benzoyl­pyridine ligands compiled in the Cambridge Structure Database (Version 5.38, last update 2016, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) of which three contain also thio­cyanate anions. In two of these structures Co(II) or Ni(II) cations are octa­hedrally coordinated by the N atoms of four 4-benzoyl­pyridine ligands and the N atoms of two thio­cyanate anions (Drew et al., 1985[Drew, M. G. B., Gray, N. I., Cabral, M. F. & Cabral, J. deO. (1985). Acta Cryst. C41, 1434-1437.]; Soliman et al., 2014[Soliman, S. M., Elzawy, Z. B., Abu-Youssef, M. A. M., Albering, J., Gatterer, K., Öhrström, L. & Kettle, S. F. A. (2014). Acta Cryst. B70, 115-125.]). In the third compound, Cu(II) cations have a square-planar coordination sphere defined by two 4-benzoyl­pyridine ligands and two thio­cyanate anions (Bai et al., 2011[Bai, Y., Zheng, G.-S., Dang, D.-B., Zheng, Y.-N. & Ma, P.-T. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 1338-1344.]). Finally, we have reported on a compound with a one-dimensional structure, in which the Co(II) cations are linked by μ-1,3-bridging thio­cyanate anions (Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. submitted.]), as well as a compound very similar to the title structure in which CoII cations are coordinated into discrete complexes by two thio­cyanate anions, two 4-benzoyl­pyridine ligands and two aceto­nitrile mol­ecules (Suckert et al., 2017[Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Acta Cryst. E73, 365-368.]).

5. Synthesis and crystallization

Co(NCS)2 and 4-benzoyl­pyridine were purchased from Alfa Aesar. Crystals of the title compound suitable for single crystal X-ray diffraction were obtained by reaction of 26.3 mg Co(NCS)2 (0.15 mmol) with 27.5 mg 4-benzoyl­pyridine (0.15 mmol) in methanol (1.5 ml) after a few days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound hydrogen atoms were positioned with idealized geometry and were refined with fixed isotropic displacement parameters Uiso(H) = 1.2 Ueq(C) for aromatic and Uiso(H) = 1.5 Ueq(C) for methyl H atoms using a riding model. The methyl hydrogen atoms were allowed to rotate but not to tip. The O—H hydrogen atom was located in a difference map. Its bond length was set to the ideal value of 0.84 Å and finally, it was refined with Uiso(H) = 1.5 Ueq(O) using a riding model.

Table 2
Experimental details

Crystal data
Chemical formula [Co(NCS)2(C12H9NO)2(CH4O)2]
Mr 605.58
Crystal system, space group Monoclinic, P21/n
Temperature (K) 200
a, b, c (Å) 12.0367 (10), 7.2497 (4), 16.1396 (13)
β (°) 94.404 (10)
V3) 1404.22 (18)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.80
Crystal size (mm) 0.26 × 0.20 × 0.09
 
Data collection
Diffractometer Stoe IPDS1
Absorption correction Numerical (X-SHAPE and X-RED32; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.597, 0.901
No. of measured, independent and observed [I > 2σ(I)] reflections 13065, 3054, 2571
Rint 0.094
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.149, 1.08
No. of reflections 3054
No. of parameters 179
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.98, −0.94
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), XP in SHELXTL and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(4-benzoylpyridine-κN)bis(methanol-κO)bis(thiocyanato-κN)cobalt(II) top
Crystal data top
[Co(NCS)2(C12H9NO)2(CH4O)2]F(000) = 626
Mr = 605.58Dx = 1.432 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.0367 (10) ÅCell parameters from 13065 reflections
b = 7.2497 (4) Åθ = 2.5–27.0°
c = 16.1396 (13) ŵ = 0.80 mm1
β = 94.404 (10)°T = 200 K
V = 1404.22 (18) Å3Block, blue
Z = 20.26 × 0.20 × 0.09 mm
Data collection top
Stoe IPDS-1
diffractometer
2571 reflections with I > 2σ(I)
phi scansRint = 0.094
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe, 2008)
θmax = 27.0°, θmin = 2.5°
Tmin = 0.597, Tmax = 0.901h = 1515
13065 measured reflectionsk = 99
3054 independent reflectionsl = 2020
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.1003P)2 + 0.142P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.149(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.98 e Å3
3054 reflectionsΔρmin = 0.94 e Å3
179 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2015, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.026 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.00000.50000.02401 (19)
N10.38448 (17)0.1893 (3)0.45202 (14)0.0369 (5)
C10.30488 (19)0.2635 (3)0.42427 (14)0.0290 (5)
S10.19267 (6)0.36720 (11)0.38595 (5)0.0433 (2)
N110.63301 (15)0.1453 (3)0.44184 (12)0.0262 (4)
C110.71706 (18)0.0512 (4)0.41204 (15)0.0276 (5)
H110.72290.07730.42320.033*
C120.79607 (18)0.1334 (3)0.36556 (14)0.0281 (5)
H120.85280.06140.34350.034*
C130.79087 (18)0.3217 (3)0.35185 (14)0.0269 (5)
C140.70540 (19)0.4217 (4)0.38427 (16)0.0309 (5)
H140.70020.55140.37670.037*
C150.62774 (19)0.3276 (3)0.42802 (15)0.0309 (5)
H150.56850.39540.44900.037*
C160.87501 (18)0.4060 (3)0.29893 (14)0.0281 (5)
C170.93531 (18)0.5746 (4)0.32667 (15)0.0283 (5)
C180.9973 (2)0.6709 (4)0.27036 (17)0.0350 (6)
H180.99580.63200.21410.042*
C191.0602 (2)0.8220 (4)0.2966 (2)0.0425 (6)
H191.10080.88840.25820.051*
C201.0640 (2)0.8770 (4)0.3792 (2)0.0444 (7)
H201.10810.98020.39730.053*
C211.0038 (2)0.7819 (4)0.43553 (19)0.0397 (6)
H211.00720.81960.49200.048*
C220.93860 (19)0.6321 (4)0.40941 (15)0.0311 (5)
H220.89620.56870.44770.037*
O110.89175 (16)0.3254 (3)0.23427 (11)0.0384 (4)
C230.6398 (3)0.2012 (6)0.6476 (2)0.0553 (9)
H23A0.63390.28420.69500.083*
H23B0.67140.08310.66730.083*
H23C0.68820.25680.60840.083*
O10.53106 (15)0.1711 (3)0.60682 (11)0.0375 (4)
H1O10.48420.17200.64280.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0156 (3)0.0275 (3)0.0295 (3)0.00038 (14)0.00505 (17)0.00275 (15)
N10.0249 (10)0.0380 (12)0.0483 (12)0.0054 (9)0.0049 (9)0.0121 (9)
C10.0262 (11)0.0274 (12)0.0337 (11)0.0023 (9)0.0045 (9)0.0050 (9)
S10.0303 (4)0.0428 (4)0.0555 (4)0.0090 (3)0.0038 (3)0.0089 (3)
N110.0190 (8)0.0278 (10)0.0324 (9)0.0027 (7)0.0068 (7)0.0027 (7)
C110.0207 (10)0.0283 (12)0.0350 (11)0.0007 (9)0.0095 (9)0.0030 (9)
C120.0206 (10)0.0307 (12)0.0339 (11)0.0006 (9)0.0079 (9)0.0020 (9)
C130.0216 (10)0.0301 (12)0.0291 (10)0.0025 (9)0.0038 (8)0.0002 (8)
C140.0253 (11)0.0259 (12)0.0421 (13)0.0007 (9)0.0077 (10)0.0021 (9)
C150.0229 (10)0.0291 (12)0.0418 (13)0.0006 (9)0.0100 (9)0.0024 (9)
C160.0193 (10)0.0342 (13)0.0311 (11)0.0006 (9)0.0039 (8)0.0043 (9)
C170.0181 (10)0.0301 (13)0.0368 (12)0.0003 (9)0.0019 (9)0.0060 (9)
C180.0258 (11)0.0365 (14)0.0432 (13)0.0037 (10)0.0060 (10)0.0087 (10)
C190.0287 (12)0.0343 (15)0.0655 (18)0.0051 (11)0.0093 (12)0.0109 (12)
C200.0266 (12)0.0288 (14)0.077 (2)0.0044 (10)0.0012 (13)0.0053 (12)
C210.0304 (12)0.0338 (14)0.0545 (16)0.0007 (10)0.0008 (11)0.0081 (11)
C220.0224 (10)0.0323 (13)0.0385 (12)0.0003 (9)0.0023 (9)0.0014 (9)
O110.0376 (10)0.0444 (11)0.0348 (9)0.0099 (8)0.0130 (8)0.0012 (7)
C230.0412 (16)0.079 (2)0.0455 (16)0.0228 (16)0.0037 (13)0.0180 (15)
O10.0316 (9)0.0504 (12)0.0313 (9)0.0073 (8)0.0081 (7)0.0076 (7)
Geometric parameters (Å, º) top
Co1—N12.062 (2)C16—O111.226 (3)
Co1—N1i2.062 (2)C16—C171.474 (3)
Co1—O12.1336 (18)C17—C221.397 (3)
Co1—O1i2.1336 (18)C17—C181.405 (3)
Co1—N112.1875 (18)C18—C191.379 (4)
Co1—N11i2.1875 (18)C18—H180.9500
N1—C11.159 (3)C19—C201.389 (5)
C1—S11.626 (2)C19—H190.9500
N11—C111.340 (3)C20—C211.388 (4)
N11—C151.341 (3)C20—H200.9500
C11—C121.390 (3)C21—C221.386 (4)
C11—H110.9500C21—H210.9500
C12—C131.383 (3)C22—H220.9500
C12—H120.9500C23—O11.435 (3)
C13—C141.393 (3)C23—H23A0.9800
C13—C161.504 (3)C23—H23B0.9800
C14—C151.393 (3)C23—H23C0.9800
C14—H140.9500O1—H1O10.8400
C15—H150.9500
N1—Co1—N1i180.00 (10)N11—C15—H15118.6
N1—Co1—O189.30 (9)C14—C15—H15118.6
N1i—Co1—O190.70 (9)O11—C16—C17123.0 (2)
N1—Co1—O1i90.70 (9)O11—C16—C13116.8 (2)
N1i—Co1—O1i89.30 (9)C17—C16—C13120.1 (2)
O1—Co1—O1i180.0C22—C17—C18119.5 (2)
N1—Co1—N1190.75 (8)C22—C17—C16121.0 (2)
N1i—Co1—N1189.25 (8)C18—C17—C16119.3 (2)
O1—Co1—N1188.74 (7)C19—C18—C17120.1 (3)
O1i—Co1—N1191.26 (7)C19—C18—H18119.9
N1—Co1—N11i89.25 (8)C17—C18—H18119.9
N1i—Co1—N11i90.75 (8)C18—C19—C20120.0 (3)
O1—Co1—N11i91.26 (7)C18—C19—H19120.0
O1i—Co1—N11i88.74 (7)C20—C19—H19120.0
N11—Co1—N11i180.0C21—C20—C19120.4 (3)
C1—N1—Co1165.5 (2)C21—C20—H20119.8
N1—C1—S1179.5 (2)C19—C20—H20119.8
C11—N11—C15118.02 (19)C22—C21—C20120.1 (3)
C11—N11—Co1120.42 (16)C22—C21—H21120.0
C15—N11—Co1121.28 (15)C20—C21—H21120.0
N11—C11—C12122.8 (2)C21—C22—C17119.9 (2)
N11—C11—H11118.6C21—C22—H22120.0
C12—C11—H11118.6C17—C22—H22120.0
C13—C12—C11119.0 (2)O1—C23—H23A109.5
C13—C12—H12120.5O1—C23—H23B109.5
C11—C12—H12120.5H23A—C23—H23B109.5
C12—C13—C14118.6 (2)O1—C23—H23C109.5
C12—C13—C16117.9 (2)H23A—C23—H23C109.5
C14—C13—C16123.4 (2)H23B—C23—H23C109.5
C15—C14—C13118.6 (2)C23—O1—Co1123.76 (18)
C15—C14—H14120.7C23—O1—H1O1108.6
C13—C14—H14120.7Co1—O1—H1O1118.5
N11—C15—C14122.8 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O11ii0.841.922.752 (3)173
Symmetry code: (ii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

This project was supported by the Deutsche Forschungsgemeinschaft (Project No. NA 720/5–1) and the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

First citationBai, Y., Zheng, G.-S., Dang, D.-B., Zheng, Y.-N. & Ma, P.-T. (2011). Spectrochim. Acta A Mol. Biomol. Spectrosc. 79, 1338–1344.  CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDrew, M. G. B., Gray, N. I., Cabral, M. F. & Cabral, J. deO. (1985). Acta Cryst. C41, 1434–1437.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEscuer, A., Sanz, N., Mautner, F. A. & Vicente, R. (2004). Eur. J. Inorg. Chem. pp. 309–316.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMassoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2013). Polyhedron, 54, 26–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationRams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. submitted.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSoliman, S. M., Elzawy, Z. B., Abu-Youssef, M. A. M., Albering, J., Gatterer, K., Öhrström, L. & Kettle, S. F. A. (2014). Acta Cryst. B70, 115–125.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSuckert, S., Werner, J., Jess, I. & Näther, C. (2017). Acta Cryst. E73, 365–368.  CrossRef IUCr Journals Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). Inorg. Chem. 54, 2893–2901.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015b). Eur. J. Inorg. Chem. 2015, 3236–3245.  Web of Science CSD CrossRef CAS Google Scholar
First citationWerner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015d). Dalton Trans. 44, 14149–14158.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Tomkowicz, Z., Reinert, T. & Näther, C. (2015c). Eur. J. Inorg. Chem. pp. 3066–3075.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds