research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­aqua­bis­­(4-cyano­pyridine-κN)bis­­(thio­cyanato-κN)iron(II) 4-cyano­pyridine disolvate

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany
*Correspondence e-mail: ajochim@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 21 February 2017; accepted 27 February 2017; online 3 March 2017)

The asymmetric unit of the title compound, [Fe(NCS)2(C6H4N2)2(H2O)2]·2C6H4N2, comprises one FeII cation occupying an inversion centre as well as one thio­cyanate anion, one water mol­ecule and two 4-cyano­pyridine mol­ecules in general positions. The iron cations are coordinated by two N-bonded thiocyanate anions, two (pyridine)N-bonded 4-cyano­pyridine ligands and two water mol­ecules into discrete complexes. The resulting coordination polyhedron can be described as a slightly distorted octa­hedron. The discrete complexes are connected through centrosymmetric pairs of (pyridine)C—H⋯N(cyano) hydrogen bonds into chains that are further linked into a three-dimensional network through inter­molecular O—H⋯N hydrogen bonds involving the 4-cyano­pyridine solvent mol­ecules.

1. Chemical context

Thio­cyanate anions are versatile ligands that can coordinate in different modes to metal cations. In most cases the anionic ligands are terminally N-bonded to the metal cation but there are also several examples for a μ-1,3 bridging mode (Werner et al., 2015[Werner, J., Tomkowicz, Z., Reinert, T. & Näther, C. (2015). Eur. J. Inorg. Chem. pp. 3066-3075.]; Boeckmann & Näther, 2012[Boeckmann, J. & Näther, C. (2012). Polyhedron, 31, 587-595.]; Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]). The latter coordination is of special inter­est if the compounds contain paramagnetic metal cations because then cooperative magnetic properties can be expected (Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]). In this context, we have reported on several compounds with one- or two-dimensional structures based on Mn, Fe, Co or Ni as metals, thio­cyanate ligands and different N-donor co-ligands that show different magnetic properties (Suckert et al., 2016[Suckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190-18201.]; Rams et al., 2017[Rams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232-3243.]; Boeckmann et al., 2012[Boeckmann, J., Wriedt, M. & Näther, C. (2012). Chem. Eur. J. 18, 5284-5289.]). Whereas compounds with a terminal coordination of the anionic ligands can usually be synthesized straightforwardly, compounds with bridging ligands are sometimes difficult to obtain from solution. Therefore, we have developed an alternative procedure which is based on thermal decomposition of precursors with a terminal NCS coordination that frequently transform into the desired polymeric compounds on heating. In the course of our investigations on the synthesis of coordination polymers with iron as metal, thio­cyanate ligands and 4-cyano­pyridine as co-ligands, we obtained the title compound which was identified by single crystal X-ray diffraction. Unfortunately, all samples were always contaminated with a second unknown crystalline phase, preventing any further investigations.

[Scheme 1]

2. Structural commentary

The asymmetric unit of [Fe(NCS)2(C6H4N2)2(H2O)2]·2C6H4N2 contains one FeII cation that is located on an inversion centre, one thio­cyanate anion, one water mol­ecule and two 4-cyano­pyridine mol­ecules (Fig. 1[link]). Discrete centrosymmetric [Fe(NCS)2(C6H4N2)2(H2O)2] complexes are formed, in which the FeII cations are octa­hedrally coordinated by two N-bonded thio­cyanate anions, two (pyridine)N-bonded 4-cyano­pyridine ligands and two water mol­ecules, each of them in a trans-position (Fig. 1[link]). The disparate bond lengths are similar to those in related thio­cyanate compounds. The distortion of the octa­hedron is also reflected by the deviation of the bond angles from ideal values. The structure contains additional 4-cyano­pyridine solvate mol­ecules that are located in the cavities of the structure.

[Figure 1]
Figure 1
The discrete complex and the solvent mol­ecule of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) 1 − x, 1 − y, 2 − z.]

3. Supra­molecular features

The discrete complexes are linked into chains parallel to [101] by centrosymmetric pairs of inter­molecular C—H⋯N hydrogen bonds between the cyano group of the coordinating 4-cyano­pyridine ligand and one of the pyridine H atoms (Fig. 2[link], Table 1[link]). These chains are further linked by the 4-cyano­pyridine solvate mol­ecules through inter­molecular O—H⋯N hydrogen bonding. One water H atom is hydrogen-bonded to the N atom of the cyano group and the other H atom to the pyridine N atom of another 4-cyano­pyridine solvate mol­ecule. Since all water H atoms are involved in hydrogen bonding, each of the complexes is surrounded by four 4-cyano­pyridine ligands, of which two are hydrogen-bonded via the cyano group, whereas the other two are hydrogen-bonded via the pyridine N atom (Fig. 3[link], Table 1[link]). This arrangement leads to a three-dimensional network structure. It is noted that there are additional short contacts between the thio­cyanate anions and the pyridine H atoms of the coordinating 4-cyano­pyridine ligand of a neighbouring complex, which is indicative of weak C—H⋯S hydrogen bonding (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯N12i 0.95 2.52 3.437 (3) 162
C14—H14⋯S1ii 0.95 3.01 3.960 (2) 177
O1—H1⋯N22iii 0.84 2.00 2.8380 (19) 177
O1—H2⋯N21iv 0.84 1.89 2.7159 (19) 168
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+2; (iv) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure of the title compound in a view along the b axis with emphasis on the connection of discrete complexes and solvent mol­ecules by inter­molecular hydrogen bonding (dashed lines).
[Figure 3]
Figure 3
The crystal structure of the title compound in a view along the a axis. Inter­molecular hydrogen bonding is shown as dashed lines.

4. Database survey

In the Cambridge Structure Database (Version 5.38, last update 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), five structures of coordination polymers with 4-cyano­pyridine and thio­cyanate as ligands are reported, in which the metal cations are solely connected through μ-1,3 bridging thio­cyanate anions. Two of these compounds contain copper, two cadmium and one is a bi­metal­lic compound in which copper and mercury are present. The two copper-containing compounds are built up of chains, in which the cations are either tetra­hedrally (Lin et al., 2004[Lin, P., Henderson, R. A., Harrington, R. W., Clegg, W., Wu, C. D. & Wu, X. T. (2004). Inorg. Chem. 43, 181-188.]) or octa­hedrally (Machura et al., 2013a[Machura, B., Świtlicka, A., Mroziński, J., Kalińska, B. & Kruszynski, R. (2013a). Polyhedron, 52, 1276-1286.]) coordinated. In the bimetallic compound the cations are linked into a three-dimensional structure (Machura et al., 2013b[Machura, B., Świtlicka, A., Zwoliński, P., Mroziński, J., Kalińska, B. & Kruszynski, R. (2013b). J. Solid State Chem. 197, 218-227.]), whereas the two cadmium-containing compounds exhibit either one-dimensional or three-dimensional coordination networks (Chen et al., 2002[Chen, W., Liu, F. & You, X. (2002). Bull. Chem. Soc. Jpn, 75, 1559-1560.]).

5. Synthesis and crystallization

Iron(II) chloride tetra­hydrate, potassium thio­cyanate and 4-cyano­pyridine were obtained from Alfa Aesar and used without further purification.

29.8 mg iron(II) chloride tetra­hydrate (0.15 mmol) and 29.2 mg KSCN (0.30 mmol) were reacted with 62.5 mg 4-cyano­pyridine (0.60 mmol) in 1.5 ml water at room temperature. After two days, single crystals suitable for structure analysis were obtained. The batch contained a small amount of an additional crystalline phase that could not be identified.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms of the water mol­ecule were located from a difference map, and C-bound hydrogen atoms were refined in calculated positions [C—H = 0.95 Å and O—H = 0.84 Å] with Uiso(H) = 1.2Ueq(C) [1.5 for Ueq(O)] using a riding model (O—H hydrogen atoms were allowed to rotate but not to tip).

Table 2
Experimental details

Crystal data
Chemical formula [Fe(NCS)2(C6H4N2)2(H2O)2]·2C6H4N2
Mr 624.49
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 8.5376 (4), 15.220 (1), 12.1214 (6)
β (°) 96.195 (6)
V3) 1565.88 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.66
Crystal size (mm) 0.13 × 0.10 × 0.06
 
Data collection
Diffractometer Stoe IPDS1
Absorption correction Numerical (X-RED and X-SHAPE; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.884, 0.953
No. of measured, independent and observed [I > 2σ(I)] reflections 18486, 3743, 2960
Rint 0.047
(sin θ/λ)max−1) 0.663
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.094, 1.03
No. of reflections 3743
No. of parameters 188
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.46
Computer programs: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 and XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), DIAMOND (Brandenburg, 2014[Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008) and DIAMOND (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Diaquabis(4-cyanopyridine-κN)bis(thiocyanato-κN)iron(II) 4-cyanopyridine disolvate top
Crystal data top
[Fe(NCS)2(C6H4N2)2(H2O)2]·2C6H4N2F(000) = 640
Mr = 624.49Dx = 1.324 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.5376 (4) ÅCell parameters from 18864 reflections
b = 15.220 (1) Åθ = 3.8–56.3°
c = 12.1214 (6) ŵ = 0.66 mm1
β = 96.195 (6)°T = 200 K
V = 1565.88 (15) Å3Block, yellow
Z = 20.13 × 0.10 × 0.06 mm
Data collection top
Stoe IPDS-1
diffractometer
2960 reflections with I > 2σ(I)
Phi scansRint = 0.047
Absorption correction: numerical
(X-RED and X-SHAPE; Stoe & Cie, 2008)
θmax = 28.1°, θmin = 2.7°
Tmin = 0.884, Tmax = 0.953h = 1110
18486 measured reflectionsk = 2020
3743 independent reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.1102P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.26 e Å3
3743 reflectionsΔρmin = 0.46 e Å3
188 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.019 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.50000.50001.00000.02513 (11)
N10.58788 (18)0.62971 (9)0.99472 (12)0.0358 (3)
C10.62673 (19)0.69914 (10)0.96961 (13)0.0305 (3)
S10.68128 (7)0.79604 (3)0.93149 (5)0.05165 (16)
N110.42359 (17)0.50738 (9)0.81712 (11)0.0317 (3)
C110.2830 (2)0.47429 (11)0.77885 (14)0.0351 (4)
H110.22670.44140.82830.042*
C120.2158 (2)0.48550 (11)0.67119 (15)0.0390 (4)
H120.11500.46170.64720.047*
C130.2990 (2)0.53234 (13)0.59914 (14)0.0399 (4)
C140.4458 (2)0.56588 (13)0.63609 (15)0.0425 (4)
H140.50550.59760.58770.051*
C150.5029 (2)0.55172 (12)0.74578 (14)0.0381 (4)
H150.60360.57470.77180.046*
C160.2332 (3)0.54478 (18)0.48511 (18)0.0570 (6)
N120.1795 (3)0.5537 (2)0.39540 (17)0.0837 (8)
O10.28045 (13)0.55033 (7)1.02877 (9)0.0320 (2)
H10.22010.51341.05350.048*
H20.27280.59511.06840.048*
N211.2086 (2)0.80713 (12)0.64837 (15)0.0523 (4)
C211.0626 (3)0.7796 (2)0.6202 (2)0.0774 (9)
H211.00720.80310.55460.093*
C220.9863 (3)0.71950 (19)0.67912 (19)0.0685 (8)
H220.88130.70180.65540.082*
C231.0672 (2)0.68573 (11)0.77413 (14)0.0347 (4)
C241.2197 (2)0.71283 (11)0.80597 (15)0.0378 (4)
H241.27750.69040.87130.045*
C251.2856 (2)0.77362 (13)0.73992 (17)0.0445 (4)
H251.39070.79230.76090.053*
C260.9913 (2)0.62137 (12)0.83758 (14)0.0361 (4)
N220.9307 (2)0.56987 (11)0.88643 (14)0.0460 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02351 (17)0.02120 (16)0.03167 (17)0.00047 (11)0.00745 (11)0.00057 (11)
N10.0402 (9)0.0231 (6)0.0448 (8)0.0057 (5)0.0075 (6)0.0016 (5)
C10.0277 (8)0.0303 (8)0.0329 (8)0.0006 (6)0.0004 (6)0.0007 (6)
S10.0599 (3)0.0304 (2)0.0628 (3)0.0137 (2)0.0017 (2)0.0132 (2)
N110.0305 (7)0.0324 (7)0.0328 (7)0.0002 (5)0.0053 (5)0.0015 (5)
C110.0343 (9)0.0308 (8)0.0408 (9)0.0028 (6)0.0061 (7)0.0035 (6)
C120.0341 (9)0.0375 (9)0.0446 (9)0.0010 (7)0.0001 (7)0.0080 (7)
C130.0397 (10)0.0458 (10)0.0338 (8)0.0094 (8)0.0022 (7)0.0055 (7)
C140.0393 (10)0.0550 (11)0.0342 (8)0.0011 (8)0.0086 (7)0.0046 (8)
C150.0325 (9)0.0472 (10)0.0353 (8)0.0032 (7)0.0071 (7)0.0014 (7)
C160.0451 (12)0.0819 (16)0.0433 (11)0.0035 (11)0.0015 (9)0.0003 (10)
N120.0618 (14)0.140 (2)0.0460 (11)0.0095 (14)0.0079 (9)0.0126 (13)
O10.0272 (6)0.0284 (5)0.0422 (6)0.0004 (4)0.0117 (5)0.0031 (4)
N210.0464 (10)0.0518 (10)0.0607 (10)0.0051 (8)0.0144 (8)0.0215 (8)
C210.0541 (15)0.111 (2)0.0643 (15)0.0162 (14)0.0084 (11)0.0537 (15)
C220.0417 (12)0.105 (2)0.0554 (13)0.0231 (12)0.0112 (10)0.0401 (13)
C230.0313 (9)0.0379 (9)0.0351 (8)0.0039 (7)0.0048 (6)0.0051 (6)
C240.0338 (10)0.0367 (9)0.0421 (9)0.0014 (7)0.0005 (7)0.0066 (7)
C250.0341 (10)0.0406 (10)0.0593 (11)0.0058 (7)0.0068 (8)0.0074 (8)
C260.0315 (9)0.0419 (9)0.0351 (8)0.0026 (7)0.0039 (6)0.0020 (7)
N220.0397 (9)0.0490 (9)0.0508 (9)0.0068 (7)0.0122 (7)0.0104 (7)
Geometric parameters (Å, º) top
Fe1—O1i2.0888 (11)C14—H140.9500
Fe1—O12.0888 (11)C15—H150.9500
Fe1—N12.1153 (13)C16—N121.141 (3)
Fe1—N1i2.1153 (13)O1—H10.8400
Fe1—N11i2.2451 (14)O1—H20.8400
Fe1—N112.2451 (14)N21—C211.325 (3)
N1—C11.158 (2)N21—C251.329 (3)
C1—S11.6286 (16)C21—C221.368 (3)
N11—C151.337 (2)C21—H210.9500
N11—C111.338 (2)C22—C231.377 (3)
C11—C121.378 (3)C22—H220.9500
C11—H110.9500C23—C241.380 (3)
C12—C131.382 (3)C23—C261.442 (2)
C12—H120.9500C24—C251.382 (3)
C13—C141.382 (3)C24—H240.9500
C13—C161.447 (3)C25—H250.9500
C14—C151.383 (3)C26—N221.140 (2)
O1i—Fe1—O1180.0C14—C13—C16120.42 (19)
O1i—Fe1—N190.55 (5)C13—C14—C15117.86 (17)
O1—Fe1—N189.45 (5)C13—C14—H14121.1
O1i—Fe1—N1i89.45 (5)C15—C14—H14121.1
O1—Fe1—N1i90.55 (5)N11—C15—C14123.35 (17)
N1—Fe1—N1i180.0N11—C15—H15118.3
O1i—Fe1—N11i88.63 (5)C14—C15—H15118.3
O1—Fe1—N11i91.37 (5)N12—C16—C13179.0 (3)
N1—Fe1—N11i90.59 (5)Fe1—O1—H1114.2
N1i—Fe1—N11i89.41 (5)Fe1—O1—H2121.3
O1i—Fe1—N1191.37 (5)H1—O1—H2104.5
O1—Fe1—N1188.63 (5)C21—N21—C25117.42 (17)
N1—Fe1—N1189.41 (5)N21—C21—C22124.4 (2)
N1i—Fe1—N1190.59 (5)N21—C21—H21117.8
N11i—Fe1—N11180.0C22—C21—H21117.8
C1—N1—Fe1166.44 (14)C21—C22—C23117.5 (2)
N1—C1—S1178.74 (15)C21—C22—H22121.2
C15—N11—C11117.64 (15)C23—C22—H22121.2
C15—N11—Fe1123.39 (12)C22—C23—C24119.69 (17)
C11—N11—Fe1118.54 (11)C22—C23—C26119.08 (17)
N11—C11—C12123.23 (17)C24—C23—C26121.22 (15)
N11—C11—H11118.4C23—C24—C25117.94 (17)
C12—C11—H11118.4C23—C24—H24121.0
C11—C12—C13118.18 (17)C25—C24—H24121.0
C11—C12—H12120.9N21—C25—C24123.03 (18)
C13—C12—H12120.9N21—C25—H25118.5
C12—C13—C14119.72 (17)C24—C25—H25118.5
C12—C13—C16119.85 (19)N22—C26—C23179.1 (2)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N12ii0.952.523.437 (3)162
C14—H14···S1iii0.953.013.960 (2)177
O1—H1···N22i0.842.002.8380 (19)177
O1—H2···N21iv0.841.892.7159 (19)168
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+1; (iii) x, y+3/2, z1/2; (iv) x1, y+3/2, z+1/2.
 

Acknowledgements

This project was supported by the Deutsche Forschungsgemeinschaft (Project No. NA 720/5–1) and the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (award No. NA 720/5–1); State of Schleswig-Holstein.

References

First citationBoeckmann, J. & Näther, C. (2012). Polyhedron, 31, 587–595.  Web of Science CSD CrossRef CAS Google Scholar
First citationBoeckmann, J., Wriedt, M. & Näther, C. (2012). Chem. Eur. J. 18, 5284–5289.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, W., Liu, F. & You, X. (2002). Bull. Chem. Soc. Jpn, 75, 1559–1560.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, P., Henderson, R. A., Harrington, R. W., Clegg, W., Wu, C. D. & Wu, X. T. (2004). Inorg. Chem. 43, 181–188.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMachura, B., Świtlicka, A., Mroziński, J., Kalińska, B. & Kruszynski, R. (2013a). Polyhedron, 52, 1276–1286.  Web of Science CSD CrossRef CAS Google Scholar
First citationMachura, B., Świtlicka, A., Zwoliński, P., Mroziński, J., Kalińska, B. & Kruszynski, R. (2013b). J. Solid State Chem. 197, 218–227.  Web of Science CSD CrossRef CAS Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationRams, M., Tomkowicz, Z., Böhme, M., Plass, W., Suckert, S., Werner, J., Jess, I. & Näther, C. (2017). Phys. Chem. Chem. Phys. 19, 3232–3243.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSuckert, S., Rams, M., Böhme, M., Germann, L. S., Dinnebier, R. E., Plass, W., Werner, J. & Näther, C. (2016). Dalton Trans. 45, 18190–18201.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Tomkowicz, Z., Reinert, T. & Näther, C. (2015). Eur. J. Inorg. Chem. pp. 3066–3075.  Web of Science CSD CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds