research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di­aqua­bis­­(2-chloro­pyridine-κN)bis­­(thio­cyanato-κN)nickel(II)

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: ssuckert@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 15 September 2016; accepted 27 September 2016; online 30 September 2016)

The asymmetric unit of the title compound, [Ni(NCS)2(C5H4ClN)2(H2O)2], consists of one nickel(II) cation that is located on a center of inversion and one thio­cyanate anion, one water mol­ecule and one 2-chloro­pyridine ligand all occupying general positions. The NiII cation is octa­hedrally coordinated by two terminal N-bound thio­cyanato ligands, two aqua ligands and two N-bound 2-chloro­pyridine ligands into discrete complexes. Individual complexes are linked by inter­molecular O—H⋯S and O—H⋯Cl hydrogen-bonding inter­actions into a layered network extending parallel to the bc plane. Weak inter­actions of types C—H⋯S and C—H⋯Cl consolidate the crystal packing.

1. Chemical context

The synthesis of materials with inter­esting cooperative magnetic properties is still a major field in coordination chemistry (Zhang et al., 2011[Zhang, S.-Y., Zhang, Z.-J., Shi, W., Zhao, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2011). Dalton Trans. 40, 7993-8002.]). One feasible strategy for the preparation of such compounds is to link paramagnetic cations with small anionic ligands such as, for example, thio­cyanate anions to enable a magnetic exchange between the cations (Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Massoud et al., 2013[Massoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2013). Polyhedron, 54, 26-33.]). In this regard, our group has reported on a number of coordination polymers with bridging thio­cyanato ligands. Dependent on the metal cation and the neutral co-ligand, they show different magnetic phenomena including a slow relaxation of the magnetization, which is indicative for single-chain magnetism (Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.], 2015a[Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). Inorg. Chem. 54, 2893-2901.],b[Werner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015b). Eur. J. Inorg. Chem. 2015, 3236-3245.],c[Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015c). Dalton Trans. 44, 14149-14158.]). In the context of this research, discrete complexes are likewise of inter­est because such compounds can be transformed into the desired polymeric systems by thermal decomposition (Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]). In view of our systematic studies, we became inter­ested into compounds based on 2-chloro­pyridine as co-ligand, for which only two different polymorphs were found for representatives containing Zn or Co (Wöhlert et al., 2013[Wöhlert, S., Jess, I., Englert, U. & Näther, C. (2013). CrystEngComm, 15, 5326-5336.]). In a more recent study, investigations were also carried out for Ni that led to the title compound being characterized by single crystal X-ray diffraction. Unfortunately, no single-phase crystalline powder could be synthesized, which prevented further investigations of its physical properties.

2. Structural commentary

The asymmetric unit of the title compound, [Ni(NCS)2(C5H4NCl)2(H2O)2], consists of one NiII cation, one thio­cyanate anion, one water mol­ecule and one neutral 2-chloro­pyridine co-ligand. The cation is located on a center of inversion whereas all ligands are located on general positions. The NiII cation is coordinated by two terminal N-bound inorganic anionic ligands, two water mol­ecules and two 2-chloro­pyridine ligands that are coordinated via the pyridine N atom in an all-trans configuration (Fig. 1[link]). As expected, and in agreement with values reported in literature (Đaković et al., 2008[Đaković, M., Popović, Z. & Smrečki-Lolić, N. (2008). J. Mol. Struct. 888, 394-400.]; Werner et al., 2015b[Werner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015b). Eur. J. Inorg. Chem. 2015, 3236-3245.]), the Ni—N bond lengths to the thio­cyanato ligands are significantly shorter[2.018 (3) Å] than to the pyridine N atom of the neutral 2-chloro­pyridine ligand [2.208 (3) Å].

[Scheme 1]
[Figure 1]
Figure 1
View of a discrete complex with labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x + [{1\over 2}], −y + [{3\over 2}], -z.+1.]

3. Supra­molecular features

In the crystal, discrete complexes are linked by pairs of inter­molecular O—H⋯S hydrogen bonds between one of the two water H atoms and the thio­cyanato S atoms of a neighboring complex into centrosymmetric dimers that are further connected into chains along the b axis (Fig. 2[link], Table 1[link]). Neighbouring complexes are additionally linked in the same direction by pairs of C—H⋯Cl hydrogen bonds between the chloro substituent of one complex and one pyridine H atom of a neighbouring complex (Fig. 2[link], Table 1[link]). These chains are further linked by O—H⋯S hydrogen bonding between the second water H atom of one complex and a thio­cyanato S atom of a neighbouring complex into layers parallel to the bc plane (Fig. 3[link], Table 1[link]). Within these layers, weak C—H⋯Cl hydrogen bonding is present (Table 1[link]). Weak intra­molecular O—H⋯Cl inter­actions are also observed (Figs. 2[link] and 3[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H21⋯S1i 0.95 2.99 3.904 (4) 162
C13—H23⋯S1ii 0.95 2.99 3.796 (4) 143
C14—H24⋯Cl1iii 0.95 2.96 3.796 (4) 147
O1—H1O1⋯S1iv 0.82 2.39 3.175 (2) 160
O1—H2O1⋯S1v 0.82 2.53 3.239 (2) 145
O1—H2O1⋯Cl1vi 0.82 2.75 3.180 (3) 115
Symmetry codes: (i) [-x, y+1, -z+{\script{1\over 2}}]; (ii) [-x, y, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [x, -y+1, z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (vi) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
View of the hydrogen-bonded chain that elongates along the b axis. Hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
Crystal structure of the title compound showing the hydrogen-bonded layers with hydrogen bonds shown as dashed lines.

4. Database survey

To the best of our knowledge, there are only four coordination compounds containing thio­cyanato and 2-chloro­pyridine ligands deposited in the Cambridge Structure Database (Version 5.37, last update 2015; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The structures consist of tetra­hedrally coordinated metal cations (Co and Zn) where each metal cation is surrounded by two 2-chloro­pyridine ligands as well as two thio­cyanate anions (Wöhlert et al., 2013[Wöhlert, S., Jess, I., Englert, U. & Näther, C. (2013). CrystEngComm, 15, 5326-5336.]). A general search for coordination compounds with 2-chloro­pyridine ligands resulted in 16 structures including the aforementioned ones. Two examples relate to a Pd compound, similar to the Co and Zn ones, however with the PdII cation in a square-planar conformation coordinated by two 2-chloro­pyridine ligands as well as two azide anions (Beck et al., 2001[Beck, W., Fehlhammer, W. P., Feldl, K., Klapötke, T. M., Kramer, G., Mayer, P., Piotrowski, H., Pöllmann, P., Ponikwar, W., Schütt, T., Schuierer, E. & Vogt, M. (2001). Z. Anorg. Allg. Chem. 627, 1751-1758.]) as well as a Cu compound with a square-pyramidal coordinated metal cation surrounded by two 2-chloro­pyridine ligands, one water ligand and two chloride anions (Jin et al., 2005[Jin, Z.-M., Li, Z.-G., Tu, B., Shen, Z.-L. & Hu, M.-L. (2005). Acta Cryst. E61, m2566-m2567.]).

5. Synthesis and crystallization

Ba(NCS)2·3H2O, Ni(SO4)·6H2O and 2-chloro­pyridine were purchased from Alfa Aesar. Ni(NCS)2 was synthesized by stirring 17.5 g Ba(NCS)2·3H2O (57 mmol) with 15.0 g Ni(SO4)·6H2O (57 mmol) in 500 ml water. The green residue was filtered off and the filtrate was dried using a rotary evaporator. The homogeneity was checked by X-ray powder diffraction and elemental analysis. Crystals of the title compound suitable for single crystal X-ray diffraction were obtained by the reaction of 26.2 mg Ni(NCS)2 (0.15 mmol) with 56.0 µl 2-chloro­pyridine (0.6 mmol) in ethanol (1.0 ml) after a few days.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link]. The CH H atoms were positioned with idealized geometry and were refined in a riding model with Uiso(H) = 1.2Ueq(C). The OH H atoms were located in a difference map, and their bond lengths constrained to 0.82 Å, with Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula [Ni(NCS)2(C5H4ClN)2(H2O)2]
Mr 437.99
Crystal system, space group Monoclinic, C2/c
Temperature (K) 200
a, b, c (Å) 19.5045 (15), 7.5486 (5), 14.9387 (11)
β (°) 125.560 (7)
V3) 1789.3 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.63
Crystal size (mm) 0.14 × 0.09 × 0.06
 
Data collection
Diffractometer STOE IPDS1
Absorption correction Numerical (X-RED32 and X-SHAPE; Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.796, 0.881
No. of measured, independent and observed [I > 2σ(I)] reflections 7195, 1568, 1321
Rint 0.086
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.123, 1.03
No. of reflections 1568
No. of parameters 107
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.87, −0.87
Computer programs: X-AREA (Stoe, 2008[Stoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe, 2008); cell refinement: X-AREA (Stoe, 2008); data reduction: X-AREA (Stoe, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Diaquabis(2-chloropyridine-κN)bis(thiocyanato-κN)nickel(II) top
Crystal data top
[Ni(NCS)2(C5H4ClN)2(H2O)2]F(000) = 888
Mr = 437.99Dx = 1.626 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 19.5045 (15) ÅCell parameters from 7195 reflections
b = 7.5486 (5) Åθ = 2.8–25.1°
c = 14.9387 (11) ŵ = 1.63 mm1
β = 125.560 (7)°T = 200 K
V = 1789.3 (3) Å3Block, blue
Z = 40.14 × 0.09 × 0.06 mm
Data collection top
STOE IPDS-1
diffractometer
1321 reflections with I > 2σ(I)
Phi scansRint = 0.086
Absorption correction: numerical
(X-Red and X-Shape; Stoe, 2008)
θmax = 25.1°, θmin = 2.8°
Tmin = 0.796, Tmax = 0.881h = 2323
7195 measured reflectionsk = 88
1568 independent reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0887P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.123(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.87 e Å3
1568 reflectionsΔρmin = 0.87 e Å3
107 parametersExtinction correction: SHELXL-2014/7 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0046 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.25000.75000.50000.0294 (3)
N10.2189 (2)0.5551 (4)0.3900 (2)0.0374 (7)
C10.2063 (2)0.4433 (4)0.3291 (3)0.0307 (7)
S10.18836 (7)0.28294 (11)0.24339 (8)0.0404 (3)
N100.1155 (2)0.7772 (4)0.4334 (3)0.0360 (7)
C100.0670 (2)0.9202 (4)0.4075 (3)0.0367 (8)
C110.0154 (3)0.9163 (6)0.3732 (3)0.0500 (10)
H210.04661.02270.35680.060*
C120.0520 (3)0.7528 (6)0.3630 (4)0.0586 (12)
H220.10880.74470.33950.070*
C130.0039 (3)0.6027 (6)0.3879 (4)0.0520 (10)
H230.02710.48880.38140.062*
C140.0780 (3)0.6201 (5)0.4222 (3)0.0425 (8)
H240.11040.51530.43910.051*
Cl10.11007 (7)1.12552 (11)0.41519 (9)0.0523 (4)
O10.26098 (19)0.5775 (3)0.6135 (2)0.0506 (8)
H1O10.25060.59330.65880.076*
H2O10.27500.47300.62620.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0383 (4)0.0205 (4)0.0375 (4)0.0053 (2)0.0267 (3)0.0031 (2)
N10.0443 (18)0.0298 (14)0.0434 (17)0.0060 (11)0.0285 (15)0.0008 (12)
C10.0350 (18)0.0247 (15)0.0417 (19)0.0052 (12)0.0276 (17)0.0077 (13)
S10.0613 (7)0.0251 (4)0.0505 (6)0.0030 (3)0.0415 (5)0.0032 (3)
N100.0388 (17)0.0317 (14)0.0423 (17)0.0040 (11)0.0264 (15)0.0018 (11)
C100.036 (2)0.0375 (17)0.0383 (19)0.0087 (14)0.0225 (17)0.0037 (14)
C110.036 (2)0.064 (2)0.043 (2)0.0151 (18)0.019 (2)0.0064 (18)
C120.034 (2)0.087 (4)0.050 (3)0.0007 (19)0.022 (2)0.004 (2)
C130.042 (2)0.057 (2)0.054 (3)0.0120 (19)0.026 (2)0.0078 (19)
C140.042 (2)0.0371 (18)0.051 (2)0.0066 (14)0.029 (2)0.0054 (15)
Cl10.0574 (7)0.0308 (5)0.0770 (8)0.0163 (4)0.0438 (6)0.0128 (4)
O10.079 (2)0.0367 (13)0.0661 (18)0.0270 (13)0.0597 (18)0.0243 (12)
Geometric parameters (Å, º) top
Ni1—N1i2.018 (3)C10—Cl11.734 (4)
Ni1—N12.018 (3)C11—C121.389 (6)
Ni1—O12.048 (2)C11—H210.9500
Ni1—O1i2.048 (2)C12—C131.377 (6)
Ni1—N102.208 (3)C12—H220.9500
Ni1—N10i2.208 (3)C13—C141.372 (6)
N1—C11.158 (4)C13—H230.9500
C1—S11.645 (3)C14—H240.9500
N10—C101.336 (4)O1—H1O10.8198
N10—C141.352 (4)O1—H2O10.8201
C10—C111.375 (6)
N1i—Ni1—N1180.0C14—N10—Ni1112.9 (2)
N1i—Ni1—O187.27 (12)N10—C10—C11124.6 (4)
N1—Ni1—O192.73 (12)N10—C10—Cl1117.9 (3)
N1i—Ni1—O1i92.73 (12)C11—C10—Cl1117.4 (3)
N1—Ni1—O1i87.27 (12)C10—C11—C12118.3 (4)
O1—Ni1—O1i180.0C10—C11—H21120.8
N1i—Ni1—N1090.88 (11)C12—C11—H21120.8
N1—Ni1—N1089.12 (11)C13—C12—C11118.4 (4)
O1—Ni1—N1087.55 (11)C13—C12—H22120.8
O1i—Ni1—N1092.45 (11)C11—C12—H22120.8
N1i—Ni1—N10i89.11 (11)C14—C13—C12119.0 (4)
N1—Ni1—N10i90.88 (11)C14—C13—H23120.5
O1—Ni1—N10i92.45 (11)C12—C13—H23120.5
O1i—Ni1—N10i87.55 (11)N10—C14—C13124.0 (4)
N10—Ni1—N10i180.0N10—C14—H24118.0
C1—N1—Ni1175.7 (3)C13—C14—H24118.0
N1—C1—S1179.4 (3)Ni1—O1—H1O1129.3
C10—N10—C14115.6 (3)Ni1—O1—H2O1131.5
C10—N10—Ni1131.4 (2)H1O1—O1—H2O199.1
Symmetry code: (i) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H21···S1ii0.952.993.904 (4)162
C13—H23···S1iii0.952.993.796 (4)143
C14—H24···Cl1iv0.952.963.796 (4)147
O1—H1O1···S1v0.822.393.175 (2)160
O1—H2O1···S1vi0.822.533.239 (2)145
O1—H2O1···Cl1i0.822.753.180 (3)115
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z+1/2; (iii) x, y, z+1/2; (iv) x, y1, z; (v) x, y+1, z+1/2; (vi) x+1/2, y+1/2, z+1.
 

Acknowledgements

This project was supported by the Deutsche Forschungsgemeinschaft (Project No. NA 720/5–1) and the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

First citationBeck, W., Fehlhammer, W. P., Feldl, K., Klapötke, T. M., Kramer, G., Mayer, P., Piotrowski, H., Pöllmann, P., Ponikwar, W., Schütt, T., Schuierer, E. & Vogt, M. (2001). Z. Anorg. Allg. Chem. 627, 1751–1758.  CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationĐaković, M., Popović, Z. & Smrečki-Lolić, N. (2008). J. Mol. Struct. 888, 394–400.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, Z.-M., Li, Z.-G., Tu, B., Shen, Z.-L. & Hu, M.-L. (2005). Acta Cryst. E61, m2566–m2567.  CSD CrossRef IUCr Journals Google Scholar
First citationMassoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2013). Polyhedron, 54, 26–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationNäther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.  Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). Inorg. Chem. 54, 2893–2901.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015b). Eur. J. Inorg. Chem. 2015, 3236–3245.  Web of Science CSD CrossRef CAS Google Scholar
First citationWerner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015c). Dalton Trans. 44, 14149–14158.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Jess, I., Englert, U. & Näther, C. (2013). CrystEngComm, 15, 5326–5336.  Google Scholar
First citationZhang, S.-Y., Zhang, Z.-J., Shi, W., Zhao, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2011). Dalton Trans. 40, 7993–8002.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds