research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[4-(di­methyl­amino)­pyridinium] aqua­bis­­(oxalato)oxidovanadate(IV) dihydrate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia, and bUniversité de Gabès, Faculté des Sciences de Gabès, Campus Universitaire, Cité Erriadh Zrig, Gabès, 6072, Tunisia
*Correspondence e-mail: faouzi.zid@fst.rnu.tn

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 June 2016; accepted 15 June 2016; online 21 June 2016)

The title organic–inorganic hybrid salt, (C7H11N2)2[V(C2O4)2O(H2O)]·2H2O, shows a distorted octa­hedral coordination environment for the vanadium(IV) atom in the anion (point group symmetry 2), with four O atoms from two symmetry-related chelating oxalate dianions and two O atoms in trans configuration from a coordinating water mol­ecule and a terminal vanadyl O atom. In the crystal, (001) layers of cations and anions alternate along [001]. The anionic layers are built up by inter­molecular O—H⋯O hydrogen bonds involving the coordinating and solvent water mol­ecules. The cationic layers are linked to the anionic layers via N—H⋯O hydrogen bonds between the pyridinium group and the non-coordinating O atoms of the oxalate group. The 4-(di­methyl­amino)­pyridinium cations are also engaged in ππ stacking with their anti­parallel neighbours [centroid-to-centroid distance = 3.686 (2) Å]. Considering all supra­molecular features, a three-dimensional network structure is accomplished.

1. Chemical context

Because of the great importance of vanadium as an effective metal anti­tumor agent (Evangelou, 2002[Evangelou, A. M. (2002). Crit. Rev. Oncol. Hematol. 42, 249-265.]) and the vanadyl anti­diabetic factor via its manifested insulin-mimetic activity (Goc, 2006[Goc, A. (2006). Cent. Eur. J. Biol. 1(3), 314-332.]), the coordination chemistry of this element has received much attention over the past years through the design and synthesis of organic–inorganic hybrid salts and the investigation of their solution chemistry. In addition to that, the use of pyridine and its derivatives in those hybrid materials may also provide biological activity as reported by Markees et al. (1968[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1968). J. Med. Chem. 11, 126-129.]). Many compounds containing the vanadyl V=O group combined with oxalate ligands have been isolated as mononuclear (Lin et al., 2004[Lin, L., Wu, S.-F., Huang, C.-C., Zhang, H.-H., Huang, X.-H. & Lian, Z.-X. (2004). Acta Cryst. E60, m631-m633.]; Aghabozorg et al., 2007[Aghabozorg, H., Motyeian, E., Aghajani, Z., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m1754-m1755.]; Oughtred et al., 1976[Oughtred, R. E., Raper, E. S. & Shearer, H. M. M. (1976). Acta Cryst. B32, 82-87.]) or dinuclear (Zheng et al., 1998[Zheng, L.-M., Schmalle, H. W., Ferlay, S. & Decurtins, S. (1998). Acta Cryst. C54, 1435-1438.]) compounds.

[Scheme 1]

In this context, we report on the synthesis and crystal structure of the title organic–inorganic hybrid salt, (C7H11N2)2[V(C2O4)2O(H2O)]·2H2O, (I)[link].

2. Structural commentary

The vanadium atom V1, the double-bonded oxygen atom O3 of the vanadyl group and the oxygen atom of the coordinating water mol­ecule OW1 lie on a twofold rotation axis. Thus, the asymmetric unit of the title compound corresponds to half of the mol­ecular formula which consequently contains one half-anionic complex [V1/2(C2O4)O1/2(HO1/2)], one 4-(di­methyl­amino)­pyridinium cation (C7H11N2)+ protonated at the N2 atom of the heterocyclic ring, and one solvent water mol­ecule (Fig. 1[link]). The anionic complex has an overall charge of 2−, requiring a vanadium atom with an oxidation state of +IV. This formal value is in good agreement with the bond-valence-sum calculation (Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]), resulting in a value of 4.20 (3) valence units.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link] showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms.

The VIV ion is coordinated by four oxygen atoms of two symmetry-related chelating oxalate dianions, defining the equatorial plane, and two axial oxygen atoms from a water mol­ecule and the vanadyl oxygen atom. The resulting octa­hedral coordination sphere is considerably distorted. The V—Ooxalate bond lengths (Table 1[link]) are in good agreement with structures containing the same [V(C2O4)2O(H2O)]2− anion and di­ammonium (Oughtred et al., 1976[Oughtred, R. E., Raper, E. S. & Shearer, H. M. M. (1976). Acta Cryst. B32, 82-87.]) or piperazinium (Lin et al., 2004[Lin, L., Wu, S.-F., Huang, C.-C., Zhang, H.-H., Huang, X.-H. & Lian, Z.-X. (2004). Acta Cryst. E60, m631-m633.]) as counter-cations. The short V1=O3 distance of 1.600 (3) Å is typical for a double-bonded vanadyl group and the longest V—O bond involves the aqua ligand, again in agreement with the structures of the related compounds with different cations. The shortest distances between vanadium atoms in the isolated complexes are equal to 7.689 (4) Å along [010] (corresponding to the length of the b axis) and 8.287 (1) Å along [010], while a shorter distance equal to 5.176 (5) Å along the [001] direction is reported by Aghabozorg et al. (2007[Aghabozorg, H., Motyeian, E., Aghajani, Z., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m1754-m1755.]) for the related piperazinium compound. The oxalate anion is planar (root-mean-deviation of fitted atoms = 0.0343 Å); the two symmetry-related oxalate ligands subtend a dihedral angle of 32.59 (4)° between the least-squares planes. The slightly elongated C—C bond length of 1.552 (3) Å in the oxalate anion is in agreement with the value of 1.539 (2) Å reported for other oxalate complexes (Belaj et al., 2000[Belaj, F., Basch, A. & Muster, U. (2000). Acta Cryst. C56, 921-922.]). Bond lengths and angles of the 4-(di­methyl­amino)­pyridinium cation are consistent with those found in salts with the same cationic entity (Ben Nasr et al., 2015[Ben Nasr, M., Lefebvre, F. & Ben Nasr, C. (2015). Am. J. Anal. Chem. 6, 446-456.]) with C—N distances in the range 1.326 (3)–1.458 (3) Å and C—C distances between 1.343 (3) and 1.413 (3) Å.

Table 1
Selected bond lengths (Å)

V1—O3 1.600 (3) V1—O1 1.997 (1)
V1—O2i 1.986 (2) V1—O1i 1.997 (1)
V1—O2 1.986 (2) V1—OW1 2.262 (3)
Symmetry code: (i) [-x, y, -z+{\script{3\over 2}}].

3. Supra­molecular features

Within the crystal packing, all components are connected by an extensive hydrogen-bonding network (Table 2[link]). The cations and anions are aligned into layers parallel to (001). O—H⋯O hydrogen bonds involving the coordinating OW1 water mol­ecule as donor group and the solvent OW2 mol­ecule as both acceptor and donor groups consolidate the anionic layers parallel to (001), as shown in Fig. 2[link]a. In the structure of the related piperazinium compound (Aghabozorg et al., 2007[Aghabozorg, H., Motyeian, E., Aghajani, Z., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m1754-m1755.]), a more complex three-dimensional arrangement of the O—H⋯O hydrogen bonds is realized (Fig. 2[link]b). Along the [001] direction, N—H⋯O hydrogen bonds involving the proton­ated N2 atom of the 4-(di­methyl­amino)­pyridinium cation as double-donor group and non-coordinating O atoms of the oxalate dianion as acceptors ensure the connection between the anionic and cationic layers in the title structure, as shown in Fig. 3[link]. Furthermore, ππ stacking inter­actions between anti­parallel-arranged pyridinium rings [centroid-to-centroid distance = 3.686 (2) Å; Fig. 4[link]] are present and consolidate the three-dimensional network (Fig. 5[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—HW1A⋯OW2ii 0.84 (1) 1.90 (1) 2.740 (3) 172 (3)
OW2—HW2A⋯O3iii 0.86 (1) 1.95 (1) 2.792 (3) 166 (2)
OW2—HW2B⋯O5iv 0.85 (1) 1.96 (1) 2.779 (2) 161 (3)
N2—H2⋯O4 0.86 2.32 3.002 (3) 136
N2—H2⋯O5 0.86 2.02 2.777 (3) 146
Symmetry codes: (ii) x-1, y, z; (iii) x+1, y-1, z; (iv) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 2]
Figure 2
View of O—H⋯O hydrogen bonds (orange dashed lines) developed by both coordinating and non-coordinating water mol­ecules in (a) the title compound [symmetry codes: (ii) x − 1, y, z; (iii) x + 1, y − 1, z; (iv) x + [{1\over 2}], y − [{1\over 2}], z] and (b) the compound (C4H12N2)[V(C2O4)2O(H2O)]·2H2O [symmetry codes: (iv) −x + [{3\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (v) −x + 1, −y + 2, −z + 1; (vi) −x + 2, −y + 2, −z + 2.]
[Figure 3]
Figure 3
View of the N—H⋯O hydrogen bonds (blue dashed lines) developed between anionic and cationic entities.
[Figure 4]
Figure 4
ππ stacking inter­actions (green dashed lines) between adjacent anti-parallel organic cations, forming zigzag chains.
[Figure 5]
Figure 5
View of the structure packing of (I)[link] showing anionic layers (yellow planes), zigzag chains and ππ stacking.

4. Synthesis and crystallization

A solution of 0.5 mmol of vanadium(V) pentoxide dissolved in 10 cm3 of distilled water was added to a solution of 1 mmol of oxalic acid dissolved in 10 cm3 of distilled water. Then, a solution of 1 mmol of 4-(di­methyl­amino)­pyridine dissolved in 10 cm3 of distilled water was poured slowly until pH ≃ 4. The obtained blue solution was placed in a petri dish at room temperature for almost one month until purple crystals suitable for a structural study appeared.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms bonded to C and N atoms were placed at geometrically calculated positions using a riding model. C—H distances were fixed at 0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms, with Uiso(H) = 1.2Ueq(Caromatic) or 1.5Ueq(Cmeth­yl). The N—H distance was fixed at 0.86 Å. All water H atoms were located from a difference-Fourier map and were refined with restraints [O—H 0.85 (1) Å; H⋯H 1.387 (1) Å].

Table 3
Experimental details

Crystal data
Chemical formula (C7H11N2)2[V(C2O4)2O(H2O)]·2H2O
Mr 543.38
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 14.682 (2), 7.689 (4), 21.280 (3)
β (°) 97.197 (10)
V3) 2383.3 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.49
Crystal size (mm) 0.46 × 0.28 × 0.21
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.841, 0.908
No. of measured, independent and observed [I > 2σ(I)] reflections 4165, 2599, 1850
Rint 0.028
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.01
No. of reflections 2599
No. of parameters 174
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.26
Computer programs: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Bis[4-(dimethylamino)pyridinium] aquabis(oxalato)oxidovanadate(IV) dihydrate top
Crystal data top
(C7H11N2)2[V(C2O4)2O(H2O)]·2H2OF(000) = 1132
Mr = 543.38Dx = 1.514 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 14.682 (2) ÅCell parameters from 25 reflections
b = 7.689 (4) Åθ = 10–15°
c = 21.280 (3) ŵ = 0.49 mm1
β = 97.197 (10)°T = 298 K
V = 2383.3 (13) Å3Prism, purple
Z = 40.46 × 0.28 × 0.21 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.028
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 2.8°
ω/2θ scansh = 185
Absorption correction: ψ scan
(North et al., 1968)
k = 19
Tmin = 0.841, Tmax = 0.908l = 2727
4165 measured reflections2 standard reflections every 120 reflections
2599 independent reflections intensity decay: 1.4%
1850 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: mixed
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0482P)2 + 1.2556P]
where P = (Fo2 + 2Fc2)/3
2599 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.25 e Å3
4 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.00000.84234 (7)0.75000.03574 (16)
O10.02877 (10)0.7977 (2)0.65720 (7)0.0446 (4)
OW10.00000.5482 (3)0.75000.0707 (9)
O20.12736 (10)0.8022 (2)0.73095 (7)0.0477 (4)
O30.00001.0504 (3)0.75000.0583 (7)
O40.03921 (12)0.7053 (3)0.57518 (8)0.0618 (5)
O50.20402 (11)0.7168 (3)0.65270 (8)0.0604 (5)
C100.04062 (15)0.7502 (3)0.63017 (10)0.0424 (5)
C110.13301 (15)0.7551 (3)0.67444 (11)0.0430 (5)
HW1A0.0389 (16)0.480 (3)0.7310 (12)0.072 (9)*
OW20.88723 (13)0.3042 (3)0.68686 (11)0.0639 (5)
HW2A0.9136 (14)0.216 (2)0.7059 (11)0.056 (8)*
HW2B0.8295 (7)0.290 (3)0.6839 (15)0.081 (10)*
N10.34041 (15)0.3258 (3)0.39759 (9)0.0522 (5)
N20.21437 (16)0.5684 (3)0.53481 (11)0.0596 (6)
H20.18810.62070.56340.071*
C10.4371 (2)0.2774 (4)0.40787 (15)0.0690 (8)
H1A0.44960.21540.44720.103*
H1B0.47430.38050.40950.103*
H1C0.45120.20460.37370.103*
C20.2904 (3)0.2816 (4)0.33610 (12)0.0774 (10)
H2A0.23290.22860.34200.116*
H2B0.32610.20170.31460.116*
H2C0.27920.38530.31120.116*
C30.29925 (15)0.4045 (3)0.44227 (10)0.0387 (5)
C40.20526 (16)0.4499 (4)0.43279 (12)0.0520 (6)
H40.16990.42480.39450.062*
C50.16691 (18)0.5297 (4)0.47941 (14)0.0609 (7)
H50.10500.55860.47250.073*
C60.30270 (19)0.5261 (4)0.54591 (12)0.0558 (7)
H60.33520.55260.58510.067*
C70.34650 (15)0.4462 (3)0.50226 (10)0.0463 (5)
H70.40830.41810.51160.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0295 (3)0.0374 (3)0.0388 (3)0.0000.0018 (2)0.000
O10.0299 (7)0.0617 (10)0.0400 (8)0.0049 (7)0.0041 (6)0.0010 (7)
OW10.0651 (18)0.0359 (14)0.098 (2)0.0000.0396 (16)0.000
O20.0287 (7)0.0703 (12)0.0423 (8)0.0025 (7)0.0032 (7)0.0066 (8)
O30.0657 (16)0.0377 (13)0.0698 (16)0.0000.0018 (13)0.000
O40.0446 (10)0.0979 (15)0.0415 (9)0.0084 (10)0.0004 (8)0.0118 (9)
O50.0311 (9)0.0928 (14)0.0571 (10)0.0038 (9)0.0048 (8)0.0131 (10)
C100.0340 (12)0.0502 (14)0.0414 (12)0.0018 (10)0.0016 (9)0.0011 (11)
C110.0310 (11)0.0501 (14)0.0467 (12)0.0023 (10)0.0003 (9)0.0008 (11)
OW20.0418 (10)0.0568 (12)0.0867 (14)0.0043 (9)0.0175 (10)0.0098 (10)
N10.0532 (12)0.0595 (13)0.0433 (10)0.0013 (11)0.0041 (9)0.0075 (9)
N20.0658 (15)0.0561 (14)0.0621 (13)0.0034 (12)0.0287 (12)0.0001 (11)
C10.0564 (17)0.0740 (19)0.0806 (19)0.0109 (15)0.0245 (15)0.0059 (16)
C20.105 (3)0.081 (2)0.0440 (15)0.010 (2)0.0019 (16)0.0155 (14)
C30.0365 (11)0.0384 (11)0.0399 (10)0.0019 (9)0.0001 (9)0.0043 (9)
C40.0416 (13)0.0595 (16)0.0517 (13)0.0012 (12)0.0068 (11)0.0096 (12)
C50.0406 (14)0.0618 (17)0.0824 (19)0.0131 (13)0.0158 (14)0.0190 (15)
C60.0608 (17)0.0625 (17)0.0440 (12)0.0085 (14)0.0067 (12)0.0042 (12)
C70.0353 (12)0.0585 (15)0.0435 (11)0.0018 (11)0.0011 (9)0.0017 (11)
Geometric parameters (Å, º) top
V1—O31.600 (3)N2—C51.326 (3)
V1—O2i1.986 (2)N2—C61.329 (3)
V1—O21.986 (2)N2—H20.8600
V1—O11.997 (1)C1—H1A0.9600
V1—O1i1.997 (1)C1—H1B0.9600
V1—OW12.262 (3)C1—H1C0.9600
O1—C101.284 (3)C2—H2A0.9600
OW1—HW1A0.842 (10)C2—H2B0.9600
O2—C111.268 (3)C2—H2C0.9600
O4—C101.218 (3)C3—C71.411 (3)
O5—C111.228 (3)C3—C41.413 (3)
C10—C111.552 (3)C4—C51.348 (4)
OW2—HW2A0.855 (9)C4—H40.9300
OW2—HW2B0.848 (10)C5—H50.9300
N1—C31.334 (3)C6—C71.343 (3)
N1—C11.458 (3)C6—H60.9300
N1—C21.458 (3)C7—H70.9300
O3—V1—O2i98.94 (6)C5—N2—H2120.2
O3—V1—O298.94 (6)C6—N2—H2120.2
O2i—V1—O2162.13 (11)N1—C1—H1A109.5
O3—V1—O199.90 (5)N1—C1—H1B109.5
O2i—V1—O195.01 (6)H1A—C1—H1B109.5
O2—V1—O181.91 (6)N1—C1—H1C109.5
O3—V1—O1i99.90 (5)H1A—C1—H1C109.5
O2i—V1—O1i81.91 (6)H1B—C1—H1C109.5
O2—V1—O1i95.01 (6)N1—C2—H2A109.5
O1—V1—O1i160.21 (10)N1—C2—H2B109.5
O3—V1—OW1180.0H2A—C2—H2B109.5
O2i—V1—OW181.06 (6)N1—C2—H2C109.5
O2—V1—OW181.06 (6)H2A—C2—H2C109.5
O1—V1—OW180.10 (5)H2B—C2—H2C109.5
O1i—V1—OW180.10 (5)N1—C3—C7122.2 (2)
C10—O1—V1114.24 (13)N1—C3—C4122.1 (2)
V1—OW1—HW1A128.7 (19)C7—C3—C4115.7 (2)
C11—O2—V1114.38 (14)C5—C4—C3119.8 (2)
O4—C10—O1126.3 (2)C5—C4—H4120.1
O4—C10—C11119.9 (2)C3—C4—H4120.1
O1—C10—C11113.77 (19)N2—C5—C4122.4 (2)
O5—C11—O2125.8 (2)N2—C5—H5118.8
O5—C11—C10118.9 (2)C4—C5—H5118.8
O2—C11—C10115.2 (2)N2—C6—C7122.0 (2)
HW2A—OW2—HW2B108.9 (15)N2—C6—H6119.0
C3—N1—C1121.9 (2)C7—C6—H6119.0
C3—N1—C2121.5 (2)C6—C7—C3120.4 (2)
C1—N1—C2116.5 (2)C6—C7—H7119.8
C5—N2—C6119.7 (2)C3—C7—H7119.8
V1—O1—C10—O4175.1 (2)C1—N1—C3—C4179.3 (2)
V1—O1—C10—C115.5 (2)C2—N1—C3—C40.2 (4)
V1—O2—C11—O5177.1 (2)N1—C3—C4—C5179.8 (2)
V1—O2—C11—C104.0 (3)C7—C3—C4—C50.8 (4)
O4—C10—C11—O51.5 (4)C6—N2—C5—C40.9 (4)
O1—C10—C11—O5178.0 (2)C3—C4—C5—N20.1 (4)
O4—C10—C11—O2179.5 (2)C5—N2—C6—C70.8 (4)
O1—C10—C11—O21.1 (3)N2—C6—C7—C30.1 (4)
C1—N1—C3—C70.1 (4)N1—C3—C7—C6179.7 (2)
C2—N1—C3—C7179.2 (2)C4—C3—C7—C60.9 (4)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—HW1A···OW2ii0.84 (1)1.90 (1)2.740 (3)172 (3)
OW2—HW2A···O3iii0.86 (1)1.95 (1)2.792 (3)166 (2)
OW2—HW2B···O5iv0.85 (1)1.96 (1)2.779 (2)161 (3)
N2—H2···O40.862.323.002 (3)136
N2—H2···O50.862.022.777 (3)146
Symmetry codes: (ii) x1, y, z; (iii) x+1, y1, z; (iv) x+1/2, y1/2, z.
 

Acknowledgements

Financial support from the Ministry of Higher Education and Scientific Research of Tunisia is gratefully acknowledged.

References

First citationAghabozorg, H., Motyeian, E., Aghajani, Z., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m1754–m1755.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBelaj, F., Basch, A. & Muster, U. (2000). Acta Cryst. C56, 921–922.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBen Nasr, M., Lefebvre, F. & Ben Nasr, C. (2015). Am. J. Anal. Chem. 6, 446–456.  CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEvangelou, A. M. (2002). Crit. Rev. Oncol. Hematol. 42, 249–265.  Web of Science CrossRef PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoc, A. (2006). Cent. Eur. J. Biol. 1(3), 314–332.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLin, L., Wu, S.-F., Huang, C.-C., Zhang, H.-H., Huang, X.-H. & Lian, Z.-X. (2004). Acta Cryst. E60, m631–m633.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1968). J. Med. Chem. 11, 126–129.  CrossRef CAS PubMed Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOughtred, R. E., Raper, E. S. & Shearer, H. M. M. (1976). Acta Cryst. B32, 82–87.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, L.-M., Schmalle, H. W., Ferlay, S. & Decurtins, S. (1998). Acta Cryst. C54, 1435–1438.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds