research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of {(E)-2-[(phenyl­imino)­meth­yl]phenolato-κ2N,O}bis­­[2-(pyridin-2-yl)phenyl-κ2C1,N]iridium(III) di­chloro­methane monosolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea, and bResearch institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: kmpark@gnu.ac.kr, hjk@kumoh.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 28 April 2016; accepted 18 May 2016; online 20 May 2016)

In the title compound, [Ir(C11H8N)2(C13H10NO)]·CH2Cl2, the IrIII ion is six-coordinated by two C,N-bidentate 2-(pyridin-2-yl)phenyl ligands and one N,O-bidentate 2-[(phenyl­imino)­meth­yl]phenolate anion, giving rise to a distorted octa­hedral environment. The C,N-bidentate ligands, in which the C and N atoms are statistically disordered over two sites and therefore both pairs of C and N atoms are trans and cis relative to each other, are almost perpendicular to each other [the dihedral angle between the least-square planes is 87.00 (4)°]. An intra­molecular C—H⋯O hydrogen bond, as well as inter­molecular C—H⋯π inter­actions and ππ inter­actions, contribute to the stabilization of the mol­ecular and crystal structure.

1. Chemical context

Cyclo­metallated IrIII complexes are of great inter­est due to their excellent phospho­rescent properties and electroluminescence applications. In particular, heteroleptic IrIII complexes with imine-based ancillary ligands exhibit aggregation-induced phospho­rescent emission (AIPE), resulting in enhanced phospho­rescence phenomena in the solid state (Howarth et al., 2014[Howarth, A. J., Patia, R., Davies, D. L., Lelj, F., Wolf, M. O. & Singh, K. (2014). Eur. J. Inorg. Chem. pp. 3657-3664.]; You et al., 2008[You, Y., Huh, H. S., Kim, K. S., Lee, S. W., Kim, D. & Park, S. Y. (2008). Chem. Commun. pp. 3998-4000.]; Zhao et al., 2008[Zhao, Q., Li, L., Li, F., Yu, M., Liu, Z., Yi, T. & Huang, C. (2008). Chem. Commun. pp. 685-687.]). To uncover the origin of the intriguing AIPE, it is crucial to analyse the solid-state structures of relevant IrIII complexes besides undertaking spectroscopic and theoretical investigations. Here we report the crystal structure of the title compound, [Ir(C11H8N)2(C13H10NO)]·CH2Cl2, a heteroleptic IrIII complex with an ancillary salicyl­imine ligand.

[Scheme 1]

2. Structural commentary

The mol­ecular components of the title structure are shown in Fig. 1[link]. The asymmetric unit consists of one IrIII ion, two 2-(pyridin-2-yl)phenyl ligands, and one 2-[(phenyl­imino)­meth­yl]phenolate anion. The IrIII ion adopts a distorted octa­hedral coordination geometry, being N,O-chelated by the 2-[(phenyl­imino)­meth­yl]phenolate ligand and C,N-chelated by two 2-(pyridin-2-yl)phenyl ligands, in which the C and N atoms are equally disordered over two sites and therefore both pairs of C and N atoms are trans and cis relative to each other. The equatorial plane is formed by N1/O1/N2/C12 atoms, the mean deviation from the least-squares plane being 0.002 Å. The IrIII ion is displaced by 0.0481 (9) Å from the equatorial plane towards the axial imino N3 atom. The C,N-bidentate ligands are nearly perpendicular to each other, with a dihedral angle between the least-squares planes of 87.00 (4)°. Within the C,N-bidentate ligands, the dihedral angles between the aromatic rings are 3.70 (10) (between rings C1–C6 and N1/C7–C11) and 7.67 (16)° (between rings C12–C17 and N2/C18–C22). As shown in Table 1[link], the Ir—C, Ir—N and Ir—O bond lengths of the title compound are within the ranges reported for similar IrIII compounds, e.g. {(E)-2-[(2,6-diiso­propyl­phenyl­imino)­meth­yl]phenolato-κ2N,O}bis­(2-phenyl­pyridine-κ2C,N)iridium(III) (Howarth et al., 2014[Howarth, A. J., Patia, R., Davies, D. L., Lelj, F., Wolf, M. O. & Singh, K. (2014). Eur. J. Inorg. Chem. pp. 3657-3664.]), {(E)-2-[(naphthalene-1-yl­imino)­meth­yl]phenolato-κ2N,O}bis­(2-phenyl­pyridine-κ2C,N)iridium(III) (Zhao et al., 2008[Zhao, Q., Li, L., Li, F., Yu, M., Liu, Z., Yi, T. & Huang, C. (2008). Chem. Commun. pp. 685-687.]), or {(E)-2-[(phenyl­imino)­meth­yl]phenolato-κ2N,O}bis­[2-(2,4-di­fluoro­phen­yl)pyridine-κ2C,N]iridium(III) (You et al., 2008[You, Y., Huh, H. S., Kim, K. S., Lee, S. W., Kim, D. & Park, S. Y. (2008). Chem. Commun. pp. 3998-4000.]).

Table 1
Selected geometric parameters (Å, °)

Ir1—C12 1.997 (2) Ir1—N1 2.0424 (18)
Ir1—C1 2.004 (2) Ir1—O1 2.1409 (16)
Ir1—N2 2.0302 (18) Ir1—N3 2.1551 (19)
       
C12—Ir1—C1 87.97 (9) N2—Ir1—O1 94.95 (7)
C12—Ir1—N2 80.69 (8) N1—Ir1—O1 89.08 (7)
C1—Ir1—N2 96.62 (8) C12—Ir1—N3 94.96 (8)
C12—Ir1—N1 95.15 (8) C1—Ir1—N3 176.86 (7)
C1—Ir1—N1 80.42 (8) N2—Ir1—N3 84.99 (7)
N2—Ir1—N1 175.02 (7) N1—Ir1—N3 98.16 (7)
C12—Ir1—O1 175.01 (7) O1—Ir1—N3 87.04 (7)
C1—Ir1—O1 90.14 (8)    
[Figure 1]
Figure 1
View of the mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level; red and sky-blue dashed lines represent inter­molecular C—H⋯π hydrogen bonds and intra­molecular ππ inter­actions, respectively. H atoms have been omitted for clarity.

3. Supra­molecular features

The mol­ecular structure of the title compound is stabilized by an intra­molecular C—H⋯O hydrogen bond and inter­molecular C—H⋯π inter­actions between the di­chloro­methane solvent mol­ecule and the phenyl rings of the C,N-bidentate ligand (Fig. 1[link] and Table 2[link]). Additionally, inter­molecular C—H⋯π inter­actions (Table 2[link]) and ππ inter­actions [Cg1⋯Cg1ii = 3.6231 (12) Å and Cg3⋯Cg4 = 3.8873 (17) Å; Cg1, Cg3 and Cg4 are the centroids of the N1/C7–C11, C12–C17 and C30–C35 rings, respectively; symmetry code: (ii) −x + 1, −y + 2, −z + 1] contribute to the stabilization of the crystal structure (Fig. 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C1–C6 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C22—H22⋯O1 0.95 2.54 3.132 (3) 121
C21—H21⋯Cg2i 0.95 2.90 3.658 (3) 138
C36—H36ACg2 0.99 2.62 3.444 (4) 140
C36—H36BCg3 0.99 2.59 3.498 (4) 153
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Packing plot of the mol­ecular components in the title compound. Yellow and black dashed lines represent inter­molecular C—H⋯π and ππ stacking inter­actions, respectively. H atoms not involved in inter­molecular inter­actions and di­chloro­methane solvent mol­ecules have been omitted for clarity.

4. Synthesis and crystallization

The title compound was prepared according to a reported procedure (You et al., 2008[You, Y., Huh, H. S., Kim, K. S., Lee, S. W., Kim, D. & Park, S. Y. (2008). Chem. Commun. pp. 3998-4000.]). Single crystals suitable for X-ray diffraction were grown by slow diffusion of n-hexane into a CH2Cl2 solution of the title compound at room temperature.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The positions of the N atoms in the 2-(pyridin-2-yl)phenyl unit could not be discriminated from the difference in the displacement parameters, and free refinement of the N and C atoms revealed a lower and higher electron density, respectively, as expected for full occupancy and without disorder. Therefore, atoms N1 and C1A, C11 and N1A, N2 and C2A, and C22 and N2A were refined at the same sites with site occupancy factors of 0.5 using EXYZ/EADP constrains. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for Csp2—H and 0.99 Å for methyl­ene C—H. For all H atoms, Uiso(H) = 1.2Ueq of the parent atom.

Table 3
Experimental details

Crystal data
Chemical formula [Ir(C11H8N)2(C13H10NO)]·CH2Cl2
Mr 781.71
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 130
a, b, c (Å) 11.8318 (2), 12.0638 (4), 12.3169 (2)
α, β, γ (°) 98.260 (1), 114.283 (1), 101.418 (1)
V3) 1520.15 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 4.60
Crystal size (mm) 0.15 × 0.09 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.614, 0.877
No. of measured, independent and observed [I > 2σ(I)] reflections 25306, 7425, 6973
Rint 0.020
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.047, 1.08
No. of reflections 7425
No. of parameters 388
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.45, −1.25
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

{(E)-2-[(Phenylimino)methyl]phenolato-κ2N,O}bis[2-(pyridin-2-yl)phenyl-κ2C1,N]iridium(III) dichloromethane monosolvate top
Crystal data top
[Ir(C11H8N)2(C13H10NO)]·CH2Cl2Z = 2
Mr = 781.71F(000) = 768
Triclinic, P1Dx = 1.708 Mg m3
a = 11.8318 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.0638 (4) ÅCell parameters from 25306 reflections
c = 12.3169 (2) Åθ = 1.8–28.3°
α = 98.260 (1)°µ = 4.60 mm1
β = 114.283 (1)°T = 130 K
γ = 101.418 (1)°Plate, yellow
V = 1520.15 (6) Å30.15 × 0.09 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
6973 reflections with I > 2σ(I)
φ and ω scansRint = 0.020
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 28.3°, θmin = 1.8°
Tmin = 0.614, Tmax = 0.877h = 1515
25306 measured reflectionsk = 1616
7425 independent reflectionsl = 1516
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.0286P)2 + 0.6203P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.003
7425 reflectionsΔρmax = 1.45 e Å3
388 parametersΔρmin = 1.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.61255 (2)0.74630 (2)0.71617 (2)0.01224 (3)
Cl10.23841 (8)0.81561 (9)0.92075 (9)0.0577 (2)
Cl20.13261 (10)0.57002 (9)0.79287 (9)0.0624 (3)
C360.2462 (3)0.7010 (3)0.8194 (3)0.0384 (7)
H36A0.22940.72150.74020.046*
H36B0.33410.69080.85530.046*
O10.62551 (15)0.70735 (14)0.54724 (15)0.0181 (3)
N10.58415 (18)0.90242 (16)0.68412 (17)0.0112 (4)0.5
C1A0.58415 (18)0.90242 (16)0.68412 (17)0.0112 (4)0.5
N20.62991 (18)0.59058 (16)0.75448 (18)0.0118 (4)0.5
C2A0.62991 (18)0.59058 (16)0.75448 (18)0.0118 (4)0.5
N30.82100 (18)0.80078 (16)0.80795 (17)0.0152 (4)
C10.4191 (2)0.69766 (19)0.6226 (2)0.0212 (4)0.5
N1A0.4191 (2)0.69766 (19)0.6226 (2)0.0212 (4)0.5
C20.3326 (2)0.5863 (2)0.5879 (2)0.0195 (5)
H20.36560.52320.61120.023*
C30.1996 (2)0.5657 (2)0.5204 (2)0.0233 (5)
H30.14370.48890.49710.028*
C40.1480 (2)0.6570 (2)0.4865 (2)0.0261 (5)
H40.05720.64280.44070.031*
C50.2310 (2)0.7689 (2)0.5207 (2)0.0226 (5)
H50.19680.83170.49860.027*
C60.3646 (2)0.78903 (19)0.5875 (2)0.0169 (4)
C70.4586 (2)0.90398 (19)0.6250 (2)0.0162 (4)
C80.4294 (2)1.0079 (2)0.6042 (2)0.0209 (5)
H80.34171.00880.56540.025*
C90.5277 (2)1.1096 (2)0.6400 (2)0.0230 (5)
H90.50871.18040.62490.028*
C100.6555 (2)1.1059 (2)0.6987 (2)0.0216 (5)
H100.72501.17440.72400.026*
C110.6799 (2)1.00236 (19)0.7197 (2)0.0186 (4)
H110.76711.00090.76060.022*
C120.5938 (2)0.76773 (19)0.8711 (2)0.0200 (4)0.5
N12A0.5938 (2)0.76773 (19)0.8711 (2)0.0200 (4)0.5
C130.5758 (2)0.8649 (2)0.9321 (2)0.0188 (4)
H130.57020.93080.89830.023*
C140.5659 (2)0.8671 (2)1.0412 (2)0.0217 (5)
H140.55570.93481.08180.026*
C150.5709 (2)0.7710 (2)1.0910 (2)0.0239 (5)
H150.56130.77191.16400.029*
C160.5899 (2)0.6735 (2)1.0337 (2)0.0217 (5)
H160.59490.60811.06820.026*
C170.6018 (2)0.67162 (19)0.9253 (2)0.0166 (4)
C180.6277 (2)0.57502 (19)0.8611 (2)0.0161 (4)
C190.6551 (2)0.4771 (2)0.9021 (2)0.0209 (5)
H190.65330.46610.97620.025*
C200.6848 (3)0.3963 (2)0.8351 (2)0.0249 (5)
H200.70570.33050.86380.030*
C210.6838 (3)0.4120 (2)0.7249 (2)0.0246 (5)
H210.70210.35640.67640.029*
C220.6558 (2)0.5097 (2)0.6875 (2)0.0200 (5)
H220.65470.52050.61220.024*
C230.7243 (2)0.74819 (19)0.5292 (2)0.0171 (4)
C240.7062 (2)0.7315 (2)0.4058 (2)0.0219 (5)
H240.62370.68830.34080.026*
C250.8046 (3)0.7758 (3)0.3775 (2)0.0288 (6)
H250.78810.76440.29380.035*
C260.9283 (3)0.8375 (3)0.4708 (3)0.0322 (6)
H260.99500.87090.45110.039*
C270.9517 (2)0.8488 (3)0.5906 (3)0.0283 (6)
H271.03700.88660.65380.034*
C280.8532 (2)0.8061 (2)0.6238 (2)0.0198 (5)
C290.8935 (2)0.8164 (2)0.7526 (2)0.0198 (5)
H290.98420.83710.80370.024*
C300.8861 (2)0.7980 (2)0.9349 (2)0.0191 (5)
C310.9382 (2)0.7062 (2)0.9630 (2)0.0254 (5)
H310.93800.65050.90000.030*
C320.9906 (3)0.6962 (3)1.0839 (3)0.0332 (6)
H321.02550.63321.10340.040*
C330.9920 (3)0.7784 (3)1.1760 (3)0.0371 (7)
H331.02670.77101.25830.044*
C340.9430 (3)0.8704 (3)1.1480 (2)0.0330 (6)
H340.94600.92741.21180.040*
C350.8889 (2)0.8813 (2)1.0276 (2)0.0247 (5)
H350.85450.94481.00880.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01277 (5)0.01203 (5)0.01265 (5)0.00444 (3)0.00584 (3)0.00369 (3)
Cl10.0270 (4)0.0682 (6)0.0609 (6)0.0188 (4)0.0103 (4)0.0109 (5)
Cl20.0591 (6)0.0585 (6)0.0485 (5)0.0171 (4)0.0221 (4)0.0061 (4)
C360.0333 (15)0.0408 (17)0.0376 (17)0.0026 (13)0.0178 (13)0.0052 (13)
O10.0181 (8)0.0205 (8)0.0157 (8)0.0045 (6)0.0083 (6)0.0042 (6)
N10.0127 (9)0.0112 (8)0.0112 (9)0.0054 (7)0.0055 (7)0.0039 (7)
C1A0.0127 (9)0.0112 (8)0.0112 (9)0.0054 (7)0.0055 (7)0.0039 (7)
N20.0122 (9)0.0102 (8)0.0125 (9)0.0036 (7)0.0051 (7)0.0022 (7)
C2A0.0122 (9)0.0102 (8)0.0125 (9)0.0036 (7)0.0051 (7)0.0022 (7)
N30.0155 (9)0.0155 (9)0.0145 (9)0.0056 (7)0.0059 (7)0.0044 (7)
C10.0213 (11)0.0236 (11)0.0182 (11)0.0057 (9)0.0093 (9)0.0040 (9)
N1A0.0213 (11)0.0236 (11)0.0182 (11)0.0057 (9)0.0093 (9)0.0040 (9)
C20.0213 (11)0.0186 (11)0.0177 (11)0.0043 (9)0.0091 (9)0.0032 (9)
C30.0194 (11)0.0223 (12)0.0234 (12)0.0007 (9)0.0093 (10)0.0028 (10)
C40.0157 (11)0.0313 (13)0.0243 (13)0.0025 (10)0.0050 (10)0.0053 (11)
C50.0163 (11)0.0250 (12)0.0244 (12)0.0076 (9)0.0063 (10)0.0067 (10)
C60.0164 (10)0.0176 (11)0.0158 (11)0.0044 (8)0.0067 (9)0.0038 (9)
C70.0162 (10)0.0181 (11)0.0152 (10)0.0060 (8)0.0072 (9)0.0047 (8)
C80.0196 (11)0.0219 (11)0.0219 (12)0.0107 (9)0.0075 (9)0.0066 (9)
C90.0267 (12)0.0161 (11)0.0283 (13)0.0093 (9)0.0125 (11)0.0076 (10)
C100.0211 (11)0.0160 (11)0.0260 (13)0.0043 (9)0.0097 (10)0.0048 (9)
C110.0161 (10)0.0172 (11)0.0211 (11)0.0041 (8)0.0074 (9)0.0048 (9)
C120.0166 (10)0.0215 (10)0.0196 (11)0.0051 (8)0.0065 (8)0.0039 (9)
N12A0.0166 (10)0.0215 (10)0.0196 (11)0.0051 (8)0.0065 (8)0.0039 (9)
C130.0197 (11)0.0191 (11)0.0207 (11)0.0089 (9)0.0102 (9)0.0064 (9)
C140.0207 (11)0.0263 (12)0.0196 (12)0.0111 (10)0.0099 (9)0.0016 (10)
C150.0241 (12)0.0348 (14)0.0159 (11)0.0102 (10)0.0110 (10)0.0066 (10)
C160.0236 (12)0.0253 (12)0.0195 (12)0.0084 (10)0.0111 (10)0.0093 (10)
C170.0146 (10)0.0182 (10)0.0173 (11)0.0052 (8)0.0070 (9)0.0051 (9)
C180.0142 (10)0.0156 (10)0.0160 (10)0.0018 (8)0.0060 (8)0.0031 (8)
C190.0251 (12)0.0196 (11)0.0211 (12)0.0073 (9)0.0117 (10)0.0089 (9)
C200.0324 (13)0.0169 (11)0.0293 (13)0.0111 (10)0.0144 (11)0.0103 (10)
C210.0315 (13)0.0180 (11)0.0278 (13)0.0105 (10)0.0159 (11)0.0038 (10)
C220.0244 (12)0.0170 (11)0.0207 (12)0.0071 (9)0.0120 (10)0.0036 (9)
C230.0203 (11)0.0186 (10)0.0182 (11)0.0101 (9)0.0105 (9)0.0092 (9)
C240.0233 (12)0.0289 (13)0.0171 (11)0.0125 (10)0.0096 (10)0.0083 (10)
C250.0305 (14)0.0472 (16)0.0221 (13)0.0193 (12)0.0182 (11)0.0163 (12)
C260.0246 (13)0.0537 (18)0.0297 (14)0.0149 (12)0.0188 (12)0.0184 (13)
C270.0192 (12)0.0420 (15)0.0271 (13)0.0104 (11)0.0121 (10)0.0112 (12)
C280.0200 (11)0.0230 (11)0.0206 (12)0.0100 (9)0.0108 (9)0.0072 (9)
C290.0165 (11)0.0215 (11)0.0205 (12)0.0071 (9)0.0066 (9)0.0061 (9)
C300.0115 (10)0.0251 (12)0.0175 (11)0.0021 (9)0.0047 (9)0.0065 (9)
C310.0187 (11)0.0314 (13)0.0266 (13)0.0089 (10)0.0085 (10)0.0115 (11)
C320.0225 (13)0.0471 (17)0.0296 (15)0.0105 (12)0.0069 (11)0.0234 (13)
C330.0225 (13)0.061 (2)0.0204 (13)0.0014 (13)0.0053 (11)0.0167 (13)
C340.0240 (13)0.0474 (17)0.0177 (12)0.0006 (12)0.0083 (10)0.0019 (12)
C350.0202 (12)0.0308 (13)0.0193 (12)0.0033 (10)0.0086 (10)0.0025 (10)
Geometric parameters (Å, º) top
Ir1—N12A1.997 (2)C11—H110.9500
Ir1—C121.997 (2)C12—C131.400 (3)
Ir1—N1A2.004 (2)C12—C171.418 (3)
Ir1—C12.004 (2)N12A—C131.400 (3)
Ir1—N22.0302 (18)N12A—C171.418 (3)
Ir1—C2A2.0302 (18)C13—C141.393 (3)
Ir1—N12.0424 (18)C13—H130.9500
Ir1—C1A2.0424 (18)C14—C151.388 (4)
Ir1—O12.1409 (16)C14—H140.9500
Ir1—N32.1551 (19)C15—C161.389 (4)
Cl1—C361.769 (3)C15—H150.9500
Cl2—C361.749 (3)C16—C171.396 (3)
C36—H36A0.9900C16—H160.9500
C36—H36B0.9900C17—C181.467 (3)
O1—C231.295 (3)C18—C191.394 (3)
N1—C111.352 (3)C19—C201.377 (3)
N1—C71.365 (3)C19—H190.9500
C1A—C111.352 (3)C20—C211.394 (4)
C1A—C71.365 (3)C20—H200.9500
N2—C221.350 (3)C21—C221.377 (3)
N2—C181.363 (3)C21—H210.9500
C2A—C221.350 (3)C22—H220.9500
C2A—C181.363 (3)C23—C241.422 (3)
N3—C291.300 (3)C23—C281.433 (3)
N3—C301.440 (3)C24—C251.380 (4)
C1—C21.403 (3)C24—H240.9500
C1—C61.417 (3)C25—C261.399 (4)
N1A—C21.403 (3)C25—H250.9500
N1A—C61.417 (3)C26—C271.365 (4)
C2—C31.392 (3)C26—H260.9500
C2—H20.9500C27—C281.416 (3)
C3—C41.396 (4)C27—H270.9500
C3—H30.9500C28—C291.435 (3)
C4—C51.391 (4)C29—H290.9500
C4—H40.9500C30—C311.390 (3)
C5—C61.398 (3)C30—C351.393 (3)
C5—H50.9500C31—C321.392 (4)
C6—C71.468 (3)C31—H310.9500
C7—C81.395 (3)C32—C331.387 (5)
C8—C91.382 (3)C32—H320.9500
C8—H80.9500C33—C341.374 (4)
C9—C101.395 (3)C33—H330.9500
C9—H90.9500C34—C351.391 (4)
C10—C111.372 (3)C34—H340.9500
C10—H100.9500C35—H350.9500
N12A—Ir1—N1A87.97 (9)C11—C10—H10120.3
C12—Ir1—C187.97 (9)C9—C10—H10120.3
C12—Ir1—N280.69 (8)C1A—C11—C10122.4 (2)
C1—Ir1—N296.62 (8)N1—C11—C10122.4 (2)
N12A—Ir1—C2A80.69 (8)N1—C11—H11118.8
N1A—Ir1—C2A96.62 (8)C10—C11—H11118.8
C12—Ir1—N195.15 (8)C13—C12—C17117.2 (2)
C1—Ir1—N180.42 (8)C13—C12—Ir1128.28 (17)
N2—Ir1—N1175.02 (7)C17—C12—Ir1114.53 (16)
N12A—Ir1—C1A95.15 (8)C13—N12A—C17117.2 (2)
N1A—Ir1—C1A80.42 (8)C13—N12A—Ir1128.28 (17)
C2A—Ir1—C1A175.02 (7)C17—N12A—Ir1114.53 (16)
N12A—Ir1—O1175.01 (7)C14—C13—C12121.5 (2)
C12—Ir1—O1175.01 (7)C14—C13—N12A121.5 (2)
N1A—Ir1—O190.14 (8)C14—C13—H13119.3
C1—Ir1—O190.14 (8)C12—C13—H13119.3
N2—Ir1—O194.95 (7)C15—C14—C13120.4 (2)
C2A—Ir1—O194.95 (7)C15—C14—H14119.8
N1—Ir1—O189.08 (7)C13—C14—H14119.8
C1A—Ir1—O189.08 (7)C14—C15—C16119.7 (2)
N12A—Ir1—N394.96 (8)C14—C15—H15120.2
C12—Ir1—N394.96 (8)C16—C15—H15120.2
N1A—Ir1—N3176.86 (7)C15—C16—C17120.1 (2)
C1—Ir1—N3176.86 (7)C15—C16—H16120.0
N2—Ir1—N384.99 (7)C17—C16—H16120.0
C2A—Ir1—N384.99 (7)C16—C17—C12121.2 (2)
N1—Ir1—N398.16 (7)C16—C17—N12A121.2 (2)
C1A—Ir1—N398.16 (7)C16—C17—C18124.0 (2)
O1—Ir1—N387.04 (7)C12—C17—C18114.8 (2)
Cl2—C36—Cl1110.91 (17)N12A—C17—C18114.8 (2)
Cl2—C36—H36A109.5C2A—C18—C19119.9 (2)
Cl1—C36—H36A109.5N2—C18—C19119.9 (2)
Cl2—C36—H36B109.5C2A—C18—C17113.50 (19)
Cl1—C36—H36B109.5N2—C18—C17113.50 (19)
H36A—C36—H36B108.0C19—C18—C17126.5 (2)
C23—O1—Ir1126.57 (15)C20—C19—C18120.1 (2)
C11—N1—C7119.07 (19)C20—C19—H19120.0
C11—N1—Ir1124.65 (15)C18—C19—H19120.0
C7—N1—Ir1116.26 (15)C19—C20—C21119.3 (2)
C11—C1A—C7119.07 (19)C19—C20—H20120.3
C11—C1A—Ir1124.65 (15)C21—C20—H20120.3
C7—C1A—Ir1116.26 (15)C22—C21—C20118.7 (2)
C22—N2—C18119.81 (19)C22—C21—H21120.6
C22—N2—Ir1123.55 (16)C20—C21—H21120.6
C18—N2—Ir1116.30 (15)C2A—C22—C21122.1 (2)
C22—C2A—C18119.81 (19)N2—C22—C21122.1 (2)
C22—C2A—Ir1123.55 (16)N2—C22—H22119.0
C18—C2A—Ir1116.30 (15)C21—C22—H22119.0
C29—N3—C30115.83 (19)O1—C23—C24118.1 (2)
C29—N3—Ir1124.64 (16)O1—C23—C28125.5 (2)
C30—N3—Ir1118.36 (14)C24—C23—C28116.4 (2)
C2—C1—C6116.8 (2)C25—C24—C23122.2 (2)
C2—C1—Ir1128.52 (17)C25—C24—H24118.9
C6—C1—Ir1114.69 (16)C23—C24—H24118.9
C2—N1A—C6116.8 (2)C24—C25—C26120.7 (2)
C2—N1A—Ir1128.52 (17)C24—C25—H25119.7
C6—N1A—Ir1114.69 (16)C26—C25—H25119.7
C3—C2—C1121.8 (2)C27—C26—C25118.9 (2)
C3—C2—N1A121.8 (2)C27—C26—H26120.6
C3—C2—H2119.1C25—C26—H26120.6
C1—C2—H2119.1C26—C27—C28122.3 (2)
C2—C3—C4120.5 (2)C26—C27—H27118.9
C2—C3—H3119.8C28—C27—H27118.9
C4—C3—H3119.8C27—C28—C23119.4 (2)
C5—C4—C3119.3 (2)C27—C28—C29116.2 (2)
C5—C4—H4120.4C23—C28—C29124.2 (2)
C3—C4—H4120.4N3—C29—C28127.8 (2)
C4—C5—C6120.1 (2)N3—C29—H29116.1
C4—C5—H5119.9C28—C29—H29116.1
C6—C5—H5119.9C31—C30—C35120.3 (2)
C5—C6—C1121.6 (2)C31—C30—N3119.0 (2)
C5—C6—N1A121.6 (2)C35—C30—N3120.6 (2)
C5—C6—C7123.4 (2)C30—C31—C32119.7 (3)
C1—C6—C7115.01 (19)C30—C31—H31120.2
N1A—C6—C7115.01 (19)C32—C31—H31120.2
C1A—C7—C8120.4 (2)C33—C32—C31120.1 (3)
N1—C7—C8120.4 (2)C33—C32—H32120.0
C1A—C7—C6113.51 (19)C31—C32—H32120.0
N1—C7—C6113.51 (19)C34—C33—C32119.9 (3)
C8—C7—C6126.0 (2)C34—C33—H33120.0
C9—C8—C7120.2 (2)C32—C33—H33120.0
C9—C8—H8119.9C33—C34—C35120.9 (3)
C7—C8—H8119.9C33—C34—H34119.5
C8—C9—C10118.5 (2)C35—C34—H34119.5
C8—C9—H9120.7C34—C35—C30119.1 (2)
C10—C9—H9120.7C34—C35—H35120.4
C11—C10—C9119.4 (2)C30—C35—H35120.4
C6—C1—C2—C31.1 (3)C13—N12A—C17—C161.0 (3)
Ir1—C1—C2—C3178.72 (18)Ir1—N12A—C17—C16179.75 (18)
C6—N1A—C2—C31.1 (3)C13—N12A—C17—C18176.82 (19)
Ir1—N1A—C2—C3178.72 (18)Ir1—N12A—C17—C182.4 (2)
C1—C2—C3—C41.1 (4)C22—C2A—C18—C191.5 (3)
N1A—C2—C3—C41.1 (4)Ir1—C2A—C18—C19172.00 (17)
C2—C3—C4—C50.2 (4)C22—C2A—C18—C17178.4 (2)
C3—C4—C5—C60.4 (4)Ir1—C2A—C18—C174.9 (2)
C4—C5—C6—C10.3 (4)C22—N2—C18—C191.5 (3)
C4—C5—C6—N1A0.3 (4)Ir1—N2—C18—C19172.00 (17)
C4—C5—C6—C7178.8 (2)C22—N2—C18—C17178.4 (2)
C2—C1—C6—C50.5 (3)Ir1—N2—C18—C174.9 (2)
Ir1—C1—C6—C5179.43 (18)C16—C17—C18—C2A177.5 (2)
C2—C1—C6—C7179.7 (2)N12A—C17—C18—C2A4.7 (3)
Ir1—C1—C6—C70.2 (3)C16—C17—C18—N2177.5 (2)
C2—N1A—C6—C50.5 (3)C12—C17—C18—N24.7 (3)
Ir1—N1A—C6—C5179.43 (18)C16—C17—C18—C195.8 (4)
C2—N1A—C6—C7179.7 (2)C12—C17—C18—C19171.9 (2)
Ir1—N1A—C6—C70.2 (3)N12A—C17—C18—C19171.9 (2)
C11—C1A—C7—C81.6 (3)C2A—C18—C19—C200.2 (4)
Ir1—C1A—C7—C8176.93 (17)N2—C18—C19—C200.2 (4)
C11—C1A—C7—C6177.9 (2)C17—C18—C19—C20176.3 (2)
Ir1—C1A—C7—C63.6 (2)C18—C19—C20—C211.6 (4)
C11—N1—C7—C81.6 (3)C19—C20—C21—C221.4 (4)
Ir1—N1—C7—C8176.93 (17)C18—C2A—C22—C211.7 (3)
C11—N1—C7—C6177.9 (2)Ir1—C2A—C22—C21171.25 (19)
Ir1—N1—C7—C63.6 (2)C18—N2—C22—C211.7 (3)
C5—C6—C7—C1A177.0 (2)Ir1—N2—C22—C21171.25 (19)
N1A—C6—C7—C1A2.2 (3)C20—C21—C22—C2A0.3 (4)
C5—C6—C7—N1177.0 (2)C20—C21—C22—N20.3 (4)
C1—C6—C7—N12.2 (3)Ir1—O1—C23—C24167.35 (15)
C5—C6—C7—C82.4 (4)Ir1—O1—C23—C2814.9 (3)
C1—C6—C7—C8178.4 (2)O1—C23—C24—C25177.4 (2)
N1A—C6—C7—C8178.4 (2)C28—C23—C24—C254.6 (3)
C1A—C7—C8—C92.1 (4)C23—C24—C25—C261.5 (4)
N1—C7—C8—C92.1 (4)C24—C25—C26—C272.8 (4)
C6—C7—C8—C9177.3 (2)C25—C26—C27—C283.7 (4)
C7—C8—C9—C101.2 (4)C26—C27—C28—C230.5 (4)
C8—C9—C10—C110.2 (4)C26—C27—C28—C29175.6 (3)
C7—C1A—C11—C100.2 (3)O1—C23—C28—C27178.6 (2)
Ir1—C1A—C11—C10178.21 (18)C24—C23—C28—C273.6 (3)
C7—N1—C11—C100.2 (3)O1—C23—C28—C296.7 (4)
Ir1—N1—C11—C10178.21 (18)C24—C23—C28—C29171.1 (2)
C9—C10—C11—C1A0.8 (4)C30—N3—C29—C28170.2 (2)
C9—C10—C11—N10.8 (4)Ir1—N3—C29—C282.8 (3)
C17—C12—C13—C140.1 (3)C27—C28—C29—N3168.6 (2)
Ir1—C12—C13—C14179.18 (18)C23—C28—C29—N316.6 (4)
C17—N12A—C13—C140.1 (3)C29—N3—C30—C3166.6 (3)
Ir1—N12A—C13—C14179.18 (18)Ir1—N3—C30—C31101.6 (2)
C12—C13—C14—C151.4 (4)C29—N3—C30—C35117.9 (2)
N12A—C13—C14—C151.4 (4)Ir1—N3—C30—C3573.9 (2)
C13—C14—C15—C162.0 (4)C35—C30—C31—C321.5 (4)
C14—C15—C16—C171.1 (4)N3—C30—C31—C32174.0 (2)
C15—C16—C17—C120.5 (4)C30—C31—C32—C330.7 (4)
C15—C16—C17—N12A0.5 (4)C31—C32—C33—C340.8 (4)
C15—C16—C17—C18177.2 (2)C32—C33—C34—C351.5 (4)
C13—C12—C17—C161.0 (3)C33—C34—C35—C300.6 (4)
Ir1—C12—C17—C16179.75 (18)C31—C30—C35—C340.9 (4)
C13—C12—C17—C18176.82 (19)N3—C30—C35—C34174.6 (2)
Ir1—C12—C17—C182.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C22—H22···O10.952.543.132 (3)121
C21—H21···Cg2i0.952.903.658 (3)138
C36—H36A···Cg20.992.623.444 (4)140
C36—H36B···Cg30.992.593.498 (4)153
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by Kumoh National Institute of Technology.

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHowarth, A. J., Patia, R., Davies, D. L., Lelj, F., Wolf, M. O. & Singh, K. (2014). Eur. J. Inorg. Chem. pp. 3657–3664.  CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYou, Y., Huh, H. S., Kim, K. S., Lee, S. W., Kim, D. & Park, S. Y. (2008). Chem. Commun. pp. 3998–4000.  CSD CrossRef Google Scholar
First citationZhao, Q., Li, L., Li, F., Yu, M., Liu, Z., Yi, T. & Huang, C. (2008). Chem. Commun. pp. 685–687.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds