research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 5| May 2016| Pages 720-723

Synthesis, FT–IR characterization and crystal structure of aqua­(5,10,15,20-tetra­phenyl­porphyrinato-κ4N)manganese(III) tri­fluoro­methane­sulfonate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Physico-chimie des Matériaux, Faculté des Sciences de Monastir, Avenue de l'Environnement, 5019 Monastir, University of Monastir, Tunisia, bFaculdade de Medicina, Veterinària, Universidade Tecnica de Lisboa, Avenida da Universidade Tecnica, 1300-477 Lisboa, Portugal, and cREQUIMTE/CQFB Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
*Correspondence e-mail: wafashdoul@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 11 April 2016; accepted 19 April 2016; online 22 April 2016)

In the title salt, [Mn(C44H28N4)(H2O)](CF3SO3) or [MnIII(TPP)(H2O)](CF3SO3) (where TPP is the dianion of 5,10,15,20-tetra­phenyl­porphyrin), the MnIII cation is chelated by the four pyrrole N atoms of the porphyrinate anion and additionally coordinated by an aqua ligand in an apical site, completing the distorted square-pyramidal coordination environment. The average Mn—N(pyrrole) bond length is 1.998 (9) Å and the Mn—O(aqua) bond length is 2.1057 (15) Å. The central MnIII ion is displaced by 0.1575 (5) Å from the N4C20 mean plane of the porphyrinate anion towards the apical aqua ligand. The porphyrinate macrocycle exhibits a moderate ruffling and strong saddle deformations. In the crystal lattice, the [MnIII(TPP)(H2O)]+ cation and the tri­fluoro­methane­sulfonate counter-ions are arranged in alternating planes packed along [001]. The components are linked together through O—H⋯O hydrogen bonds and much weaker C—H⋯O and C—H⋯F inter­actions. The crystal packing is further stabilized by weak C—H⋯π inter­actions involving the pyrrole and phenyl rings of the porphyrin moieties.

1. Chemical context

While the role of manganese porphyrins in biological processes has not been unambiguously established (Boucher et al., 1972[Boucher, L. J. (1972). Coord. Chem. Rev. 7, 289-329.]), synthetic manganese porphyrin complexes have been used extensively as models for monoxygenases enzymes (Meunier et al., 1988[Meunier, G., Montauzon, D., Bernadou, J., Grassy, G., Bonnfous, M., Cros, S. & Meunier, B. (1988). Mol. Parmacol, 33, 93-102.]; Groves & Nemo, 1983[Groves, J. T. & Nemo, T. E. (1983). J. Am. Chem. Soc. 105, 5786-5791.]) or as DNA cleavage agents (Rodriguez & Bard, 1992[Rodriguez, M. & Bard, A. J. (1992). Inorg. Chem. 31, 1129-1135.]; Bernadou et al., 1989[Bernadou, J., Pratviel, G., Bennis, F., Girardet, M. & Meunier, B. (1989). Biochemistry, 28, 7268-7275.]). The latter can also be considered as potential contrast enhancement agents for magnetic resonance imaging (Fawwaz et al., 1990[Fawwaz, R., Bohidiewicz, P., Lavallee, D., Wang, T., Oluwole, S., Newhouse, J. & Alderson, P. (1990). Nucl. Med. Biol. 17, 65-72.]).

[Scheme 1]

In most MnIII–porphyrin complexes, the metal is five-coordinate and is in its high-spin state whereby polar solvents readily can displace the coordinating anionic ligand to yield solvated complexes (Godziela et al., 1986[Godziela, G. M., Tilotta, D. & Goff, H. M. (1986). Inorg. Chem. 25, 2142-2146.]; Janson et al., 1973[Janson, T. R., Boucher, L. J. & Katz, J. J. (1973). Inorg. Chem. 12, 940-943.]). In our case, the reaction of chlorido-(5,10,15,20-tetra­phenyl­porphyrinato)manganese(III) with hygroscopic silver triflate let to the formation of an aqua-[5,10,15,20-tetra­phenyl­porphyrinato)]manganese(III) salt, [Mn(C44H28N4)(H2O)](CF3SO3), (I)[link] or [MnIII(TPP)(H2O)](CF3SO3) (where TPP is the dianion of 5,10,15,20-tetra­phenyl­porphyrin). The coord­in­ation of a water mol­ecule instead of the triflate ion to MnIII can be explained, as mentioned above, by the weak affinity of manganese(III) to an ionic ligand and in particular by the triflate anion which is known to be a weakly coordinating ligand.

In order to gain more insight into the structure of aqua–MnIII metalloporphyrins, we report herein the synthesis, crystal structure and the spectroscopic data of compound (I)[link].

2. Structural commentary

The central MnIII cation of the complex [MnIII(TPP)(H2O)] cation exhibits a distorted square-pyramidal coordination environment (Fig. 1[link]). The equatorial plane is formed by four nitro­gen atoms of the porphyrin ligand while the apical position is occupied by the aqua ligand. The asymmetric unit of (I)[link] is completed by one CF3SO3 counter-ion. The Mn—O(aqua) bond length of 2.1057 (15) Å is considerably shorter than those of other aqua–MnIII metalloporphyrins which range from 2.166 to 2.258 Å (Dawe et al., 2005[Dawe, L. N., Miglioi, J., Turnbow, L., Taliaferro, M. L., Shum, W. W., Bagnato, J. D., Zakharov, L. N., Rheingold, A. L., Arif, A. M., Fourmigué, M. & Miller, J. S. (2005). Inorg. Chem. 44, 7530-7539.]; Turner, et al., 1996[Turner, P., Gunter, M. J., Hambley, T. W., White, A. H. & Skelton, B. W. (1996). J. Chem. Res. 18, 220-289.]). The average equatorial manganese–N(pyrrole) distance is 1.998 (9) Å, which is close to related [MnIII(Porph)(X)]+ ion complexes (Porph and X are a porphyrinato and a monodentate neutral ligand, respectively), e.g. [MnIII(TClPP)(py)]+ (TClPP is 5,10,15,20-(tetra-4-chloro­phen­yl)porphyrinato) where the average Mn—N(pyrrole) bond length is 2.007 (2) Å (Rittenberg et al., 2000[Rittenberg, D. K., Sugiura, K., Arif, A. M., Sakata, Y., Incarvito, C. D., Rheingold, A. L. & Miller, J. S. (2000). Chem. Eur. J. 6, 1811-1819.]). In Fig. 2[link], the displacements of each atom in (I)[link] from the mean plane of the 24-atom porphyrin macrocycle in units of 0.01 Å is illustrated. The MnIII ion is displaced by 0.158 (5) Å from the 24-atom porphyrin mean plane (PC) which is slightly higher than in the [MnIII(DBHPP)(H2O)]+ (DBHPP = 5,10,15,20-(3,5-di-t-butyl-4-hy­droxy­phen­yl)porphyrinato) species (Mn—PC = 0.122 Å), but smaller than in the [MnIII(TPP)(py)]+ ion complex (Mn—PC = 0.199 Å; Dawe et al., 2005[Dawe, L. N., Miglioi, J., Turnbow, L., Taliaferro, M. L., Shum, W. W., Bagnato, J. D., Zakharov, L. N., Rheingold, A. L., Arif, A. M., Fourmigué, M. & Miller, J. S. (2005). Inorg. Chem. 44, 7530-7539.]). As can be seen in Fig. 2[link], the porphyrin core presents (i) high saddle distortions as seen by the displacements of the pyrrole rings alternately above and below the mean porphyrin macrocycle and (ii) a moderate ruffling which is indicated by the high values of the displacements of the meso-C atoms above and below the porphyrin mean plane (Scheidt & Lee, 1987[Scheidt, W. R. & Lee, Y. (1987). Struct. Bonding (Berlin), 64, 1-7.]).

[Figure 1]
Figure 1
The structures of the mol­ecular entities in compound (I)[link]. Displacement ellipsoids are drawn at the 50% probability level and H atoms except those of the aqua ligand have been omitted for clarity.
[Figure 2]
Figure 2
Formal diagram of the porphyrinate core illustrating the displacements of each atom from the 24-atoms core plane in units of 0.01 Å.

3. Supra­molecular features

In the crystal packing of (I)[link], the manganese porphyrin complex cations and the triflate anions are arranged in alternating planes packed along [001] (Fig. 3[link]). The distance between the C20N4Mn mean planes (porphyrin cores) of two neighbouring [Mn(TPP)H2O)]+ cation complexes is 4.677 Å. The cationic and anionic entities are linked together through two O—H⋯O hydrogen bonds of medium strength between the aqua ligand and the O atoms of the triflate anion (Table 1[link], Fig. 3[link]). The crystal packing of (I)[link] is further consolidated by weak C—H⋯O and C—H⋯F hydrogen-bonding and C—H⋯π inter­actions involving the phenyl and pyrrole rings. The values of these inter­actions range between 3.449 (2) Å and 3.676 (3) Å (Table 1[link], Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3, Cg4, Cg7, Cg9 and Cg11 are the centroids of the N2/C6–C9, N3/C11–C14, N4/C16–C19, Mn/N2/C9–C11/N3, C21–C26 and C33–C38 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O4 0.84 1.91 2.745 (2) 171
O1—H2O1⋯O2i 0.82 1.90 2.715 (2) 171
C7—H7⋯O3ii 0.93 2.39 3.170 (3) 141
C44—H44⋯F2i 0.93 2.50 3.397 (3) 162
C23—H23⋯Cg4ii 0.93 2.85 3.603 (3) 139
C25—H25⋯Cg2iii 0.93 2.89 3.650 (3) 139
C30—H30⋯Cg9iv 0.93 2.82 3.610 (3) 144
C37—H37⋯Cg2v 0.93 2.97 3.676 (3) 133
C40—H40⋯Cg3vi 0.93 2.62 3.449 (2) 148
C42—H42⋯Cg11vii 0.93 2.89 3.631 (3) 137
Symmetry codes: (i) -x+2, -y, -z+1; (ii) x-1, y, z; (iii) -x+1, -y, -z+1; (iv) x, y+1, z; (v) x+1, y, z; (vi) -x+2, -y, -z; (vii) x, y-1, z.
[Figure 3]
Figure 3
The crystal structure of the title compound in a projection approximately along [010]. H atoms have been omitted.
[Figure 4]
Figure 4
The crystal packing of (I)[link], viewed down [100], showing the weak C—H⋯O and C—H⋯F hydrogen bonds and the C—H⋯π inter­molecular inter­actions.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.31; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfood, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed (i) eight di­aqua–MnIII metalloporphyrins, e.g. the [MnIII(TPP)(H2O)2]+ cation (Byrn et al., 1993[Byrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480-9497.]) and (ii) two mono-aqua-=MnIII porphyrins, e.g. the [MnIII(TPP)(H2O)]+ cation (Diskin-Posner et al., 1999[Diskin-Posner, Y., Kumar, R. K. & Goldberg, I. (1999). New J. Chem. 23, 885-890.]) and the [MnIII(DBHPP)(H2O)]+ cation [DBHPP = 5,10,15,20-(3,5-di-t-butyl-4-hy­droxy­phen­yl)porphyrinato; Dawe et al., 2005[Dawe, L. N., Miglioi, J., Turnbow, L., Taliaferro, M. L., Shum, W. W., Bagnato, J. D., Zakharov, L. N., Rheingold, A. L., Arif, A. M., Fourmigué, M. & Miller, J. S. (2005). Inorg. Chem. 44, 7530-7539.]].

5. Synthesis and crystallization

To a solution of [MnIII(TPP)Cl] (100 mg, 0.142 mmol) (Cheng & Scheidt, 1996[Cheng, B. & Scheidt, W. R. (1996). Acta Cryst. C52, 361-363.]) in chloro­form (10 ml) was added an excess of one equivalent of silver triflate (100 mg, 0.389 mmol). The reaction mixture was stirred at room temperature for 12 h. Crystals of the title complex were obtained by diffusion of hexa­nes through the chloro­form solution. We assume that water was delivered from the hygroscopic silver triflate salt.

Spectroscopic analysis: UV–vis spectrum in chloro­form: λmax (nm) 386, 474, 570 and 604.

6. FT–IR spectroscopy

The FT–IR spectrum of (I)[link] (Fig. 5[link]) was recorded in the 4000–400 cm−1 range using a PerkinElmer Spectrum Two FTIR spectrometer. The spectrum presents characteristic vibrational bands of the TPP porphyrinato moiety. The C—H stretching frequencies of the porphyrin mol­ecule are in the range 3060 to 2860 cm−1, the C=C and C=N stretching frequencies are assigned at 1728 cm−1 and 1654 cm−1, respectively. A strong band attributed to the bending vibration of the CCH moieties of the porphyrin core is centred around 1010 cm−1. The two absorption bands at 3456 cm−1 and 3242 cm−1 are attributed to the anti­symmetric and symmetric OH stretching frequencies of the aqua ligand, while the bending vibration of the same ligand is at 1629 cm−1. The presence of the triflate counter-ion is confirmed by the following absorption bands: a medium–strong band at 1308 cm−1 attributed to the asymmetric stretching frequency of the SO3 group, a strong band at 1231 cm−1 corresponding to the symmetric stretching frequency of the CF3 moiety, a medium–strong band at 1162 cm−1 attributed to νas(CF3), a strong band at 1027 cm−1 corresponding to νs(SO3), a strong band at 633 cm−1 attributed to the bending vibration of the SO3 group and a weak and a medium–strong band at 576 cm−1 and 515 cm−1 corresponding to δas(CF3) and δas(SO3) vibrations, respectively.

[Figure 5]
Figure 5
The FT–IR spectrum of (I)[link].

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Carbon-bound hydrogen atoms were placed in calculated positions and refined as riding atoms with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C). The two hydrogen-atom positions of the aqua ligand were discernible from difference maps. However, for the final model these positions were calculated by using the CALC-OH program (Nardelli et al., 1999[Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.]) and were modelled with fixed isotropic displacement parameters.

Table 2
Experimental details

Crystal data
Chemical formula [Mn(C44H28N4)(H2O)](CF3O3S)
Mr 834.76
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 11.0909 (1), 12.9169 (1), 13.7931 (1)
α, β, γ (°) 78.333 (3), 81.162 (4), 74.179 (3)
V3) 1851.66 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.48
Crystal size (mm) 0.48 × 0.38 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.835, 0.862
No. of measured, independent and observed [I > 2σ(I)] reflections 44659, 6753, 5533
Rint 0.059
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.086, 1.05
No. of reflections 6753
No. of parameters 523
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.41
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Chemical context top

While the role of manganese porphyrins in biological processes has not been unambiguously established (Boucher et al., 1972), synthetic manganese porphyrin complexes have been used extensively as models for monoxygenases enzymes (Meunier et al., 1988; Groves & Nemo, 1983) or as DNA cleavage agents (Rodriguez & Bard, 1992; Bernadou et al., 1989). The latter can also be considered as potential contrast enhancement agents for magnetic resonance imaging (Fawwaz et al., 1990).

In most MnIII–porphyrin complexes, the metal is five-coordinate and is in its high-spin state whereby polar solvents readily can displace the coordinating anionic ligand to yield solvated complexes (Godziela et al., 1986; Janson et al., 1973). In our case, the reaction of chlorido-(5,10,15,20-tetra­phenyl­porphyrinato)manganese(III) with hygroscopic silver triflate let to the formation of an aqua-[5,10,15,20-tetra­phenyl­porphyrinato)]manganese(III) salt, [Mn(C44H28N4)(H2O)](CF3SO3), (I) or [MnIII(TPP)(H2O)](CF3SO3) (where TPP is the dianion of 5,10,15,20-tetra­phenyl­porphyrin). The coordination of a water molecule instead of the triflate ion to MnIII can be explained, as mentioned above, by the weak affinity of manganese(III) to an ionic ligand and in particular by the triflate anion which is known to be a weakly coordinating ligand.

In order to gain more insight into the structure of aqua–MnIII metalloporphyrins, we report herein the synthesis, crystal structure and the spectroscopic data of compound (I).

Structural commentary top

The central MnIII cation of the complex [MnIII(TPP)(H2O)] cation exhibits a distorted square-pyramidal coordination environment (Fig. 1). The equatorial plane is formed by four nitro­gen atoms of the porphyrin ligand while the apical position is occupied by the aqua ligand. The asymmetric unit of (I) is completed by one SO3CF3- counter-ion. The Mn—O(aqua) bond length of 2.1057 (15) Å is considerably shorter than those of other aqua–MnIII metalloporphyrins which range from 2.166 to 2.258 Å (Dawe et al., 2005; Turner, et al., 1996). The average equatorial manganese–N(pyrrole) distance is 1.998 (9) Å, which is close to related [MnIII(Porph)(X)]+ ion complexes (Porph and X are a porphyrinato and a monodentate neutral ligand, respectively), e.g. [MnIII(TClPP)(py)]+ (TClPP is 5,10,15,20-(tetra-4-chloro­phenyl)­porphyrinato) where the average Mn—N(pyrrole) bond length is 2.007 (2) Å (Rittenberg et al., 2000). In Fig. 2, the displacements of each atom in (I) from the mean plane of the 24-atom porphyrin macrocycle in units of 0.01 Å is illustrated. The MnIII ion is displaced by 0.158 (5) Å from the 24-atom porphyrin mean plane (PC) which is slightly higher than in the [MnIII(DBHPP)(H2O)]+ (DBHPP = 5,10,15,20-(3,5-di-t-butyl-4-hy­droxy­phenyl)­porphyrinato) species (Mn—PC = 0.122 Å), but smaller than in the [MnIII(TPP)(py)]+ ion complex (Mn—PC = 0.199 Å; Dawe et al., 2005). As can be seen in Fig. 2, the porphyrin core presents (i) high saddle distortions as seen by the displacements of the pyrrole rings alternately above and below the mean porphyrin macrocycle and (ii) a moderate ruffling which is indicated by the high values of the displacements of the meso-C atoms above and below the porphyrin mean plane (Scheidt & Lee, 1987).

Supra­molecular features top

In the crystal packing of (I), the manganese porphyrin complex cations and the triflate anions are arranged in alternating planes packed along [001] (Fig. 3). The distance between the C20N4Mn mean planes (porphyrin cores) of two neighbouring [Mn(TPP)H2O)]+ cation complexes is 4.677 Å. The cationic and anionic entities are linked together through two O—H···O hydrogen bonds of medium strength between the aqua ligand and the O atoms of the triflate anion (Table 1, Fig. 3). The crystal packing of (I) is further consolidated by weak C—H···O and C—H···F hydrogen-bonding and C—H···π inter­actions involving the phenyl and pyrrole rings. The values of these inter­actions range between 3.449 (2) Å and 3.676 (3) Å (Table 1, Fig. 4).

Database survey top

A search of the Cambridge Structural Database (CSD, Version 5.31; Groom et al., 2016) revealed (i) eight di­aqua–MnIII metalloporphyrins, e.g. the [MnIII(TPP)(H2O)2]+ cation (Byrn et al., 1993) and (ii) two mono-aqua-=MnIII porphyrins, e.g. the [MnIII(TPP)(H2O)]+ cation (Diskin-Posner et al., 1999) and the [MnIII(DBHPP)(H2O)]+ cation [DBHPP = 5,10,15,20-(3,5-di-t-butyl-4-hy­droxy­phenyl)­porphyrinato; Dawe et al., 2005].

Synthesis and crystallization top

To a solution of [MnIII(TPP)Cl] (100 mg, 0.142 mmol) (Cheng & Scheidt, 1996) in chloro­form (10 ml) was added an excess of one equivalent of silver triflate (100 mg, 0.389 mmol). The reaction mixture was stirred at room temperature for 12 h. Crystals of the title complex were obtained by diffusion of hexanes through the chloro­form solution. We assume that water was delivered from the hygroscopic silver triflate salt.

Spectroscopic analysis: UV–vis spectrum in chloro­form : λmax (nm) 386, 474, 570 and 604.

FT–IR spectroscopy top

The FT–IR spectrum of (I) (Fig. 5) was recorded in the 4000–400 cm-1 range using a PerkinElmer Spectrum Two FTIR spectrometer. The spectrum presents characteristic vibrational bands of the TPP porphyrinato moiety. The C—H stretching frequencies of the porphyrin molecule are in the range 3060 to 2860 cm-1, the CC and CN stretching frequencies are assigned at 1728 cm-1 and 1654 cm-1, respectively. A strong band attributed to the bending vibration of the CCH moieties of the porphyrin core is centred around 1010 cm-1. The two absorption bands at 3456 cm-1 and 3242 cm-1 are attributed to the anti­symmetric and symmetric OH stretching frequencies of the aqua ligand, while the bending vibration of the same ligand is at 1629 cm-1. The presence of the triflate counter-ion is confirmed by the following absorption bands: a medium–strong band at 1308 cm-1 attributed to the asymmetric stretching frequency of the SO3 group, a strong band at 1231 cm-1 corresponding to the symmetric stretching frequency of the CF3 moiety, a medium–strong band at 1162 cm-1 attributed to νas(CF3), a strong band at 1027 cm-1 corresponding to νs(SO3), a strong band at 633 cm-1 attributed to the bending vibration of the SO3 group and a weak and a medium–strong band at 576 cm-1 and 515 cm-1 corresponding to δas(CF3) and δas(SO3) vibrations, respectively.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. Carbon-bound hydrogen atoms were placed in calculated positions and refined as riding atoms with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C). The two hydrogen-atom positions of the aqua ligand were discernible from difference maps. However, for the final model these positions were calculated by using the CALC-OH program (Nardelli et al., 1999) and were modelled with fixed isotropic displacement parameters.

Structure description top

While the role of manganese porphyrins in biological processes has not been unambiguously established (Boucher et al., 1972), synthetic manganese porphyrin complexes have been used extensively as models for monoxygenases enzymes (Meunier et al., 1988; Groves & Nemo, 1983) or as DNA cleavage agents (Rodriguez & Bard, 1992; Bernadou et al., 1989). The latter can also be considered as potential contrast enhancement agents for magnetic resonance imaging (Fawwaz et al., 1990).

In most MnIII–porphyrin complexes, the metal is five-coordinate and is in its high-spin state whereby polar solvents readily can displace the coordinating anionic ligand to yield solvated complexes (Godziela et al., 1986; Janson et al., 1973). In our case, the reaction of chlorido-(5,10,15,20-tetra­phenyl­porphyrinato)manganese(III) with hygroscopic silver triflate let to the formation of an aqua-[5,10,15,20-tetra­phenyl­porphyrinato)]manganese(III) salt, [Mn(C44H28N4)(H2O)](CF3SO3), (I) or [MnIII(TPP)(H2O)](CF3SO3) (where TPP is the dianion of 5,10,15,20-tetra­phenyl­porphyrin). The coordination of a water molecule instead of the triflate ion to MnIII can be explained, as mentioned above, by the weak affinity of manganese(III) to an ionic ligand and in particular by the triflate anion which is known to be a weakly coordinating ligand.

In order to gain more insight into the structure of aqua–MnIII metalloporphyrins, we report herein the synthesis, crystal structure and the spectroscopic data of compound (I).

The central MnIII cation of the complex [MnIII(TPP)(H2O)] cation exhibits a distorted square-pyramidal coordination environment (Fig. 1). The equatorial plane is formed by four nitro­gen atoms of the porphyrin ligand while the apical position is occupied by the aqua ligand. The asymmetric unit of (I) is completed by one SO3CF3- counter-ion. The Mn—O(aqua) bond length of 2.1057 (15) Å is considerably shorter than those of other aqua–MnIII metalloporphyrins which range from 2.166 to 2.258 Å (Dawe et al., 2005; Turner, et al., 1996). The average equatorial manganese–N(pyrrole) distance is 1.998 (9) Å, which is close to related [MnIII(Porph)(X)]+ ion complexes (Porph and X are a porphyrinato and a monodentate neutral ligand, respectively), e.g. [MnIII(TClPP)(py)]+ (TClPP is 5,10,15,20-(tetra-4-chloro­phenyl)­porphyrinato) where the average Mn—N(pyrrole) bond length is 2.007 (2) Å (Rittenberg et al., 2000). In Fig. 2, the displacements of each atom in (I) from the mean plane of the 24-atom porphyrin macrocycle in units of 0.01 Å is illustrated. The MnIII ion is displaced by 0.158 (5) Å from the 24-atom porphyrin mean plane (PC) which is slightly higher than in the [MnIII(DBHPP)(H2O)]+ (DBHPP = 5,10,15,20-(3,5-di-t-butyl-4-hy­droxy­phenyl)­porphyrinato) species (Mn—PC = 0.122 Å), but smaller than in the [MnIII(TPP)(py)]+ ion complex (Mn—PC = 0.199 Å; Dawe et al., 2005). As can be seen in Fig. 2, the porphyrin core presents (i) high saddle distortions as seen by the displacements of the pyrrole rings alternately above and below the mean porphyrin macrocycle and (ii) a moderate ruffling which is indicated by the high values of the displacements of the meso-C atoms above and below the porphyrin mean plane (Scheidt & Lee, 1987).

In the crystal packing of (I), the manganese porphyrin complex cations and the triflate anions are arranged in alternating planes packed along [001] (Fig. 3). The distance between the C20N4Mn mean planes (porphyrin cores) of two neighbouring [Mn(TPP)H2O)]+ cation complexes is 4.677 Å. The cationic and anionic entities are linked together through two O—H···O hydrogen bonds of medium strength between the aqua ligand and the O atoms of the triflate anion (Table 1, Fig. 3). The crystal packing of (I) is further consolidated by weak C—H···O and C—H···F hydrogen-bonding and C—H···π inter­actions involving the phenyl and pyrrole rings. The values of these inter­actions range between 3.449 (2) Å and 3.676 (3) Å (Table 1, Fig. 4).

A search of the Cambridge Structural Database (CSD, Version 5.31; Groom et al., 2016) revealed (i) eight di­aqua–MnIII metalloporphyrins, e.g. the [MnIII(TPP)(H2O)2]+ cation (Byrn et al., 1993) and (ii) two mono-aqua-=MnIII porphyrins, e.g. the [MnIII(TPP)(H2O)]+ cation (Diskin-Posner et al., 1999) and the [MnIII(DBHPP)(H2O)]+ cation [DBHPP = 5,10,15,20-(3,5-di-t-butyl-4-hy­droxy­phenyl)­porphyrinato; Dawe et al., 2005].

The FT–IR spectrum of (I) (Fig. 5) was recorded in the 4000–400 cm-1 range using a PerkinElmer Spectrum Two FTIR spectrometer. The spectrum presents characteristic vibrational bands of the TPP porphyrinato moiety. The C—H stretching frequencies of the porphyrin molecule are in the range 3060 to 2860 cm-1, the CC and CN stretching frequencies are assigned at 1728 cm-1 and 1654 cm-1, respectively. A strong band attributed to the bending vibration of the CCH moieties of the porphyrin core is centred around 1010 cm-1. The two absorption bands at 3456 cm-1 and 3242 cm-1 are attributed to the anti­symmetric and symmetric OH stretching frequencies of the aqua ligand, while the bending vibration of the same ligand is at 1629 cm-1. The presence of the triflate counter-ion is confirmed by the following absorption bands: a medium–strong band at 1308 cm-1 attributed to the asymmetric stretching frequency of the SO3 group, a strong band at 1231 cm-1 corresponding to the symmetric stretching frequency of the CF3 moiety, a medium–strong band at 1162 cm-1 attributed to νas(CF3), a strong band at 1027 cm-1 corresponding to νs(SO3), a strong band at 633 cm-1 attributed to the bending vibration of the SO3 group and a weak and a medium–strong band at 576 cm-1 and 515 cm-1 corresponding to δas(CF3) and δas(SO3) vibrations, respectively.

Synthesis and crystallization top

To a solution of [MnIII(TPP)Cl] (100 mg, 0.142 mmol) (Cheng & Scheidt, 1996) in chloro­form (10 ml) was added an excess of one equivalent of silver triflate (100 mg, 0.389 mmol). The reaction mixture was stirred at room temperature for 12 h. Crystals of the title complex were obtained by diffusion of hexanes through the chloro­form solution. We assume that water was delivered from the hygroscopic silver triflate salt.

Spectroscopic analysis: UV–vis spectrum in chloro­form : λmax (nm) 386, 474, 570 and 604.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. Carbon-bound hydrogen atoms were placed in calculated positions and refined as riding atoms with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C). The two hydrogen-atom positions of the aqua ligand were discernible from difference maps. However, for the final model these positions were calculated by using the CALC-OH program (Nardelli et al., 1999) and were modelled with fixed isotropic displacement parameters.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The structures of the molecular entities in compound (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms except those of the aqua ligand have been omitted for clarity.
[Figure 2] Fig. 2. Formal diagram of the porphyrinate core illustrating the displacements of each atom from the 24-atoms core plane in units of 0.01 Å.
[Figure 3] Fig. 3. The crystal structure of the title compound in a projection approximately along [100]. H atoms have been omitted.
[Figure 4] Fig. 4. The crystal packing of (I), viewed down [100], showing the weak C—H···O and C—H···F hydrogen bonds and the C—H···π intermolecular interactions.
[Figure 5] Fig. 5. The FT–IR spectrum of (I).
Aqua(5,10,15,20-tetraphenylporphyrinato-κ4N)manganese(III) trifluoromethanesulfonate top
Crystal data top
[Mn(C44H28N4)(H2O)](CF3O3S)Z = 2
Mr = 834.76F(000) = 856
Triclinic, P1Dx = 1.497 Mg m3
a = 11.0909 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.9169 (1) ÅCell parameters from 9884 reflections
c = 13.7931 (1) Åθ = 2.3–25.3°
α = 78.333 (3)°µ = 0.48 mm1
β = 81.162 (4)°T = 296 K
γ = 74.179 (3)°Plate, blue
V = 1851.66 (5) Å30.48 × 0.38 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
5533 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.059
φ and ω scansθmax = 25.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.835, Tmax = 0.862k = 1515
44659 measured reflectionsl = 1616
6753 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: mixed
wR(F2) = 0.086H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0358P)2 + 1.4431P]
where P = (Fo2 + 2Fc2)/3
6753 reflections(Δ/σ)max = 0.001
523 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Mn(C44H28N4)(H2O)](CF3O3S)γ = 74.179 (3)°
Mr = 834.76V = 1851.66 (5) Å3
Triclinic, P1Z = 2
a = 11.0909 (1) ÅMo Kα radiation
b = 12.9169 (1) ŵ = 0.48 mm1
c = 13.7931 (1) ÅT = 296 K
α = 78.333 (3)°0.48 × 0.38 × 0.16 mm
β = 81.162 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
6753 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5533 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.862Rint = 0.059
44659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
6753 reflectionsΔρmin = 0.41 e Å3
523 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.88152 (3)0.04367 (3)0.20851 (2)0.01081 (9)
S1.10820 (5)0.19791 (5)0.42751 (4)0.02139 (14)
F11.00980 (15)0.40991 (12)0.38570 (11)0.0370 (4)
F20.97858 (18)0.33973 (14)0.54012 (12)0.0517 (5)
F31.16153 (17)0.36360 (14)0.47867 (13)0.0528 (5)
N10.84244 (15)0.10052 (14)0.22339 (12)0.0122 (4)
N20.70036 (15)0.11097 (14)0.25129 (13)0.0127 (4)
N30.91427 (15)0.19154 (14)0.17965 (13)0.0126 (4)
N41.04477 (15)0.01412 (14)0.12917 (13)0.0126 (4)
O10.94653 (14)0.00719 (12)0.35015 (11)0.0191 (3)
H1O10.96120.05590.37580.029*
H2O10.91500.03200.39600.029*
O21.16554 (17)0.13077 (15)0.51405 (13)0.0330 (4)
O31.19208 (15)0.20862 (16)0.33828 (13)0.0368 (5)
O40.98825 (15)0.18025 (14)0.41556 (13)0.0263 (4)
C10.92919 (19)0.19910 (17)0.21380 (15)0.0130 (4)
C20.8723 (2)0.28720 (18)0.25639 (16)0.0160 (5)
H20.91160.36130.26170.019*
C30.7507 (2)0.24308 (18)0.28749 (16)0.0159 (5)
H30.69080.28130.31690.019*
C40.73116 (19)0.12714 (17)0.26691 (15)0.0129 (4)
C50.61668 (19)0.05325 (17)0.28771 (15)0.0135 (4)
C60.60387 (19)0.05814 (17)0.27983 (15)0.0139 (4)
C70.49042 (19)0.13390 (18)0.31028 (16)0.0169 (5)
H70.41170.11950.32940.020*
C80.51858 (19)0.23006 (18)0.30619 (16)0.0179 (5)
H80.46340.29340.32380.021*
C90.64944 (19)0.21664 (17)0.26963 (16)0.0147 (4)
C100.71524 (19)0.29641 (17)0.25885 (16)0.0149 (5)
C110.83947 (19)0.28350 (17)0.21575 (15)0.0136 (4)
C120.90644 (19)0.36721 (17)0.19642 (15)0.0152 (5)
H120.87660.43660.21310.018*
C131.0209 (2)0.32687 (17)0.14944 (16)0.0158 (5)
H131.08430.36340.12820.019*
C141.02682 (19)0.21810 (17)0.13828 (15)0.0131 (4)
C151.12767 (19)0.15067 (17)0.08940 (15)0.0133 (4)
C161.13167 (19)0.04401 (17)0.08165 (15)0.0141 (4)
C171.2333 (2)0.02581 (18)0.03017 (16)0.0177 (5)
H171.30160.00560.00970.021*
C181.2119 (2)0.12660 (18)0.05006 (16)0.0178 (5)
H181.26340.18850.02690.021*
C191.09597 (19)0.12092 (17)0.11317 (15)0.0127 (4)
C201.04806 (19)0.21024 (17)0.15937 (15)0.0133 (4)
C210.50146 (19)0.09467 (17)0.32576 (16)0.0136 (4)
C220.4326 (2)0.11748 (18)0.26001 (17)0.0175 (5)
H220.46250.11400.19290.021*
C230.3192 (2)0.14545 (19)0.29440 (18)0.0229 (5)
H230.27290.15970.25010.027*
C240.2747 (2)0.15223 (19)0.39465 (19)0.0252 (6)
H240.19830.17000.41730.030*
C250.3445 (2)0.13248 (19)0.46090 (18)0.0249 (5)
H250.31570.13810.52830.030*
C260.4576 (2)0.10425 (19)0.42650 (17)0.0220 (5)
H260.50450.09160.47120.026*
C270.65225 (19)0.39954 (17)0.29927 (16)0.0166 (5)
C280.5486 (2)0.47481 (17)0.25887 (18)0.0204 (5)
H280.51790.46270.20420.024*
C290.4914 (2)0.56791 (19)0.30047 (19)0.0262 (6)
H290.42190.61770.27370.031*
C300.5363 (2)0.58722 (19)0.38062 (19)0.0277 (6)
H300.49720.64980.40800.033*
C310.6399 (2)0.5135 (2)0.42083 (18)0.0267 (6)
H310.67080.52670.47490.032*
C320.6974 (2)0.41993 (19)0.38034 (17)0.0211 (5)
H320.76680.37040.40760.025*
C331.23923 (19)0.19472 (17)0.04546 (16)0.0143 (4)
C341.2315 (2)0.27465 (18)0.03917 (16)0.0186 (5)
H341.15600.30210.06770.022*
C351.3358 (2)0.31373 (19)0.08132 (16)0.0207 (5)
H351.33050.36610.13880.025*
C361.4477 (2)0.27500 (18)0.03809 (17)0.0201 (5)
H361.51760.30140.06630.024*
C371.4554 (2)0.19683 (19)0.04725 (18)0.0217 (5)
H371.53020.17150.07690.026*
C381.3521 (2)0.15609 (18)0.08875 (17)0.0193 (5)
H381.35810.10290.14560.023*
C391.12663 (19)0.32285 (17)0.15003 (16)0.0144 (5)
C401.1623 (2)0.35598 (18)0.05741 (17)0.0188 (5)
H401.13650.30760.00030.023*
C411.2358 (2)0.46031 (19)0.04959 (18)0.0240 (5)
H411.26080.48080.01280.029*
C421.2722 (2)0.53402 (19)0.13410 (19)0.0240 (5)
H421.32070.60420.12890.029*
C431.2360 (2)0.50259 (19)0.22619 (19)0.0251 (5)
H431.25950.55220.28320.030*
C441.1650 (2)0.39772 (18)0.23441 (17)0.0200 (5)
H441.14280.37710.29680.024*
C451.0622 (3)0.3343 (2)0.45958 (18)0.0303 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.00810 (16)0.01012 (17)0.01448 (17)0.00357 (12)0.00103 (12)0.00258 (12)
S0.0188 (3)0.0274 (3)0.0197 (3)0.0098 (2)0.0019 (2)0.0023 (2)
F10.0468 (9)0.0266 (8)0.0406 (9)0.0118 (7)0.0137 (7)0.0019 (7)
F20.0748 (12)0.0514 (11)0.0325 (9)0.0204 (9)0.0149 (9)0.0241 (8)
F30.0723 (12)0.0507 (11)0.0550 (11)0.0442 (10)0.0334 (9)0.0059 (9)
N10.0103 (9)0.0125 (9)0.0144 (9)0.0038 (7)0.0003 (7)0.0032 (7)
N20.0103 (9)0.0111 (9)0.0177 (9)0.0049 (7)0.0001 (7)0.0024 (7)
N30.0108 (9)0.0115 (9)0.0159 (9)0.0034 (7)0.0002 (7)0.0032 (7)
N40.0102 (8)0.0137 (9)0.0148 (9)0.0049 (7)0.0010 (7)0.0037 (7)
O10.0246 (8)0.0204 (8)0.0165 (8)0.0124 (7)0.0038 (7)0.0019 (6)
O20.0372 (10)0.0343 (11)0.0300 (10)0.0187 (9)0.0115 (8)0.0081 (8)
O30.0204 (9)0.0542 (13)0.0262 (10)0.0013 (8)0.0057 (7)0.0016 (9)
O40.0204 (8)0.0283 (10)0.0358 (10)0.0113 (7)0.0036 (7)0.0106 (8)
C10.0138 (10)0.0115 (11)0.0148 (11)0.0031 (9)0.0032 (8)0.0037 (8)
C20.0162 (11)0.0119 (11)0.0203 (12)0.0037 (9)0.0017 (9)0.0030 (9)
C30.0144 (11)0.0168 (11)0.0186 (11)0.0088 (9)0.0001 (9)0.0024 (9)
C40.0123 (10)0.0151 (11)0.0134 (10)0.0070 (9)0.0002 (8)0.0033 (8)
C50.0127 (10)0.0170 (11)0.0124 (10)0.0060 (9)0.0004 (8)0.0033 (8)
C60.0108 (10)0.0162 (11)0.0152 (11)0.0050 (9)0.0000 (8)0.0029 (9)
C70.0089 (10)0.0189 (12)0.0226 (12)0.0044 (9)0.0001 (9)0.0030 (9)
C80.0106 (10)0.0142 (11)0.0255 (12)0.0008 (9)0.0033 (9)0.0032 (9)
C90.0114 (10)0.0127 (11)0.0190 (11)0.0022 (9)0.0001 (9)0.0030 (9)
C100.0136 (11)0.0119 (11)0.0180 (11)0.0022 (9)0.0013 (9)0.0013 (9)
C110.0141 (11)0.0124 (11)0.0142 (11)0.0034 (9)0.0013 (8)0.0020 (9)
C120.0171 (11)0.0119 (11)0.0167 (11)0.0042 (9)0.0002 (9)0.0029 (9)
C130.0144 (11)0.0150 (11)0.0192 (11)0.0078 (9)0.0001 (9)0.0015 (9)
C140.0118 (10)0.0136 (11)0.0148 (11)0.0056 (8)0.0024 (8)0.0001 (9)
C150.0118 (10)0.0162 (11)0.0124 (10)0.0056 (9)0.0006 (8)0.0010 (9)
C160.0113 (10)0.0169 (11)0.0145 (11)0.0049 (9)0.0006 (8)0.0020 (9)
C170.0121 (10)0.0207 (12)0.0206 (12)0.0069 (9)0.0045 (9)0.0050 (9)
C180.0148 (11)0.0168 (12)0.0218 (12)0.0029 (9)0.0023 (9)0.0079 (9)
C190.0116 (10)0.0143 (11)0.0128 (10)0.0026 (8)0.0019 (8)0.0037 (8)
C200.0119 (10)0.0143 (11)0.0154 (11)0.0025 (9)0.0034 (8)0.0058 (9)
C210.0099 (10)0.0099 (10)0.0205 (11)0.0018 (8)0.0002 (9)0.0035 (9)
C220.0169 (11)0.0176 (12)0.0186 (11)0.0058 (9)0.0036 (9)0.0006 (9)
C230.0166 (11)0.0220 (13)0.0329 (14)0.0087 (10)0.0104 (10)0.0000 (10)
C240.0121 (11)0.0203 (13)0.0407 (15)0.0066 (10)0.0020 (10)0.0006 (11)
C250.0239 (13)0.0257 (13)0.0245 (13)0.0118 (11)0.0111 (10)0.0054 (10)
C260.0236 (12)0.0260 (13)0.0203 (12)0.0119 (10)0.0022 (10)0.0081 (10)
C270.0134 (11)0.0126 (11)0.0238 (12)0.0075 (9)0.0083 (9)0.0049 (9)
C280.0148 (11)0.0130 (11)0.0312 (13)0.0057 (9)0.0047 (10)0.0013 (10)
C290.0170 (12)0.0147 (12)0.0416 (15)0.0040 (10)0.0086 (11)0.0015 (11)
C300.0265 (13)0.0144 (12)0.0402 (15)0.0101 (10)0.0176 (11)0.0091 (11)
C310.0323 (14)0.0251 (13)0.0270 (13)0.0175 (11)0.0115 (11)0.0108 (11)
C320.0187 (12)0.0185 (12)0.0257 (13)0.0078 (10)0.0059 (10)0.0044 (10)
C330.0151 (11)0.0119 (11)0.0170 (11)0.0052 (9)0.0035 (9)0.0064 (9)
C340.0163 (11)0.0230 (12)0.0176 (11)0.0075 (9)0.0007 (9)0.0033 (9)
C350.0241 (12)0.0224 (12)0.0162 (11)0.0113 (10)0.0026 (9)0.0004 (9)
C360.0153 (11)0.0223 (13)0.0248 (12)0.0100 (10)0.0080 (9)0.0092 (10)
C370.0103 (11)0.0241 (13)0.0307 (13)0.0046 (9)0.0001 (10)0.0062 (10)
C380.0165 (11)0.0149 (11)0.0245 (12)0.0044 (9)0.0001 (9)0.0001 (9)
C390.0086 (10)0.0136 (11)0.0228 (12)0.0063 (9)0.0002 (9)0.0040 (9)
C400.0199 (12)0.0176 (12)0.0201 (12)0.0049 (9)0.0045 (9)0.0035 (9)
C410.0223 (12)0.0229 (13)0.0301 (13)0.0052 (10)0.0000 (10)0.0145 (11)
C420.0160 (11)0.0137 (12)0.0412 (15)0.0000 (9)0.0016 (10)0.0079 (11)
C430.0180 (12)0.0193 (13)0.0320 (14)0.0008 (10)0.0023 (10)0.0038 (11)
C440.0156 (11)0.0209 (12)0.0200 (12)0.0015 (9)0.0017 (9)0.0022 (10)
C450.0404 (15)0.0339 (15)0.0239 (13)0.0219 (13)0.0076 (12)0.0013 (11)
Geometric parameters (Å, º) top
Mn—N11.9893 (17)C17—H170.9300
Mn—N31.9912 (17)C18—C191.431 (3)
Mn—N42.0044 (17)C18—H180.9300
Mn—N22.0079 (17)C19—C201.397 (3)
Mn—O12.1057 (15)C20—C391.497 (3)
S—O31.4313 (17)C21—C221.392 (3)
S—O21.4475 (18)C21—C261.392 (3)
S—O41.4482 (16)C22—C231.390 (3)
S—C451.820 (3)C22—H220.9300
F1—C451.342 (3)C23—C241.388 (3)
F2—C451.333 (3)C23—H230.9300
F3—C451.336 (3)C24—C251.385 (3)
N1—C41.386 (3)C24—H240.9300
N1—C11.388 (3)C25—C261.388 (3)
N2—C91.386 (3)C25—H250.9300
N2—C61.388 (3)C26—H260.9300
N3—C111.386 (3)C27—C321.391 (3)
N3—C141.392 (3)C27—C281.395 (3)
N4—C161.387 (3)C28—C291.389 (3)
N4—C191.390 (3)C28—H280.9300
O1—H1O10.8437C29—C301.371 (4)
O1—H2O10.8225C29—H290.9300
C1—C201.399 (3)C30—C311.386 (4)
C1—C21.431 (3)C30—H300.9300
C2—C31.352 (3)C31—C321.386 (3)
C2—H20.9300C31—H310.9300
C3—C41.428 (3)C32—H320.9300
C3—H30.9300C33—C341.390 (3)
C4—C51.394 (3)C33—C381.393 (3)
C5—C61.390 (3)C34—C351.387 (3)
C5—C211.499 (3)C34—H340.9300
C6—C71.432 (3)C35—C361.384 (3)
C7—C81.349 (3)C35—H350.9300
C7—H70.9300C36—C371.384 (3)
C8—C91.437 (3)C36—H360.9300
C8—H80.9300C37—C381.387 (3)
C9—C101.390 (3)C37—H370.9300
C10—C111.394 (3)C38—H380.9300
C10—C271.499 (3)C39—C441.394 (3)
C11—C121.433 (3)C39—C401.395 (3)
C12—C131.351 (3)C40—C411.388 (3)
C12—H120.9300C40—H400.9300
C13—C141.427 (3)C41—C421.384 (3)
C13—H130.9300C41—H410.9300
C14—C151.392 (3)C42—C431.379 (3)
C15—C161.392 (3)C42—H420.9300
C15—C331.495 (3)C43—C441.386 (3)
C16—C171.431 (3)C43—H430.9300
C17—C181.353 (3)C44—H440.9300
N1—Mn—N3174.02 (7)N4—C19—C20125.14 (18)
N1—Mn—N489.12 (7)N4—C19—C18109.24 (18)
N3—Mn—N489.97 (7)C20—C19—C18125.35 (19)
N1—Mn—N289.98 (7)C19—C20—C1122.82 (19)
N3—Mn—N289.29 (7)C19—C20—C39118.81 (18)
N4—Mn—N2164.27 (7)C1—C20—C39118.38 (18)
N1—Mn—O192.84 (6)C22—C21—C26119.10 (19)
N3—Mn—O193.14 (7)C22—C21—C5120.39 (19)
N4—Mn—O198.57 (6)C26—C21—C5120.38 (19)
N2—Mn—O197.16 (7)C23—C22—C21120.1 (2)
O3—S—O2115.56 (11)C23—C22—H22119.9
O3—S—O4115.55 (11)C21—C22—H22119.9
O2—S—O4114.10 (10)C24—C23—C22120.3 (2)
O3—S—C45103.65 (12)C24—C23—H23119.8
O2—S—C45103.18 (11)C22—C23—H23119.8
O4—S—C45102.25 (11)C25—C24—C23119.8 (2)
C4—N1—C1105.76 (16)C25—C24—H24120.1
C4—N1—Mn126.66 (14)C23—C24—H24120.1
C1—N1—Mn126.07 (13)C24—C25—C26119.8 (2)
C9—N2—C6105.76 (16)C24—C25—H25120.1
C9—N2—Mn126.80 (13)C26—C25—H25120.1
C6—N2—Mn127.04 (14)C25—C26—C21120.7 (2)
C11—N3—C14105.63 (16)C25—C26—H26119.6
C11—N3—Mn126.19 (13)C21—C26—H26119.6
C14—N3—Mn126.89 (14)C32—C27—C28119.1 (2)
C16—N4—C19105.98 (16)C32—C27—C10119.0 (2)
C16—N4—Mn126.78 (14)C28—C27—C10121.9 (2)
C19—N4—Mn127.21 (13)C29—C28—C27119.8 (2)
Mn—O1—H1O1121.1C29—C28—H28120.1
Mn—O1—H2O1120.2C27—C28—H28120.1
H1O1—O1—H2O1106.1C30—C29—C28120.7 (2)
N1—C1—C20125.04 (18)C30—C29—H29119.7
N1—C1—C2109.52 (17)C28—C29—H29119.7
C20—C1—C2124.94 (19)C29—C30—C31120.0 (2)
C3—C2—C1107.47 (19)C29—C30—H30120.0
C3—C2—H2126.3C31—C30—H30120.0
C1—C2—H2126.3C30—C31—C32119.9 (2)
C2—C3—C4107.52 (19)C30—C31—H31120.1
C2—C3—H3126.2C32—C31—H31120.1
C4—C3—H3126.2C31—C32—C27120.5 (2)
N1—C4—C5125.91 (19)C31—C32—H32119.7
N1—C4—C3109.65 (18)C27—C32—H32119.7
C5—C4—C3124.44 (19)C34—C33—C38119.23 (19)
C6—C5—C4123.34 (19)C34—C33—C15120.34 (19)
C6—C5—C21117.17 (18)C38—C33—C15120.43 (19)
C4—C5—C21119.42 (18)C35—C34—C33120.4 (2)
N2—C6—C5125.75 (19)C35—C34—H34119.8
N2—C6—C7109.63 (18)C33—C34—H34119.8
C5—C6—C7124.33 (19)C36—C35—C34120.2 (2)
C8—C7—C6107.52 (18)C36—C35—H35119.9
C8—C7—H7126.2C34—C35—H35119.9
C6—C7—H7126.2C37—C36—C35119.8 (2)
C7—C8—C9107.46 (19)C37—C36—H36120.1
C7—C8—H8126.3C35—C36—H36120.1
C9—C8—H8126.3C36—C37—C38120.3 (2)
N2—C9—C10125.64 (18)C36—C37—H37119.8
N2—C9—C8109.51 (18)C38—C37—H37119.8
C10—C9—C8124.8 (2)C37—C38—C33120.1 (2)
C9—C10—C11123.1 (2)C37—C38—H38119.9
C9—C10—C27118.79 (18)C33—C38—H38119.9
C11—C10—C27118.01 (18)C44—C39—C40118.3 (2)
N3—C11—C10125.85 (19)C44—C39—C20120.49 (19)
N3—C11—C12109.62 (17)C40—C39—C20121.18 (19)
C10—C11—C12124.42 (19)C41—C40—C39120.7 (2)
C13—C12—C11107.48 (19)C41—C40—H40119.7
C13—C12—H12126.3C39—C40—H40119.7
C11—C12—H12126.3C42—C41—C40120.3 (2)
C12—C13—C14107.60 (18)C42—C41—H41119.8
C12—C13—H13126.2C40—C41—H41119.8
C14—C13—H13126.2C43—C42—C41119.5 (2)
N3—C14—C15125.19 (19)C43—C42—H42120.3
N3—C14—C13109.66 (18)C41—C42—H42120.3
C15—C14—C13125.08 (19)C42—C43—C44120.5 (2)
C16—C15—C14123.68 (19)C42—C43—H43119.7
C16—C15—C33118.41 (18)C44—C43—H43119.7
C14—C15—C33117.88 (18)C43—C44—C39120.7 (2)
N4—C16—C15125.79 (19)C43—C44—H44119.7
N4—C16—C17109.47 (18)C39—C44—H44119.7
C15—C16—C17124.51 (19)F2—C45—F3107.6 (2)
C18—C17—C16107.46 (18)F2—C45—F1107.3 (2)
C18—C17—H17126.3F3—C45—F1107.1 (2)
C16—C17—H17126.3F2—C45—S111.41 (17)
C17—C18—C19107.71 (19)F3—C45—S111.2 (2)
C17—C18—H18126.1F1—C45—S112.04 (17)
C19—C18—H18126.1
C4—N1—C1—C20169.3 (2)Mn—N4—C19—C207.5 (3)
Mn—N1—C1—C2024.0 (3)C16—N4—C19—C183.5 (2)
C4—N1—C1—C22.9 (2)Mn—N4—C19—C18178.36 (14)
Mn—N1—C1—C2163.78 (14)C17—C18—C19—N41.8 (2)
N1—C1—C2—C32.7 (2)C17—C18—C19—C20172.4 (2)
C20—C1—C2—C3169.5 (2)N4—C19—C20—C112.1 (3)
C1—C2—C3—C41.4 (2)C18—C19—C20—C1174.7 (2)
C1—N1—C4—C5177.8 (2)N4—C19—C20—C39168.24 (19)
Mn—N1—C4—C515.7 (3)C18—C19—C20—C395.0 (3)
C1—N1—C4—C32.1 (2)N1—C1—C20—C194.3 (3)
Mn—N1—C4—C3164.52 (14)C2—C1—C20—C19175.3 (2)
C2—C3—C4—N10.4 (2)N1—C1—C20—C39175.41 (19)
C2—C3—C4—C5179.4 (2)C2—C1—C20—C394.4 (3)
N1—C4—C5—C69.4 (3)C6—C5—C21—C22101.0 (2)
C3—C4—C5—C6170.8 (2)C4—C5—C21—C2282.1 (3)
N1—C4—C5—C21173.97 (19)C6—C5—C21—C2674.9 (3)
C3—C4—C5—C215.8 (3)C4—C5—C21—C26101.9 (2)
C9—N2—C6—C5170.4 (2)C26—C21—C22—C232.4 (3)
Mn—N2—C6—C52.7 (3)C5—C21—C22—C23173.6 (2)
C9—N2—C6—C73.6 (2)C21—C22—C23—C240.8 (3)
Mn—N2—C6—C7176.68 (14)C22—C23—C24—C250.9 (4)
C4—C5—C6—N20.3 (3)C23—C24—C25—C261.1 (4)
C21—C5—C6—N2176.46 (19)C24—C25—C26—C210.5 (4)
C4—C5—C6—C7173.4 (2)C22—C21—C26—C252.2 (3)
C21—C5—C6—C73.3 (3)C5—C21—C26—C25173.8 (2)
N2—C6—C7—C83.5 (3)C9—C10—C27—C32111.9 (2)
C5—C6—C7—C8170.5 (2)C11—C10—C27—C3265.5 (3)
C6—C7—C8—C92.0 (2)C9—C10—C27—C2867.2 (3)
C6—N2—C9—C10175.0 (2)C11—C10—C27—C28115.4 (2)
Mn—N2—C9—C101.9 (3)C32—C27—C28—C290.7 (3)
C6—N2—C9—C82.3 (2)C10—C27—C28—C29178.37 (19)
Mn—N2—C9—C8175.45 (14)C27—C28—C29—C300.5 (3)
C7—C8—C9—N20.2 (3)C28—C29—C30—C310.1 (3)
C7—C8—C9—C10177.2 (2)C29—C30—C31—C320.5 (3)
N2—C9—C10—C118.3 (3)C30—C31—C32—C270.2 (3)
C8—C9—C10—C11174.7 (2)C28—C27—C32—C310.3 (3)
N2—C9—C10—C27168.9 (2)C10—C27—C32—C31178.76 (19)
C8—C9—C10—C278.0 (3)C16—C15—C33—C34109.7 (2)
C14—N3—C11—C10176.3 (2)C14—C15—C33—C3472.0 (3)
Mn—N3—C11—C1016.0 (3)C16—C15—C33—C3870.2 (3)
C14—N3—C11—C120.0 (2)C14—C15—C33—C38108.1 (2)
Mn—N3—C11—C12167.73 (14)C38—C33—C34—C351.4 (3)
C9—C10—C11—N31.0 (3)C15—C33—C34—C35178.5 (2)
C27—C10—C11—N3176.29 (19)C33—C34—C35—C361.4 (3)
C9—C10—C11—C12174.8 (2)C34—C35—C36—C370.2 (3)
C27—C10—C11—C127.9 (3)C35—C36—C37—C380.9 (3)
N3—C11—C12—C130.2 (2)C36—C37—C38—C330.8 (3)
C10—C11—C12—C13176.6 (2)C34—C33—C38—C370.3 (3)
C11—C12—C13—C140.3 (2)C15—C33—C38—C37179.6 (2)
C11—N3—C14—C15177.1 (2)C19—C20—C39—C44118.9 (2)
Mn—N3—C14—C1515.3 (3)C1—C20—C39—C4461.4 (3)
C11—N3—C14—C130.2 (2)C19—C20—C39—C4061.7 (3)
Mn—N3—C14—C13167.42 (14)C1—C20—C39—C40118.0 (2)
C12—C13—C14—N30.3 (2)C44—C39—C40—C411.0 (3)
C12—C13—C14—C15177.0 (2)C20—C39—C40—C41179.56 (19)
N3—C14—C15—C164.6 (3)C39—C40—C41—C421.7 (3)
C13—C14—C15—C16178.6 (2)C40—C41—C42—C430.8 (3)
N3—C14—C15—C33177.27 (18)C41—C42—C43—C440.8 (3)
C13—C14—C15—C330.4 (3)C42—C43—C44—C391.4 (3)
C19—N4—C16—C15170.7 (2)C40—C39—C44—C430.5 (3)
Mn—N4—C16—C157.4 (3)C20—C39—C44—C43178.9 (2)
C19—N4—C16—C174.0 (2)O3—S—C45—F2177.39 (18)
Mn—N4—C16—C17177.90 (14)O2—S—C45—F261.8 (2)
C14—C15—C16—N47.3 (3)O4—S—C45—F256.9 (2)
C33—C15—C16—N4170.85 (19)O3—S—C45—F362.62 (19)
C14—C15—C16—C17178.8 (2)O2—S—C45—F358.23 (19)
C33—C15—C16—C173.1 (3)O4—S—C45—F3176.92 (17)
N4—C16—C17—C183.0 (2)O3—S—C45—F157.18 (19)
C15—C16—C17—C18171.8 (2)O2—S—C45—F1178.03 (17)
C16—C17—C18—C190.7 (2)O4—S—C45—F163.28 (19)
C16—N4—C19—C20170.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3, Cg4, Cg7, Cg9 and Cg11 are the centroids of the N2/C6–C9, N3/C11–C14, N4/C16–C19, Mn/N2/C9–C11/N3, C21–C26 and C33–C38 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O40.841.912.745 (2)171
O1—H2O1···O2i0.821.902.715 (2)171
C7—H7···O3ii0.932.393.170 (3)141
C44—H44···F2i0.932.503.397 (3)162
C23—H23···Cg4ii0.932.853.603 (3)139
C25—H25···Cg2iii0.932.893.650 (3)139
C30—H30···Cg9iv0.932.823.610 (3)144
C37—H37···Cg2v0.932.973.676 (3)133
C40—H40···Cg3vi0.932.623.449 (2)148
C42—H42···Cg11vii0.932.893.631 (3)137
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x, y+1, z; (v) x+1, y, z; (vi) x+2, y, z; (vii) x, y1, z.
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3, Cg4, Cg7, Cg9 and Cg11 are the centroids of the N2/C6–C9, N3/C11–C14, N4/C16–C19, Mn/N2/C9–C11/N3, C21–C26 and C33–C38 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O40.841.912.745 (2)171
O1—H2O1···O2i0.821.902.715 (2)171
C7—H7···O3ii0.932.393.170 (3)141
C44—H44···F2i0.932.503.397 (3)162
C23—H23···Cg4ii0.932.853.603 (3)139
C25—H25···Cg2iii0.932.893.650 (3)139
C30—H30···Cg9iv0.932.823.610 (3)144
C37—H37···Cg2v0.932.973.676 (3)133
C40—H40···Cg3vi0.932.623.449 (2)148
C42—H42···Cg11vii0.932.893.631 (3)137
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y, z; (iii) x+1, y, z+1; (iv) x, y+1, z; (v) x+1, y, z; (vi) x+2, y, z; (vii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Mn(C44H28N4)(H2O)](CF3O3S)
Mr834.76
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)11.0909 (1), 12.9169 (1), 13.7931 (1)
α, β, γ (°)78.333 (3), 81.162 (4), 74.179 (3)
V3)1851.66 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.48 × 0.38 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.835, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
44659, 6753, 5533
Rint0.059
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.086, 1.05
No. of reflections6753
No. of parameters523
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.41

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SIR2004 (Burla et al., 2005), SHELXL2014 (Sheldrick, 2015), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

 

Acknowledgements

The authors gratefully acknowledge financial support from the Ministry of Higher Education and Scientific Research of Tunisia.

References

First citationBernadou, J., Pratviel, G., Bennis, F., Girardet, M. & Meunier, B. (1989). Biochemistry, 28, 7268–7275.  CrossRef CAS PubMed Google Scholar
First citationBoucher, L. J. (1972). Coord. Chem. Rev. 7, 289–329.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationByrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480–9497.  CSD CrossRef CAS Web of Science Google Scholar
First citationCheng, B. & Scheidt, W. R. (1996). Acta Cryst. C52, 361–363.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationDawe, L. N., Miglioi, J., Turnbow, L., Taliaferro, M. L., Shum, W. W., Bagnato, J. D., Zakharov, L. N., Rheingold, A. L., Arif, A. M., Fourmigué, M. & Miller, J. S. (2005). Inorg. Chem. 44, 7530–7539.  CSD CrossRef PubMed CAS Google Scholar
First citationDiskin-Posner, Y., Kumar, R. K. & Goldberg, I. (1999). New J. Chem. 23, 885–890.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFawwaz, R., Bohidiewicz, P., Lavallee, D., Wang, T., Oluwole, S., Newhouse, J. & Alderson, P. (1990). Nucl. Med. Biol. 17, 65–72.  CAS Google Scholar
First citationGodziela, G. M., Tilotta, D. & Goff, H. M. (1986). Inorg. Chem. 25, 2142–2146.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfood, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  CSD CrossRef IUCr Journals Google Scholar
First citationGroves, J. T. & Nemo, T. E. (1983). J. Am. Chem. Soc. 105, 5786–5791.  CrossRef CAS Google Scholar
First citationJanson, T. R., Boucher, L. J. & Katz, J. J. (1973). Inorg. Chem. 12, 940–943.  CrossRef CAS Google Scholar
First citationMeunier, G., Montauzon, D., Bernadou, J., Grassy, G., Bonnfous, M., Cros, S. & Meunier, B. (1988). Mol. Parmacol, 33, 93–102.  CAS Google Scholar
First citationNardelli, M. (1999). J. Appl. Cryst. 32, 563–571.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRittenberg, D. K., Sugiura, K., Arif, A. M., Sakata, Y., Incarvito, C. D., Rheingold, A. L. & Miller, J. S. (2000). Chem. Eur. J. 6, 1811–1819.  CrossRef PubMed CAS Google Scholar
First citationRodriguez, M. & Bard, A. J. (1992). Inorg. Chem. 31, 1129–1135.  CrossRef CAS Google Scholar
First citationScheidt, W. R. & Lee, Y. (1987). Struct. Bonding (Berlin), 64, 1–7.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, P., Gunter, M. J., Hambley, T. W., White, A. H. & Skelton, B. W. (1996). J. Chem. Res. 18, 220–289.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 72| Part 5| May 2016| Pages 720-723
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds