research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of μ-fluorido-bis­­{(η4-cyclo­octa­diene)[hexa­fluorido­anti­monato(V)]platinum(II)} hexa­fluorido­anti­monate(V) hydrogen fluoride 0.75-solvate1

CROSSMARK_Color_square_no_text.svg

aFreie Universität Berlin, Institut für Chemie und Biochemie – Anorganische Chemie, Fabeckstrasse 34-36, D-14195 Berlin, Germany
*Correspondence e-mail: roland.friedemann@fu-berlin.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 27 October 2015; accepted 29 November 2015; online 1 January 2016)

In the complex cation of the binuclear solvated title salt, [Pt2F(SbF6)2(C8H12)2]SbF6·0.75HF, an F atom bridges the two platinum(II) atoms with a bond angle of 123.3 (2)°. The corresponding Pt—F bond lengths are in the range of other fluorine-bridged binuclear platinum(II) complexes. Two of the three SbF6 anions each coordinate with one F atom to one platinum(II) atom. Including the η4-bound cyclo­octa­diene (COD) ligands, the overall coordination sphere of each platinum(II) atom is square-planar. The third SbF6 anion is not bound to the complex. Hydrogen fluoride is present in the crystal structure as a solvent disordered over three positions, each with an occupancy of 0.25. F⋯F distances of 2.5512 (7), 2.6076 (8) and 3.2215 (10) Å to surrounding SbF6 anions are indicative of F—H⋯F hydrogen-bonding inter­actions although no H atoms could be localized for the disordered solvent mol­ecules. The resulting hydrogen-bonded network is three-dimensional.

1. Chemical context

Platinum complexes of cyclic dienes, like cyclo­octa­diene (COD), are widely used in metal-organic chemistry to introduce new ligands by substitution of the diene. For instance, [Pt(CH3)2(COD)] is a commercially available staring material for most of the dimethyl complexes of platinum(II). Methyl ligands in platinum complexes can be protonated in superacids and eliminated as methane qu­anti­tatively. With anhydrous hydrogen fluoride (aHF), one or both methyl groups are protonated and replaced by a fluoride ion, but the resulting products cannot be crystallized because the formed fluoride ion does not sufficiently stabilizes the platinum complexes. With larger counter-anions like BF4, AsF6 or SbF6, stable crystalline complexes can be formed and isolated (Friedemann & Seppelt, 2013[Friedemann, R. & Seppelt, K. (2013). Eur. J. Inorg. Chem. pp. 1197-1206.]).

[Scheme 1]

One methyl group of [Pt(CH3)2(COD)] reacts with aHF at low temperature under formation of methane; the second methyl group can be eliminated by the addition of anti­mony penta­fluoride. The resulting dissolved complex is stable at room temperature and can be crystallized by cooling to 200 K. The formed title compound [Pt2(COD)2F(SbF6)2]SbF6·0.75HF dissolves unreacted only in aHF or aceto­nitrile. With other organic solvents, a reaction takes place to form black undefined oils; with chlorinated solvents chlorido-platinum complexes are formed instead.

2. Structural commentary

Each of the two independent platinum(II) atoms is surrounded by one COD ligand in a double π-coordination, one fluorine atom of a SbF6 anion and one bridging fluorine atom, resulting in a slightly distorted square-planar coordin­ation sphere (Fig. 1[link]). The fluorine atom F19 bridges the two platinum(II) atoms with a bond angle of 123.3 (2)°. The corresponding Pt—F bond lengths [2.085 (4) Å and 2.065 (4) Å] are in the range of other fluorine-bridged binuclear platinum complexes [Pt—F 2.030 (9)–2.083 (10) Å; Friedemann & Seppelt, 2013[Friedemann, R. & Seppelt, K. (2013). Eur. J. Inorg. Chem. pp. 1197-1206.]) and somewhat longer than in non-bridging complexes like [PtF2(PPh3)2] [Pt—F = 1.999 (2) and 2.016 (2) Å; Yahav et al., 2005[Yahav, A., Goldberg, I. & Vigalok, A. (2005). Inorg. Chem. 44, 1547-1553.]). The two PtF2 planes are twisted by 69.8 (3)°. The third SbF6 anion is not bonded to the complex. The COD ligands are bonded much stronger to the platinum(II) atoms than in the starting compound [Pt(CH3)2(COD)] (Smith et al., 2000[Smith, D., Haar, C., Stevens, E., Nolan, S., Marshall, W. J. & Moloy, K. G. (2000). Organometallics, 19, 1427-1433.]). This leads to shorter Pt—C bond lengths by up to 0.1 Å and an elongation of the olefinic bonds. The bite angles of the chelating ligands [88.85 (1)° at Pt1, 89.05 (1)° at Pt2] are close to the ideal 90° of a square-planar Pt2+ complex.

[Figure 1]
Figure 1
The structure of the mol­ecular entities of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen bridges are marked with dashed lines.

3. Supra­molecular features

The [Pt2(COD)2F(SbF6)2] cations and SbF6 anions are packed in such a way that voids are generated that are filled with disordered HF solvent mol­ecules (F21, F221 and F222). The shortest distances of these atoms to fluorine atoms of the surrounding SbF6 anions [F221⋯F18 2.5512 (7), F222⋯F18 2.6076 (8) and F21⋯F5 3.2215 (10) Å] are in the typical range of F—H⋯F donor acceptor distances, marked in Fig. 1[link] with dashed lines. The packing of the mol­ecular entities in the crystal structure is shown in Fig. 2[link].

[Figure 2]
Figure 2
The crystal packing of the title compound in a view along [100].

4. Synthesis and crystallization

[Pt(CH3)2(COD)] (40 mg, 0.12 mmol) and anti­mony(V) fluoride (80 mg, 0.36 mmol) were filled separated in a two chamber PFA tube. Anhydrous HF (0.5 ml) was condensed on it at 77 K. By heating to 200 K and mixing, a gas and a yellow solid were formed. The solid dissolved at room temperature under a second gas formation to a give clear yellow solution. The gas was removed and the sealed tube was slowly cooled to 200 K to form yellow single crystals of the title compound. NMR in aHF at room temperature: 1H d: 2.02 (m, br, 4H), 2.61 (m, br, 4H), 5.73 (s, 4H, 2JH,Pt = 95 Hz). NMR in CD3CN at room temperature: 1H d: 2.44 (m, br, 4H), 2.75 (m, br, 4H), 6.17 (s, 4H, 2JH,Pt = 67 Hz); 19F d: 122 (m, br); 13C{1H} d: 31.4 (s), 109.9 (1JC,Pt = 162 Hz); 195Pt{19F} d: −3424 (s).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atom positions of the COD ligand were refined with calculated positions in a riding model with C—H = 0.97 and 0.98 Å and Uiso(H) = 1.2Ueq(C). Atoms F21, F221 and F222 that are associated with the hydrogen fluoride solvent are disordered and were refined isotropically. Their occupation factors were fixed to 0.25 for each of these atoms which showed the best results in terms of reliability factors and Uiso values. Hydrogen atoms bound to the disordered solvent F atoms could not be detected and were consequently not considered in the final model. Some F atoms of the SbF6 anions exhibited somewhat elongated ellipsoids. Since consideration of a split atom model had a negative effect (parts of these atoms could then only be refined isotropically), all F atoms of the SbF6 anions were not refined as being disordered.

Table 1
Experimental details

Crystal data
Chemical formula [Pt2F(SbF6)2(C8H12)2]SbF6·0.75HF
Mr 1347.77
Crystal system, space group Monoclinic, P21/c
Temperature (K) 133
a, b, c (Å) 11.325 (4), 15.101 (6), 18.273 (7)
β (°) 100.61 (3)
V3) 3071.7 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 11.81
Crystal size (mm) 0.10 × 0.10 × 0.02
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Bruker, 2006[Bruker (2006). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.721, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 47396, 9265, 7778
Rint 0.041
(sin θ/λ)max−1) 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.074, 1.10
No. of reflections 9265
No. of parameters 373
H-atom treatment H-atom parameters constrained
  w = 1/[σ2(Fo2) + (0.0136P)2 + 38.0407P] where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å−3) 1.96, −1.66
Computer programs: SMART and SAINT (Bruker, 2006[Bruker (2006). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

µ-Fluorido-bis{(η4-cyclooctadiene)[hexafluoridoantimonato(V)-κF]platinum(II)} hexafluoridoantimonate(V) hydrogen fluoride 0.75-solvate top
Crystal data top
[Pt2F(SbF6)2(C8H12)2]SbF6·0.75HFF(000) = 2410
Mr = 1347.77Dx = 2.912 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.325 (4) ÅCell parameters from 999 reflections
b = 15.101 (6) Åθ = 2.0–18.3°
c = 18.273 (7) ŵ = 11.81 mm1
β = 100.61 (3)°T = 133 K
V = 3071.7 (19) Å3Platelet, yellow
Z = 40.10 × 0.10 × 0.02 mm
Data collection top
Bruker SMART CCD
diffractometer
7778 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
ω–scansθmax = 30.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1416
Tmin = 0.721, Tmax = 1.000k = 2120
47396 measured reflectionsl = 2525
9265 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0136P)2 + 38.0407P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
9265 reflectionsΔρmax = 1.96 e Å3
373 parametersΔρmin = 1.66 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9589 (6)0.0517 (5)0.5859 (4)0.0249 (14)
H10.96280.04300.53330.030*
C20.8570 (6)0.0145 (4)0.6075 (4)0.0242 (14)
H20.80280.01480.56660.029*
C30.8479 (7)0.0224 (5)0.6843 (5)0.0349 (17)
H3A0.89090.07820.69150.042*
H3B0.76430.03420.68580.042*
C40.8991 (8)0.0407 (5)0.7487 (4)0.0386 (19)
H4A0.85570.03210.78920.046*
H4B0.98270.02600.76690.046*
C50.8901 (6)0.1385 (5)0.7250 (3)0.0256 (15)
H50.84460.17570.75390.031*
C60.9824 (6)0.1840 (5)0.6964 (4)0.0254 (14)
H60.98860.24700.70950.031*
C71.0992 (6)0.1443 (5)0.6800 (5)0.0344 (17)
H7A1.15440.13510.72660.041*
H7B1.13600.18640.65090.041*
C81.0813 (7)0.0558 (6)0.6374 (5)0.0384 (19)
H8A1.14410.04880.60820.046*
H8B1.08810.00740.67280.046*
C90.3954 (6)0.2266 (5)0.4075 (4)0.0285 (15)
H90.33820.18190.41840.034*
C100.4240 (6)0.2919 (5)0.4627 (4)0.0257 (14)
H100.38340.28470.50530.031*
C110.4606 (7)0.3856 (5)0.4498 (4)0.0347 (18)
H11A0.49600.41180.49720.042*
H11B0.38930.41950.42950.042*
C120.5510 (8)0.3930 (5)0.3962 (4)0.0357 (18)
H12A0.50750.39630.34540.043*
H12B0.59720.44710.40680.043*
C130.6370 (7)0.3136 (5)0.4040 (4)0.0287 (15)
H130.72130.32970.42150.034*
C140.6216 (7)0.2364 (5)0.3589 (4)0.0264 (14)
H140.69640.20950.35010.032*
C150.5120 (8)0.2173 (5)0.2990 (4)0.0342 (18)
H15A0.51080.15480.28660.041*
H15B0.51870.25040.25440.041*
C160.3924 (7)0.2421 (5)0.3237 (4)0.0322 (17)
H16A0.37490.30390.31240.039*
H16B0.32800.20710.29530.039*
F10.7470 (3)0.2768 (2)0.6121 (2)0.0244 (8)
F20.7685 (5)0.3520 (3)0.7446 (2)0.0412 (12)
F30.5858 (4)0.3941 (3)0.6383 (3)0.0354 (10)
F40.7378 (4)0.4343 (3)0.5482 (2)0.0342 (10)
F50.9210 (4)0.3940 (3)0.6563 (3)0.0364 (10)
F60.7594 (5)0.5180 (3)0.6819 (3)0.0435 (12)
F70.5383 (6)0.1340 (4)0.5579 (4)0.0685 (18)
F80.3397 (5)0.0409 (6)0.5486 (4)0.095 (3)
F90.5896 (5)0.1039 (5)0.6986 (3)0.081 (2)
F100.5496 (6)0.0282 (3)0.6053 (4)0.0605 (16)
F110.3781 (5)0.1715 (4)0.6448 (3)0.0579 (17)
F120.1200 (5)0.2454 (4)0.8549 (3)0.0576 (16)
F130.0337 (5)0.2311 (3)1.0246 (3)0.0420 (12)
F140.0805 (6)0.1760 (5)0.8855 (3)0.073 (2)
F150.3870 (9)0.0075 (6)0.6950 (6)0.129 (4)
F160.0411 (7)0.3453 (4)0.9112 (4)0.080 (2)
F170.1630 (7)0.3148 (7)0.9912 (4)0.106 (3)
F180.1349 (9)0.1414 (6)0.9699 (5)0.125 (4)
F190.7447 (4)0.1507 (3)0.4971 (2)0.0297 (9)
Pt10.84029 (2)0.15440 (2)0.60610 (2)0.01624 (5)
Pt20.57666 (2)0.20657 (2)0.46502 (2)0.01641 (5)
Sb10.75340 (4)0.40041 (3)0.64879 (2)0.01973 (9)
Sb20.46054 (4)0.06940 (3)0.62808 (2)0.02047 (9)
Sb30.04406 (4)0.23885 (4)0.93973 (3)0.03022 (11)
F210.205 (2)0.1481 (16)0.1844 (13)0.057 (6)*0.25
F2210.194 (3)0.0405 (19)0.0828 (15)0.066 (7)*0.25
F2220.253 (3)0.078 (2)0.0949 (16)0.075 (8)*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.021 (3)0.027 (3)0.027 (3)0.007 (3)0.004 (3)0.003 (3)
C20.025 (3)0.013 (3)0.032 (3)0.006 (2)0.003 (3)0.002 (2)
C30.033 (4)0.021 (4)0.047 (5)0.002 (3)0.001 (3)0.005 (3)
C40.048 (5)0.036 (4)0.030 (4)0.009 (4)0.001 (3)0.008 (3)
C50.032 (4)0.025 (3)0.017 (3)0.008 (3)0.005 (3)0.001 (2)
C60.022 (3)0.026 (3)0.022 (3)0.001 (3)0.010 (3)0.002 (2)
C70.021 (3)0.038 (4)0.040 (4)0.000 (3)0.006 (3)0.006 (3)
C80.022 (4)0.036 (4)0.053 (5)0.012 (3)0.002 (3)0.003 (4)
C90.015 (3)0.026 (4)0.041 (4)0.004 (3)0.003 (3)0.002 (3)
C100.017 (3)0.029 (4)0.030 (3)0.010 (3)0.002 (3)0.000 (3)
C110.039 (4)0.018 (3)0.040 (4)0.010 (3)0.010 (3)0.005 (3)
C120.049 (5)0.019 (3)0.035 (4)0.004 (3)0.005 (3)0.000 (3)
C130.027 (3)0.030 (4)0.030 (3)0.013 (3)0.006 (3)0.003 (3)
C140.027 (3)0.030 (4)0.023 (3)0.006 (3)0.007 (3)0.002 (3)
C150.053 (5)0.029 (4)0.017 (3)0.005 (3)0.003 (3)0.003 (3)
C160.029 (4)0.031 (4)0.029 (3)0.003 (3)0.017 (3)0.003 (3)
F10.0221 (19)0.0154 (18)0.032 (2)0.0032 (14)0.0043 (16)0.0030 (15)
F20.055 (3)0.044 (3)0.023 (2)0.008 (2)0.001 (2)0.0091 (19)
F30.022 (2)0.039 (3)0.046 (3)0.0110 (19)0.0093 (19)0.000 (2)
F40.049 (3)0.028 (2)0.024 (2)0.001 (2)0.0008 (19)0.0047 (17)
F50.020 (2)0.033 (2)0.053 (3)0.0063 (18)0.0014 (19)0.004 (2)
F60.060 (3)0.022 (2)0.043 (3)0.006 (2)0.008 (2)0.0132 (19)
F70.086 (5)0.063 (4)0.066 (4)0.008 (3)0.038 (4)0.037 (3)
F80.031 (3)0.141 (7)0.106 (5)0.006 (4)0.009 (3)0.093 (5)
F90.042 (3)0.129 (6)0.059 (4)0.036 (4)0.025 (3)0.048 (4)
F100.071 (4)0.028 (3)0.085 (4)0.019 (3)0.021 (3)0.005 (3)
F110.041 (3)0.056 (3)0.070 (4)0.027 (3)0.007 (3)0.034 (3)
F120.046 (3)0.089 (4)0.044 (3)0.019 (3)0.025 (2)0.024 (3)
F130.056 (3)0.043 (3)0.031 (2)0.011 (2)0.018 (2)0.004 (2)
F140.058 (4)0.114 (6)0.050 (3)0.052 (4)0.017 (3)0.030 (4)
F150.144 (8)0.127 (7)0.147 (8)0.026 (6)0.108 (7)0.085 (7)
F160.119 (6)0.057 (4)0.081 (5)0.035 (4)0.058 (4)0.030 (3)
F170.077 (5)0.167 (9)0.073 (5)0.064 (5)0.016 (4)0.057 (5)
F180.139 (8)0.137 (8)0.121 (7)0.112 (7)0.082 (6)0.070 (6)
F190.024 (2)0.030 (2)0.027 (2)0.0102 (17)0.0138 (16)0.0027 (17)
Pt10.01400 (10)0.01497 (10)0.01748 (10)0.00341 (8)0.00306 (8)0.00149 (8)
Pt20.01658 (10)0.01574 (10)0.01592 (10)0.00358 (9)0.00038 (8)0.00219 (8)
Sb10.0236 (2)0.01486 (18)0.01871 (18)0.00293 (16)0.00145 (15)0.00242 (14)
Sb20.0211 (2)0.0203 (2)0.02157 (19)0.00094 (16)0.00805 (16)0.00051 (15)
Sb30.0219 (2)0.0445 (3)0.0243 (2)0.0015 (2)0.00422 (17)0.0083 (2)
Geometric parameters (Å, º) top
C1—C21.404 (10)C12—H12B0.9700
C1—C81.527 (10)C13—C141.419 (10)
C1—Pt12.128 (7)C13—Pt22.146 (7)
C1—H10.9800C13—H130.9800
C2—C31.530 (11)C14—C151.523 (10)
C2—Pt12.121 (6)C14—Pt22.141 (7)
C2—H20.9800C14—H140.9800
C3—C41.541 (11)C15—C161.551 (12)
C3—H3A0.9700C15—H15A0.9700
C3—H3B0.9700C15—H15B0.9700
C4—C51.537 (10)C16—H16A0.9700
C4—H4A0.9700C16—H16B0.9700
C4—H4B0.9700F1—Sb11.980 (4)
C5—C61.428 (11)F1—Pt12.142 (4)
C5—Pt12.155 (6)F2—Sb11.876 (4)
C5—H50.9800F3—Sb11.874 (4)
C6—C71.532 (11)F4—Sb11.885 (4)
C6—Pt12.130 (6)F5—Sb11.880 (4)
C6—H60.9800F6—Sb11.873 (4)
C7—C81.540 (11)F7—Sb21.946 (5)
C7—H7A0.9700F7—Pt22.132 (5)
C7—H7B0.9700F8—Sb21.854 (5)
C8—H8A0.9700F9—Sb21.837 (5)
C8—H8B0.9700F10—Sb21.876 (5)
C9—C101.406 (10)F11—Sb21.856 (5)
C9—C161.543 (11)F12—Sb31.909 (5)
C9—Pt22.148 (6)F13—Sb31.923 (5)
C9—H90.9800F14—Sb31.833 (5)
C10—C111.505 (10)F15—Sb21.855 (6)
C10—Pt22.150 (6)F16—Sb31.898 (6)
C10—H100.9800F17—Sb31.883 (6)
C11—C121.546 (12)F18—Sb31.823 (7)
C11—H11A0.9700F19—Pt22.065 (4)
C11—H11B0.9700F19—Pt12.085 (4)
C12—C131.534 (11)F221—F2220.87 (3)
C12—H12A0.9700
C2—C1—C8122.9 (7)C14—C15—H15B109.1
C2—C1—Pt170.4 (4)C16—C15—H15B109.1
C8—C1—Pt1113.2 (5)H15A—C15—H15B107.8
C2—C1—H1114.2C9—C16—C15113.1 (5)
C8—C1—H1114.2C9—C16—H16A109.0
Pt1—C1—H1114.2C15—C16—H16A109.0
C1—C2—C3126.9 (6)C9—C16—H16B109.0
C1—C2—Pt171.0 (4)C15—C16—H16B109.0
C3—C2—Pt1110.6 (5)H16A—C16—H16B107.8
C1—C2—H2113.4Sb1—F1—Pt1147.47 (19)
C3—C2—H2113.4Sb2—F7—Pt2165.0 (4)
Pt1—C2—H2113.4Pt2—F19—Pt1123.3 (2)
C2—C3—C4113.3 (6)F19—Pt1—C290.8 (2)
C2—C3—H3A108.9F19—Pt1—C192.8 (2)
C4—C3—H3A108.9C2—Pt1—C138.6 (3)
C2—C3—H3B108.9F19—Pt1—C6158.6 (2)
C4—C3—H3B108.9C2—Pt1—C698.4 (3)
H3A—C3—H3B107.7C1—Pt1—C682.9 (3)
C5—C4—C3112.5 (6)F19—Pt1—F184.12 (15)
C5—C4—H4A109.1C2—Pt1—F1154.5 (2)
C3—C4—H4A109.1C1—Pt1—F1166.2 (2)
C5—C4—H4B109.1C6—Pt1—F195.1 (2)
C3—C4—H4B109.1F19—Pt1—C5162.5 (2)
H4A—C4—H4B107.8C2—Pt1—C582.6 (3)
C6—C5—C4123.3 (7)C1—Pt1—C592.1 (3)
C6—C5—Pt169.6 (4)C6—Pt1—C538.9 (3)
C4—C5—Pt1112.5 (5)F1—Pt1—C594.8 (2)
C6—C5—H5114.4F19—Pt2—F782.9 (2)
C4—C5—H5114.4F19—Pt2—C1489.0 (2)
Pt1—C5—H5114.4F7—Pt2—C14161.2 (3)
C5—C6—C7126.9 (6)F19—Pt2—C1395.2 (2)
C5—C6—Pt171.5 (4)F7—Pt2—C13158.8 (3)
C7—C6—Pt1108.8 (5)C14—Pt2—C1338.7 (3)
C5—C6—H6113.7F19—Pt2—C9160.7 (2)
C7—C6—H6113.7F7—Pt2—C998.4 (3)
Pt1—C6—H6113.7C14—Pt2—C983.8 (3)
C6—C7—C8113.6 (6)C13—Pt2—C990.4 (3)
C6—C7—H7A108.8F19—Pt2—C10161.0 (2)
C8—C7—H7A108.8F7—Pt2—C1092.5 (3)
C6—C7—H7B108.8C14—Pt2—C10100.4 (3)
C8—C7—H7B108.8C13—Pt2—C1082.5 (3)
H7A—C7—H7B107.7C9—Pt2—C1038.2 (3)
C1—C8—C7111.6 (6)F6—Sb1—F393.2 (2)
C1—C8—H8A109.3F6—Sb1—F294.4 (2)
C7—C8—H8A109.3F3—Sb1—F289.5 (2)
C1—C8—H8B109.3F6—Sb1—F592.8 (2)
C7—C8—H8B109.3F3—Sb1—F5173.9 (2)
H8A—C8—H8B108.0F2—Sb1—F589.7 (2)
C10—C9—C16124.4 (7)F6—Sb1—F492.8 (2)
C10—C9—Pt271.0 (4)F3—Sb1—F490.2 (2)
C16—C9—Pt2110.5 (5)F2—Sb1—F4172.8 (2)
C10—C9—H9114.3F5—Sb1—F489.9 (2)
C16—C9—H9114.3F6—Sb1—F1179.1 (2)
Pt2—C9—H9114.3F3—Sb1—F186.80 (18)
C9—C10—C11125.5 (7)F2—Sb1—F186.54 (19)
C9—C10—Pt270.8 (4)F5—Sb1—F187.16 (18)
C11—C10—Pt2108.9 (5)F4—Sb1—F186.27 (18)
C9—C10—H10114.3F9—Sb2—F8173.1 (4)
C11—C10—H10114.3F9—Sb2—F1594.4 (5)
Pt2—C10—H10114.3F8—Sb2—F1592.5 (5)
C10—C11—C12113.6 (6)F9—Sb2—F1190.5 (3)
C10—C11—H11A108.8F8—Sb2—F1190.0 (3)
C12—C11—H11A108.8F15—Sb2—F1190.6 (4)
C10—C11—H11B108.8F9—Sb2—F1089.3 (3)
C12—C11—H11B108.8F8—Sb2—F1089.6 (3)
H11A—C11—H11B107.7F15—Sb2—F1094.3 (4)
C13—C12—C11111.6 (6)F11—Sb2—F10175.1 (3)
C13—C12—H12A109.3F9—Sb2—F785.5 (3)
C11—C12—H12A109.3F8—Sb2—F787.6 (4)
C13—C12—H12B109.3F15—Sb2—F7179.7 (4)
C11—C12—H12B109.3F11—Sb2—F789.7 (3)
H12A—C12—H12B108.0F10—Sb2—F785.4 (3)
C14—C13—C12125.4 (6)F18—Sb3—F1494.6 (5)
C14—C13—Pt270.5 (4)F18—Sb3—F1791.6 (5)
C12—C13—Pt2112.3 (5)F14—Sb3—F17173.7 (4)
C14—C13—H13113.6F18—Sb3—F16176.0 (5)
C12—C13—H13113.6F14—Sb3—F1689.4 (4)
Pt2—C13—H13113.6F17—Sb3—F1684.4 (4)
C13—C14—C15124.7 (7)F18—Sb3—F1288.5 (3)
C13—C14—Pt270.8 (4)F14—Sb3—F1290.3 (2)
C15—C14—Pt2108.3 (5)F17—Sb3—F1289.2 (3)
C13—C14—H14114.7F16—Sb3—F1290.9 (3)
C15—C14—H14114.7F18—Sb3—F1391.3 (3)
Pt2—C14—H14114.7F14—Sb3—F1389.0 (2)
C14—C15—C16112.6 (6)F17—Sb3—F1391.5 (3)
C14—C15—H15A109.1F16—Sb3—F1389.3 (2)
C16—C15—H15A109.1F12—Sb3—F13179.3 (2)
 

Footnotes

1For JANA to the first anniversary of our wedding.

Acknowledgements

This work was supported by the graduate school `Fluorine as a Key Element' funded by the Deutsche Forschungsgemeinschaft.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFriedemann, R. & Seppelt, K. (2013). Eur. J. Inorg. Chem. pp. 1197–1206.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, D., Haar, C., Stevens, E., Nolan, S., Marshall, W. J. & Moloy, K. G. (2000). Organometallics, 19, 1427–1433.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYahav, A., Goldberg, I. & Vigalok, A. (2005). Inorg. Chem. 44, 1547–1553.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds