research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 813-815

Crystal structure of alluaudite-type NaMg3(HPO4)2(PO4)

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, and bLaboratoire des Matériaux Céramiques et Procédés Associés, EA2443, Université de Valenciennes et du Hainaut-Cambrésis, Boulevard Charles de Gaulle, BP 59600, Maubeuge, France
*Correspondence e-mail: a_ouldsaleck@yahoo.fr

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 June 2015; accepted 15 June 2015; online 20 June 2015)

The title compound, sodium trimagnesium bis­(hydrogen phosphate) phosphate, was obtained under hydro­thermal conditions. In the crystal, two types of [MgO6] octa­hedra, one with point group symmetry 2, share edges to build chains extending parallel to [10-1]. These chains are linked together by two kinds of phosphate tetra­hedra, HPO4 and PO4, the latter with point group symmetry 2. The three-dimensional framework delimits two different types of channels extending along [001]. One channel hosts the Na+ cations (site symmetry 2) surrounded by eight O atoms, with Na—O bond lengths varying between 2.2974 (13) and 2.922 (2) Å. The OH group of the HPO4 tetra­hedron points into the other type of channel and exhibits a strong hydrogen bond to an O atom of the PO4 tetra­hedron on the opposite side.

1. Chemical context

By means of hydro­thermal processes (Demazeau, 2008[Demazeau, G. (2008). J. Mater. Sci. 43, 2104-2114.]; Yoshimura & Byrappa, 2008[Yoshimura, M. & Byrappa, K. (2008). J. Mater. Sci. 43, 2085-2103.]), we have previously succeeded in the isolation of the mixed-valence manganese phosphates MMnII2MnIII(PO4)3 (M = Ba, Pb, Sr) adopting the α-CrPO4 structure type (Assani et al., 2013[Assani, A., Saadi, M., Alhakmi, G., Houmadi, E. & El Ammari, L. (2013). Acta Cryst. E69, i60.]; Alhakmi et al., 2013a[Alhakmi, G., Assani, A., Saadi, M. & El Ammari, L. (2013a). Acta Cryst. E69, i40.],b[Alhakmi, G., Assani, A., Saadi, M., Follet, C. & El Ammari, L. (2013b). Acta Cryst. E69, i56.]). In addition, within the pseudo-ternary systems Ag2O–MO–P2O5, hydro­thermal syntheses have allowed us to obtain other α-CrPO4 isotype phosphates, viz. Ag2M3(HPO4)(PO4)2 (M = Co, Ni) while AgMg3(HPO4)2(PO4) is found to adopt the alluaudite structure type (Assani et al., 2011a[Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011a). Acta Cryst. E67, i41.],b[Assani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011b). Acta Cryst. E67, i40.],c[Assani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011c). Acta Cryst. E67, i5.]). Other hydro­thermally grown phosphates with the alluaudite structure include AgCo3(HPO4)2(PO4) (Guesmi & Driss, 2002[Guesmi, A. & Driss, A. (2002). Acta Cryst. C58, i16-i17.]), AgNi3(HPO4)2(PO4) (Ben Smail & Jouini, 2002[Ben Smail, R. & Jouini, T. (2002). Acta Cryst. C58, i61-i62.]), AMn3(HPO4)2(PO4) (A = Na, Ag) (Leroux et al., 1995a[Leroux, F., Mar, A., Guyomard, D. & Piffard, Y. (1995a). J. Solid State Chem. 117, 206-212.],b[Leroux, F., Mar, A., Payen, C., Guyomard, D., Verbaere, A. & Piffard, Y. (1995b). J. Solid State Chem. 115, 240-246.]) and NaCo3(HPO4)2(PO4) (Lii & Shih, 1994[Lii, K.-H. & Shih, P.-F. (1994). Inorg. Chem. 33, 3028-3031.]). Phosphates belonging to either the α-CrPO4 or alluaudite structure type or derivatives thereof are still in the focus of research owing to their promising applications as battery materials (Trad et al., 2010[Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554-5562.]; Essehli et al., 2015a[Essehli, R., Belharouak, I., Ben Yahia, H., Chamoun, R., Orayech, B., El Bali, B., Bouziane, K., Zhoue, X. L. & Zhoue, Z. (2015b). Dalton Trans. 44, 4526-4532.],b[Essehli, R., Belharouak, I., Ben Yahia, H., Maher, K., Abouimrane, A., Orayech, B., Calder, S., Zhou, X. L., Zhou, Z. & Sun, Y.-K. (2015a). Dalton Trans 44, 7881-7886.]; Huang et al., 2015[Huang, W., Li, B., Saleem, M. F., Wu, X., Li, J., Lin, J., Xia, D., Chu, W. & Wu, Z. (2015). Chem. Eur. J. 21, 851-860.]).

The crystal structures of alluaudite-type phosphates exhibit channels in which the monovalent cations are localized. Indeed, this is strongly required for conductivity properties. The crystal structure of alluaudite can be formulated by the general formula (A1)(A2)(M1)(M2)2(PO4)3, (Moore & Ito, 1979[Moore, P. B. & Ito, J. (1979). Mineral. Mag. 43, 227-35.]). The two A sites can be occupied by either mono- or divalent medium-sized cations while the two M cationic sites correspond to an octa­hedral environment generally occupied by transition metal cations. On the basis of literature research, it has been shown that the hydro­thermal process allows, in general, stoechiometric phases to be obtained while solid-state reactions give rather a statistical distribution of cations on either the A or M sites, leading to non-stoechiometric compounds (Bouraima et al., 2015[Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558-560.]; Khmiyas et al., 2015[Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690-692.]).

In line with our focus of inter­est, we hydro­thermally synthesized the compound NaMg3(PO4)(HPO4)2 and report here its crystal structure.

2. Structural commentary

The principal building units of the allaudite structure of the title compound are represented in Fig. 1[link]. The three atoms Mg1, Na1 and P1 are located on a twofold rotation axis (Wyckoff position 4e). Selected inter­atomic distances are compiled in Table 1[link]. The three-dimensional framework of this structure consists of kinked chains of edge-sharing MgO6 octa­hedra running parallel to [10[\overline{1}]]. The chains are held together by regular P1O4 phosphate groups, forming sheets perpendicular to [010], as shown in Fig. 2[link]. The stacked sheets delimit two types of channels along [001]. One of the channels is occupied by Na+ cations surrounded by eight oxygen atoms (Table 1[link]), whereas the second channel contains the hydrogen atoms of the HP2O4 tetra­hedra, as shown in Fig. 3[link]. They form strong hydrogen bonds (Table 2[link], Figs. 1[link] and 3[link]) with one of the oxygen atoms of PO4 tetra­hedra on opposite sides.

Table 1
Selected bond lengths (Å)

Mg1—O3i 2.1224 (13) Na1—O3 2.8840 (19)
Mg1—O1ii 2.1312 (12) Na1—O1vii 2.922 (2)
Mg1—O4 2.1669 (14) P1—O1viii 1.5372 (12)
Mg2—O6 2.0234 (13) P1—O1 1.5372 (12)
Mg2—O3ii 2.0686 (13) P1—O2viii 1.5476 (13)
Mg2—O2 2.0696 (14) P1—O2 1.5476 (13)
Mg2—O5iii 2.0729 (13) P2—O5 1.5234 (12)
Mg2—O5iv 2.0955 (13) P2—O6 1.5263 (12)
Mg2—O1v 2.1153 (14) P2—O3 1.5349 (13)
Na1—O6 2.2974 (13) P2—O4 1.5806 (13)
Na1—O6vi 2.4386 (13)    
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+1, z+{\script{1\over 2}}]; (v) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (vi) -x+1, -y+1, -z+1; (vii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (viii) [-x, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O2 0.93 1.57 2.4932 (17) 174
[Figure 1]
Figure 1
The principal building units in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are indicated by dashed lines [Symmetry codes: (i) x + [{1\over 2}], y + [{1\over 2}], z; (ii) −x + [{3\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (iii) −x + [{3\over 2}], −y + [{3\over 2}], −z + 1; (iv) −x + [{3\over 2}], −y + [{3\over 2}], −z; (v) −x + 1, −y + 1, −z; (vi) −x + 1, y, −z + [{1\over 2}]; (vii) x, −y + 1, z + [{1\over 2}]; (viii) x − [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (ix) −x + 2, y, −z + [{3\over 2}]; (x) −x + 2, −y + 1, −z + 1; (xi) x + [{1\over 2}], −y + [{1\over 2}], z + [{1\over 2}]; (xii) −x + [{3\over 2}], −y + [{1\over 2}], −z + 1; (xiii) x, −y + 1, z − [{1\over 2}].]
[Figure 2]
Figure 2
A sheet resulting from the linkage of kinked chains via vertices of PO4 tetra­hedra.
[Figure 3]
Figure 3
Polyhedral representation of the NaMg3(HPO4)2(PO4) structure showing channels along [001]. The O—H⋯O hydrogen bonds are indicated by dashed lines.

3. Synthesis and crystallization

Colourless parallelepiped-shaped crystals of the title compound were grown under hydro­thermal conditions, starting from a mixture of Na4P2O7·10H2O, MgO and H3PO4 (85 wt%) in the molar ratio Na4P2O7·10H2O:MgO:H3PO4 = 1:3:3. The hydro­thermal reaction was conducted in a 23 ml Teflon-lined autoclave, filled to 50% with distilled water and under autogenous pressure at 483 K for four days.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The minimum and maximum electron densities are located 0.71 and 0.17 Å from O5 and H4, respectively. The O–bound H atom was initially located in a difference map and refined with an O—H distance restraint of 0.93 Å, and with Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula NaMg3(HPO4)2(PO4)
Mr 382.85
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 11.8064 (6), 12.0625 (7), 6.4969 (4)
β (°) 113.805 (2)
V3) 846.54 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.06
Crystal size (mm) 0.36 × 0.24 × 0.18
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.504, 0.748
No. of measured, independent and observed [I > 2σ(I)] reflections 9797, 1291, 1138
Rint 0.038
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.072, 1.09
No. of reflections 1291
No. of parameters 88
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.57, −0.54
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]). DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

By means of hydro­thermal processes (Demazeau, 2008; Yoshimura & Byrappa, 2008), we have previously succeeded in the isolation of the mixed-valence manganese phosphates MMnII2MnIII(PO4)3 (M = Ba, Pb, Sr) adopting the α-CrPO4 structure type (Assani et al., 2013; Alhakmi et al., 2013a,b). In addition, within the pseudo-ternary systems Ag2O–MO–P2O5, hydro­thermal syntheses have allowed us to obtain other α-CrPO4 isotype phosphates, viz. Ag2M3(HPO4)(PO4)2 (M = Co, Ni) while AgMg3(PO4)(HPO4)2 is found to adopt the alluaudite structure type (Assani et al., 2011a,b,c). Other hydro­thermally grown phosphates with the alluaudite structure include AgCo3(HPO4)2(PO4) (Guesmi & Driss, 2002), AgNi3(HPO4)2(PO4) (Ben Smail & Jouini, 2002), AMn3(HPO4)2(PO4) (A = Na, Ag) (Leroux et al., 1995a,b) and NaCo3(HPO4)2(PO4) (Lii & Shih, 1994). Phosphates belonging to either the α-CrPO4 or alluaudite structure type or derivatives thereof are still in the focus of research owing to their promising applications as battery materials (Trad et al., 2010; Essehli et al., 2015a,b; Huang et al., 2015).

The crystal structures of alluaudite-type phosphates exhibit channels in which the monovalent cations are localized. Indeed, this is strongly required for conductivity properties. The crystal structure of alluaudite can be formulated by the general formula (A1)(A2)(M1)(M2)2(PO4)3, (Moore & Ito, 1979). The two A sites can be occupied by either mono- or divalent medium-sized cations while the two M cationic sites correspond to an o­cta­hedral environment generally occupied by transition metal cations. On the basis of literature research, it has been shown that the hydro­thermal process allows, in general, stoechiometric phases to be obtained while solid-state reactions give rather a statistical distribution of cations on either the A or M sites, leading to non-stoechiometric compounds (Bouraima et al., 2015; Khmiyas et al., 2015).

In line with our focus of inter­est, we hydro­thermally synthesized the compound NaMg3(PO4)(HPO4)2 and report here its crystal structure.

Structural commentary top

The principal building units of the allaudite structure of the title compound are represented in Fig. 1. The three atoms Mg1, Na1 and P1 are located on a twofold rotation axis (Wyckoff position 4e). Selected inter­atomic distances are compiled in Table 1. The three-dimensional framework of this structure consists of kinked chains of edge-sharing MgO6 o­cta­hedra running parallel to [101]. The chains are held together by regular P1O4 phosphate groups, forming sheets perpendicular to [010], as shown in Fig. 2. The stacked sheets delimit two types of channels along [001]. One of the channels is occupied by Na+ cations surrounded by eight oxygen atoms (Table 1), whereas the second channel contains the hydrogen atoms of the HPO4 tetra­hedra, as shown in Fig. 3. They form strong hydrogen bonds (Table 2, Figs. 1 and 3) with one of the oxygen atoms of PO4 tetra­hedra on opposite sides.

Synthesis and crystallization top

Colourless parallelepiped-shaped crystals of the title compound were grown under hydro­thermal conditions, starting from a mixture of Na4P2O7·10H2O, MgO and H3PO4 (85 wt%) in the molar ratio Na4P2O7·10H2O:MgO:H3PO4 = 1:3:3. The hydro­thermal reaction was conducted in a 23 ml Teflon-lined autoclave, filled to 50% with distilled water and under autogenous pressure at 483 K for four days.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. The minimum and maximum electron densities are located 0.71 and 0.17 Å from O5 and H4, respectively. The O–bound H atom was initially located in a difference map and refined with an O—H distance restraint of 0.93 Å, and with Uiso(H) = 1.5Ueq(O).

Related literature top

For related literature, see: Alhakmi et al. (2013a, 2013b); Assani et al. (2011a, 2011b, 2011c, 2013); Ben & Jouini (2002); Bouraima et al. (2015); Demazeau (2008); Essehli et al. (2015a, 2015b); Guesmi & Driss (2002); Huang et al. (2015); Khmiyas et al. (2015); Lii & Shih (1994); Leroux et al. (1995a, 1995b); Moore & Ito (1979); Trad et al. (2010); Yoshimura & Byrappa (2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The principal building units in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are indicated by dashed lines [Symmetry codes: (i) x + 1/2, y + 1/2, z; (ii) -x + 3/2, y + 1/2, -z + 1/2; (iii) -x + 3/2, -y + 3/2, -z + 1; (iv) -x + 3/2, -y + 3/2, -z; (v) -x + 1, -y + 1, -z; (vi) -x + 1, y, -z + 1/2; (vii) x, -y + 1, z + 1/2; (viii) x - 1/2, -y + 3/2, z - 1/2; (ix) -x + 2, y, -z + 3/2; (x) -x + 2, -y + 1, -z + 1; (xi) x + 1/2, -y + 1/2, z + 1/2; (xii) -x + 3/2, -y + 1/2, -z + 1; (xiii) x, -y + 1, z - 1/2.]
[Figure 2] Fig. 2. A sheet resulting from the linkage of kinked chains via vertices of PO4 tetrahedra.
[Figure 3] Fig. 3. Polyhedral representation of the NaMg3(HPO4)2(PO4) structure showing channels along [001]. The O—H···O hydrogen bonds are indicated by dashed lines.
Sodium trimagnesium bis(hydrogen phosphate) phosphate top
Crystal data top
NaMg3(HPO4)2(PO4)F(000) = 760
Mr = 382.85Dx = 3.004 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.8064 (6) ÅCell parameters from 1291 reflections
b = 12.0625 (7) Åθ = 2.5–30.5°
c = 6.4969 (4) ŵ = 1.06 mm1
β = 113.805 (2)°T = 296 K
V = 846.54 (8) Å3Block, colourless
Z = 40.36 × 0.24 × 0.18 mm
Data collection top
Bruker X8 APEX
diffractometer
1291 independent reflections
Radiation source: fine-focus sealed tube1138 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 30.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.504, Tmax = 0.748k = 1717
9797 measured reflectionsl = 98
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0362P)2 + 1.4203P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1291 reflectionsΔρmax = 0.57 e Å3
88 parametersΔρmin = 0.54 e Å3
Crystal data top
NaMg3(HPO4)2(PO4)V = 846.54 (8) Å3
Mr = 382.85Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.8064 (6) ŵ = 1.06 mm1
b = 12.0625 (7) ÅT = 296 K
c = 6.4969 (4) Å0.36 × 0.24 × 0.18 mm
β = 113.805 (2)°
Data collection top
Bruker X8 APEX
diffractometer
1291 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1138 reflections with I > 2σ(I)
Tmin = 0.504, Tmax = 0.748Rint = 0.038
9797 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.09Δρmax = 0.57 e Å3
1291 reflectionsΔρmin = 0.54 e Å3
88 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.00000.27947 (7)0.25000.00857 (18)
Mg20.29000 (6)0.66219 (5)0.37489 (10)0.00643 (14)
Na10.50000.52321 (14)0.75000.0308 (4)
P10.00000.68659 (5)0.25000.00564 (14)
P20.28093 (4)0.38887 (3)0.38603 (7)0.00494 (11)
O10.03662 (11)0.75858 (10)0.4624 (2)0.0078 (2)
O20.10795 (12)0.61003 (10)0.2634 (2)0.0084 (2)
O30.34567 (12)0.32859 (10)0.6116 (2)0.0073 (2)
O40.14051 (11)0.40754 (10)0.3420 (2)0.0085 (2)
H40.12410.48160.30330.013*
O50.28443 (11)0.32046 (10)0.1916 (2)0.0068 (2)
O60.34273 (12)0.50140 (10)0.4000 (2)0.0076 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0081 (4)0.0088 (4)0.0094 (4)0.0000.0041 (3)0.000
Mg20.0073 (3)0.0057 (3)0.0067 (3)0.0004 (2)0.0031 (2)0.0001 (2)
Na10.0118 (6)0.0691 (11)0.0091 (6)0.0000.0016 (5)0.000
P10.0051 (3)0.0063 (3)0.0044 (3)0.0000.0007 (2)0.000
P20.0060 (2)0.00431 (19)0.0043 (2)0.00006 (14)0.00177 (16)0.00011 (14)
O10.0063 (6)0.0110 (5)0.0054 (5)0.0010 (4)0.0014 (5)0.0022 (4)
O20.0060 (6)0.0073 (5)0.0114 (6)0.0010 (4)0.0031 (5)0.0007 (4)
O30.0086 (6)0.0080 (5)0.0049 (5)0.0020 (4)0.0024 (5)0.0016 (4)
O40.0073 (6)0.0058 (5)0.0131 (6)0.0009 (4)0.0048 (5)0.0004 (5)
O50.0077 (6)0.0077 (5)0.0052 (5)0.0003 (4)0.0028 (5)0.0009 (4)
O60.0083 (6)0.0051 (5)0.0093 (6)0.0014 (4)0.0035 (5)0.0002 (4)
Geometric parameters (Å, º) top
Mg1—O3i2.1224 (13)Na1—O6x2.4386 (13)
Mg1—O3ii2.1224 (13)Na1—O32.8840 (19)
Mg1—O1iii2.1312 (12)Na1—O3ix2.8840 (19)
Mg1—O1iv2.1312 (12)Na1—O1xi2.922 (2)
Mg1—O4v2.1669 (14)Na1—O1viii2.922 (2)
Mg1—O42.1669 (14)P1—O1v1.5372 (12)
Mg2—O62.0234 (13)P1—O11.5372 (12)
Mg2—O3iii2.0686 (13)P1—O2v1.5476 (13)
Mg2—O22.0696 (14)P1—O21.5476 (13)
Mg2—O5vi2.0729 (13)P2—O51.5234 (12)
Mg2—O5vii2.0955 (13)P2—O61.5263 (12)
Mg2—O1viii2.1153 (14)P2—O31.5349 (13)
Na1—O62.2974 (13)P2—O41.5806 (13)
Na1—O6ix2.2974 (13)O4—H40.9269
Na1—O6vii2.4386 (13)
O3i—Mg1—O3ii104.23 (8)O6vii—Na1—O6x166.01 (10)
O3i—Mg1—O1iii86.53 (5)O6—Na1—O356.06 (5)
O3ii—Mg1—O1iii78.23 (5)O6ix—Na1—O3111.84 (7)
O3i—Mg1—O1iv78.23 (5)O6vii—Na1—O362.51 (5)
O3ii—Mg1—O1iv86.53 (5)O6x—Na1—O3105.27 (6)
O1iii—Mg1—O1iv155.13 (8)O6—Na1—O3ix111.84 (7)
O3i—Mg1—O4v83.70 (5)O6ix—Na1—O3ix56.06 (5)
O3ii—Mg1—O4v170.20 (5)O6vii—Na1—O3ix105.27 (6)
O1iii—Mg1—O4v108.38 (5)O6x—Na1—O3ix62.51 (5)
O1iv—Mg1—O4v89.53 (5)O3—Na1—O3ix71.02 (6)
O3i—Mg1—O4170.20 (5)O6—Na1—O1xi118.48 (6)
O3ii—Mg1—O483.70 (5)O6ix—Na1—O1xi74.30 (5)
O1iii—Mg1—O489.53 (5)O6vii—Na1—O1xi84.97 (5)
O1iv—Mg1—O4108.38 (5)O6x—Na1—O1xi107.88 (6)
O4v—Mg1—O489.05 (7)O3—Na1—O1xi146.62 (4)
O6—Mg2—O3iii85.88 (5)O3ix—Na1—O1xi129.17 (3)
O6—Mg2—O288.80 (5)O6—Na1—O1viii74.30 (5)
O3iii—Mg2—O2111.03 (6)O6ix—Na1—O1viii118.48 (7)
O6—Mg2—O5vi172.05 (6)O6vii—Na1—O1viii107.88 (6)
O3iii—Mg2—O5vi91.58 (5)O6x—Na1—O1viii84.97 (5)
O2—Mg2—O5vi85.07 (5)O3—Na1—O1viii129.17 (3)
O6—Mg2—O5vii98.45 (5)O3ix—Na1—O1viii146.62 (4)
O3iii—Mg2—O5vii162.38 (6)O1xi—Na1—O1viii51.46 (6)
O2—Mg2—O5vii86.23 (5)O1v—P1—O1111.21 (10)
O5vi—Mg2—O5vii86.22 (5)O1v—P1—O2v111.07 (7)
O6—Mg2—O1viii100.87 (6)O1—P1—O2v108.34 (7)
O3iii—Mg2—O1viii79.79 (5)O1v—P1—O2108.34 (7)
O2—Mg2—O1viii166.18 (6)O1—P1—O2111.07 (7)
O5vi—Mg2—O1viii86.06 (5)O2v—P1—O2106.73 (10)
O5vii—Mg2—O1viii82.62 (5)O5—P2—O6111.03 (7)
O6—Na1—O6ix166.85 (10)O5—P2—O3111.42 (7)
O6—Na1—O6vii86.56 (4)O6—P2—O3108.82 (7)
O6ix—Na1—O6vii91.84 (4)O5—P2—O4107.74 (7)
O6—Na1—O6x91.84 (4)O6—P2—O4108.99 (7)
O6ix—Na1—O6x86.56 (4)O3—P2—O4108.78 (7)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1; (iii) x, y+1, z1/2; (iv) x, y+1, z+1; (v) x, y, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x, y+1, z+1/2; (viii) x+1/2, y+3/2, z+1; (ix) x+1, y, z+3/2; (x) x+1, y+1, z+1; (xi) x+1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O20.931.572.4932 (17)174
Selected bond lengths (Å) top
Mg1—O3i2.1224 (13)Na1—O32.8840 (19)
Mg1—O1ii2.1312 (12)Na1—O1vii2.922 (2)
Mg1—O42.1669 (14)P1—O1viii1.5372 (12)
Mg2—O62.0234 (13)P1—O11.5372 (12)
Mg2—O3ii2.0686 (13)P1—O2viii1.5476 (13)
Mg2—O22.0696 (14)P1—O21.5476 (13)
Mg2—O5iii2.0729 (13)P2—O51.5234 (12)
Mg2—O5iv2.0955 (13)P2—O61.5263 (12)
Mg2—O1v2.1153 (14)P2—O31.5349 (13)
Na1—O62.2974 (13)P2—O41.5806 (13)
Na1—O6vi2.4386 (13)
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x, y+1, z1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x, y+1, z+1/2; (v) x+1/2, y+3/2, z+1; (vi) x+1, y+1, z+1; (vii) x+1/2, y+3/2, z+1/2; (viii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O20.931.572.4932 (17)173.7

Experimental details

Crystal data
Chemical formulaNaMg3(HPO4)2(PO4)
Mr382.85
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)11.8064 (6), 12.0625 (7), 6.4969 (4)
β (°) 113.805 (2)
V3)846.54 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.36 × 0.24 × 0.18
Data collection
DiffractometerBruker X8 APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.504, 0.748
No. of measured, independent and
observed [I > 2σ(I)] reflections
9797, 1291, 1138
Rint0.038
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.072, 1.09
No. of reflections1291
No. of parameters88
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.54

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat, Morocco, for financial support.

References

First citationAlhakmi, G., Assani, A., Saadi, M. & El Ammari, L. (2013a). Acta Cryst. E69, i40.  CrossRef IUCr Journals Google Scholar
First citationAlhakmi, G., Assani, A., Saadi, M., Follet, C. & El Ammari, L. (2013b). Acta Cryst. E69, i56.  CrossRef IUCr Journals Google Scholar
First citationAssani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011a). Acta Cryst. E67, i41.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAssani, A., El Ammari, L., Zriouil, M. & Saadi, M. (2011b). Acta Cryst. E67, i40.  Web of Science CrossRef IUCr Journals Google Scholar
First citationAssani, A., Saadi, M., Alhakmi, G., Houmadi, E. & El Ammari, L. (2013). Acta Cryst. E69, i60.  CrossRef IUCr Journals Google Scholar
First citationAssani, A., Saadi, M., Zriouil, M. & El Ammari, L. (2011c). Acta Cryst. E67, i5.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBen Smail, R. & Jouini, T. (2002). Acta Cryst. C58, i61–i62.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemazeau, G. (2008). J. Mater. Sci. 43, 2104–2114.  CrossRef CAS Google Scholar
First citationEssehli, R., Belharouak, I., Ben Yahia, H., Chamoun, R., Orayech, B., El Bali, B., Bouziane, K., Zhoue, X. L. & Zhoue, Z. (2015b). Dalton Trans. 44, 4526–4532.  CrossRef CAS PubMed Google Scholar
First citationEssehli, R., Belharouak, I., Ben Yahia, H., Maher, K., Abouimrane, A., Orayech, B., Calder, S., Zhou, X. L., Zhou, Z. & Sun, Y.-K. (2015a). Dalton Trans 44, 7881–7886.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuesmi, A. & Driss, A. (2002). Acta Cryst. C58, i16–i17.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHuang, W., Li, B., Saleem, M. F., Wu, X., Li, J., Lin, J., Xia, D., Chu, W. & Wu, Z. (2015). Chem. Eur. J. 21, 851–860.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKhmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690–692.  CSD CrossRef IUCr Journals Google Scholar
First citationLeroux, F., Mar, A., Guyomard, D. & Piffard, Y. (1995a). J. Solid State Chem. 117, 206–212.  CrossRef CAS Google Scholar
First citationLeroux, F., Mar, A., Payen, C., Guyomard, D., Verbaere, A. & Piffard, Y. (1995b). J. Solid State Chem. 115, 240–246.  CrossRef CAS Google Scholar
First citationLii, K.-H. & Shih, P.-F. (1994). Inorg. Chem. 33, 3028–3031.  CrossRef CAS Web of Science Google Scholar
First citationMoore, P. B. & Ito, J. (1979). Mineral. Mag. 43, 227–35.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoshimura, M. & Byrappa, K. (2008). J. Mater. Sci. 43, 2085–2103.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 7| July 2015| Pages 813-815
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds