metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1,3-di-tert-butyl-η5-cyclo­penta­dien­yl)tri­methyl­hafnium(IV)

aDepartamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, ES 28871 Alcalá de Henares (Madrid), Spain
*Correspondence e-mail: adrian.perez@uah.es

Edited by M. Weil, Vienna University of Technology, Austria (Received 17 March 2015; accepted 23 March 2015; online 2 April 2015)

The mol­ecule of the title organometallic hafnium(IV) com­pound, [Hf(CH3)3(C13H21)] or [HfMe3(η5-C5H3-1,3-tBu2)], adopts the classical three-legged piano-stool geometry for mono­cyclo­penta­dienylhafnium(IV) derivatives with the three methyl groups bonded to the Hf(IV) atom at the legs. The C atoms of the two tert-butyl group bonded to the cyclo­penta­dienyl (Cp) ring are 0.132 (5) and 0.154 (6) Å above the Cp least-squares plane. There are no significant inter­molecular inter­actions present between the mol­ecules in the crystal structure.

1. Related literature

The synthesis of the compound was described by Cuenca et al. (1996[Cuenca, T., Montejano, C. & Royo, P. (1996). J. Organomet. Chem. 514, 93-96.]). For the structures of related HfIV derivatives and a comparison of Hf—C bond lengths, see: Itagaki et al. (2009[Itagaki, K., Hasumi, S., Fujiki, M. & Nomura, K. (2009). J. Mol. Catal. A Chem. 303, 102-109.]); Schäfer et al. (2013[Schäfer, S., Bauer, H., Becker, J., Sun, Y. & Sitzmann, H. (2013). Eur. J. Inorg. Chem. pp. 5694-5700.]); Shah et al. (1996[Shah, S. A. A., Dorn, H., Voigt, A., Roesky, H. W., Parisini, E., Schmidt, H.-G. & Noltemeyer, M. (1996). Organometallics, 15, 3176-3181.]); Swenson et al. (2000[Swenson, D. C., Guo, Z., Crowther, D. J., Baenziger, N. C. & Jordan, R. F. (2000). Acta Cryst. C56, e313-e314.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Hf(CH3)3(C13H21)]

  • Mr = 400.89

  • Monoclinic, P 21 /n

  • a = 13.238 (3) Å

  • b = 9.613 (2) Å

  • c = 14.486 (3) Å

  • β = 109.63 (2)°

  • V = 1736.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.99 mm−1

  • T = 200 K

  • 0.42 × 0.14 × 0.11 mm

2.2. Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.297, Tmax = 0.531

  • 29484 measured reflections

  • 3136 independent reflections

  • 2471 reflections with I > 2σ(I)

  • Rint = 0.100

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.073

  • S = 1.12

  • 3136 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 1.42 e Å−3

  • Δρmin = −1.35 e Å−3

Table 1
Selected geometric parameters (Å, °)

C1—Hf1 2.198 (6)
C2—Hf1 2.211 (6)
C3—Hf1 2.213 (6)
C11—Hf1 2.519 (5)
C12—Hf1 2.500 (4)
C13—Hf1 2.524 (4)
C14—Hf1 2.484 (5)
C15—Hf1 2.468 (5)
C1—Hf1—C2 103.7 (2)
C1—Hf1—C3 99.7 (2)
C2—Hf1—C3 102.4 (3)

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

The title compound was synthesized according to a literature procedure (Cuenca et al., 1996). Crystals were obtained from the resultant oil by removing the volatile components of a n-hexane solution.

Refinement top

H atoms attached to sp2 C-atoms were placed geometrically, with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C). Methyl H-atoms were refined using a rotating-group model, with C—H = 0.98 Å, and with Uiso(H) = 1.5Ueq(C).

Related literature top

The synthesis of the compound was described by Cuenca et al. (1996). For the structures of related HfIV derivatives and a comparison of Hf—C bond lengths, see: Itagaki et al. (2009); Schäfer et al. (2013); Shah et al. (1996); Swenson et al. (2000).

Structure description top

The synthesis of the compound was described by Cuenca et al. (1996). For the structures of related HfIV derivatives and a comparison of Hf—C bond lengths, see: Itagaki et al. (2009); Schäfer et al. (2013); Shah et al. (1996); Swenson et al. (2000).

Synthesis and crystallization top

The title compound was synthesized according to a literature procedure (Cuenca et al., 1996). Crystals were obtained from the resultant oil by removing the volatile components of a n-hexane solution.

Refinement details top

H atoms attached to sp2 C-atoms were placed geometrically, with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C). Methyl H-atoms were refined using a rotating-group model, with C—H = 0.98 Å, and with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DIRAX (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of [Hf(η5-1,3-tBu2C5H3)Me3] with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity.
(1,3-Di-tert-butyl-η5-cyclopentadienyl)trimethylhafnium(IV) top
Crystal data top
[Hf(CH3)3(C13H21)]F(000) = 792
Mr = 400.89Dx = 1.534 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.238 (3) ÅCell parameters from 117 reflections
b = 9.613 (2) Åθ = 3–21°
c = 14.486 (3) ŵ = 5.99 mm1
β = 109.63 (2)°T = 200 K
V = 1736.3 (7) Å3Prism, colourless
Z = 40.42 × 0.14 × 0.11 mm
Data collection top
Nonius KappaCCD
diffractometer
3136 independent reflections
Radiation source: Enraf Nonius FR5902471 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.100
Detector resolution: 9 pixels mm-1θmax = 25.2°, θmin = 3.3°
CCD scansh = 1515
Absorption correction: multi-scan
(Blessing, 1995)
k = 1110
Tmin = 0.297, Tmax = 0.531l = 1716
29484 measured reflections
Refinement top
Refinement on F2Secondary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.027P)2 + 1.470P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
3136 reflectionsΔρmax = 1.42 e Å3
164 parametersΔρmin = 1.35 e Å3
0 restraintsExtinction correction: SHELXL2014/7 (Sheldrick, 2015)
0 constraintsExtinction coefficient: 0.0113 (4)
Primary atom site location: structure-invariant direct methods
Crystal data top
[Hf(CH3)3(C13H21)]V = 1736.3 (7) Å3
Mr = 400.89Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.238 (3) ŵ = 5.99 mm1
b = 9.613 (2) ÅT = 200 K
c = 14.486 (3) Å0.42 × 0.14 × 0.11 mm
β = 109.63 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3136 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2471 reflections with I > 2σ(I)
Tmin = 0.297, Tmax = 0.531Rint = 0.100
29484 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.12Δρmax = 1.42 e Å3
3136 reflectionsΔρmin = 1.35 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0972 (5)0.0651 (7)0.2994 (4)0.0639 (18)
H1A0.03950.11990.30980.096*
H1B0.13670.12310.26750.096*
H1C0.06640.0150.25760.096*
C20.3457 (5)0.0906 (7)0.4060 (5)0.0643 (18)
H2A0.40030.01780.41680.096*
H2B0.3760.17040.44830.096*
H2C0.32210.11990.33720.096*
C30.1226 (5)0.2003 (6)0.4579 (5)0.069 (2)
H3A0.09070.24470.39370.103*
H3B0.17370.26440.50240.103*
H3C0.0660.1770.48480.103*
C110.2768 (4)0.0503 (5)0.6213 (4)0.0337 (11)
C120.3349 (4)0.1313 (5)0.5761 (3)0.0338 (11)
H120.40930.12150.58630.041*
C130.2663 (4)0.2296 (5)0.5131 (3)0.0326 (11)
C140.1638 (4)0.2058 (5)0.5167 (4)0.0347 (11)
H140.10070.25550.48090.042*
C150.1698 (4)0.0956 (5)0.5824 (4)0.0361 (12)
H150.11110.0580.59790.043*
C160.3228 (4)0.0569 (6)0.7029 (4)0.0464 (14)
C170.2339 (6)0.1215 (8)0.7320 (5)0.085 (2)
H17A0.19480.04830.7530.127*
H17B0.18450.17120.67580.127*
H17C0.26460.18690.7860.127*
C180.3969 (6)0.0205 (6)0.7922 (5)0.076 (2)
H18A0.42390.04430.84720.113*
H18B0.45740.06010.77640.113*
H18C0.3570.09550.81020.113*
C190.3869 (6)0.1672 (6)0.6724 (5)0.077 (2)
H19A0.34040.21610.61440.116*
H19B0.44620.12320.65710.116*
H19C0.41580.23380.72610.116*
C200.3013 (4)0.3463 (5)0.4585 (4)0.0425 (13)
C210.3666 (6)0.4500 (6)0.5375 (5)0.071 (2)
H21A0.42690.40140.5850.106*
H21B0.39380.52480.50640.106*
H21C0.32040.48960.57140.106*
C220.2040 (5)0.4224 (6)0.3889 (5)0.0629 (18)
H22A0.16020.45930.4260.094*
H22B0.22830.49920.35710.094*
H22C0.16110.35740.33890.094*
C230.3706 (5)0.2918 (7)0.4017 (5)0.0697 (19)
H23A0.32860.22770.35070.105*
H23B0.39530.36990.37140.105*
H23C0.43270.24270.44650.105*
Hf10.20704 (2)0.00819 (2)0.44138 (2)0.03781 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.065 (4)0.068 (4)0.049 (4)0.013 (3)0.007 (3)0.015 (3)
C20.064 (4)0.077 (4)0.054 (4)0.018 (3)0.022 (3)0.006 (3)
C30.057 (4)0.051 (4)0.088 (5)0.007 (3)0.011 (4)0.018 (3)
C110.037 (3)0.034 (2)0.028 (3)0.002 (2)0.008 (2)0.002 (2)
C120.026 (2)0.042 (3)0.032 (3)0.003 (2)0.008 (2)0.003 (2)
C130.036 (3)0.034 (3)0.028 (3)0.003 (2)0.009 (2)0.000 (2)
C140.031 (3)0.034 (3)0.040 (3)0.005 (2)0.013 (2)0.002 (2)
C150.033 (3)0.038 (3)0.043 (3)0.000 (2)0.019 (2)0.002 (2)
C160.054 (3)0.045 (3)0.037 (3)0.006 (3)0.012 (3)0.010 (2)
C170.090 (5)0.093 (5)0.075 (5)0.001 (4)0.031 (4)0.048 (4)
C180.089 (5)0.067 (4)0.042 (4)0.001 (3)0.016 (4)0.012 (3)
C190.104 (6)0.070 (4)0.055 (4)0.047 (4)0.024 (4)0.018 (3)
C200.041 (3)0.047 (3)0.039 (3)0.004 (2)0.013 (2)0.007 (2)
C210.090 (5)0.060 (4)0.057 (4)0.033 (4)0.017 (4)0.008 (3)
C220.071 (4)0.050 (4)0.062 (4)0.007 (3)0.016 (3)0.026 (3)
C230.072 (5)0.071 (4)0.079 (5)0.001 (3)0.043 (4)0.027 (4)
Hf10.03159 (16)0.04226 (18)0.03505 (17)0.00414 (9)0.00523 (10)0.00804 (10)
Geometric parameters (Å, º) top
C1—Hf12.198 (6)C15—H150.95
C1—H1A0.98C16—C171.511 (9)
C1—H1B0.98C16—C191.513 (8)
C1—H1C0.98C16—C181.529 (8)
C2—Hf12.211 (6)C17—H17A0.98
C2—H2A0.98C17—H17B0.98
C2—H2B0.98C17—H17C0.98
C2—H2C0.98C18—H18A0.98
C3—Hf12.213 (6)C18—H18B0.98
C3—H3A0.98C18—H18C0.98
C3—H3B0.98C19—H19A0.98
C3—H3C0.98C19—H19B0.98
C11—C121.402 (7)C19—H19C0.98
C11—C151.406 (6)C20—C231.517 (8)
C11—C161.531 (7)C20—C221.530 (7)
C11—Hf12.519 (5)C20—C211.545 (7)
C12—C131.412 (6)C21—H21A0.98
C12—Hf12.500 (4)C21—H21B0.98
C12—H120.95C21—H21C0.98
C13—C141.395 (6)C22—H22A0.98
C13—C201.531 (7)C22—H22B0.98
C13—Hf12.524 (4)C22—H22C0.98
C14—C151.409 (7)C23—H23A0.98
C14—Hf12.484 (5)C23—H23B0.98
C14—H140.95C23—H23C0.98
C15—Hf12.468 (5)
Hf1—C1—H1A109.5H18A—C18—H18B109.5
Hf1—C1—H1B109.5C16—C18—H18C109.5
H1A—C1—H1B109.5H18A—C18—H18C109.5
Hf1—C1—H1C109.5H18B—C18—H18C109.5
H1A—C1—H1C109.5C16—C19—H19A109.5
H1B—C1—H1C109.5C16—C19—H19B109.5
Hf1—C2—H2A109.5H19A—C19—H19B109.5
Hf1—C2—H2B109.5C16—C19—H19C109.5
H2A—C2—H2B109.5H19A—C19—H19C109.5
Hf1—C2—H2C109.5H19B—C19—H19C109.5
H2A—C2—H2C109.5C23—C20—C22109.6 (5)
H2B—C2—H2C109.5C23—C20—C13111.8 (4)
Hf1—C3—H3A109.5C22—C20—C13110.9 (4)
Hf1—C3—H3B109.5C23—C20—C21109.6 (5)
H3A—C3—H3B109.5C22—C20—C21108.5 (5)
Hf1—C3—H3C109.5C13—C20—C21106.3 (4)
H3A—C3—H3C109.5C20—C21—H21A109.5
H3B—C3—H3C109.5C20—C21—H21B109.5
C12—C11—C15106.1 (4)H21A—C21—H21B109.5
C12—C11—C16126.5 (4)C20—C21—H21C109.5
C15—C11—C16127.2 (5)H21A—C21—H21C109.5
C12—C11—Hf173.0 (3)H21B—C21—H21C109.5
C15—C11—Hf171.6 (3)C20—C22—H22A109.5
C16—C11—Hf1124.1 (4)C20—C22—H22B109.5
C11—C12—C13109.8 (4)H22A—C22—H22B109.5
C11—C12—Hf174.5 (3)C20—C22—H22C109.5
C13—C12—Hf174.6 (3)H22A—C22—H22C109.5
C11—C12—H12125.1H22B—C22—H22C109.5
C13—C12—H12125.1C20—C23—H23A109.5
Hf1—C12—H12117.6C20—C23—H23B109.5
C14—C13—C12106.8 (4)H23A—C23—H23B109.5
C14—C13—C20127.3 (4)C20—C23—H23C109.5
C12—C13—C20125.7 (4)H23A—C23—H23C109.5
C14—C13—Hf172.3 (3)H23B—C23—H23C109.5
C12—C13—Hf172.7 (3)C1—Hf1—C2103.7 (2)
C20—C13—Hf1123.8 (3)C1—Hf1—C399.7 (2)
C13—C14—C15108.3 (4)C2—Hf1—C3102.4 (3)
C13—C14—Hf175.4 (3)C1—Hf1—C15113.1 (2)
C15—C14—Hf172.8 (3)C2—Hf1—C15138.5 (2)
C13—C14—H14125.9C3—Hf1—C1590.0 (2)
C15—C14—H14125.9C1—Hf1—C1488.1 (2)
Hf1—C14—H14117.8C2—Hf1—C14136.9 (2)
C11—C15—C14108.9 (4)C3—Hf1—C14116.4 (2)
C11—C15—Hf175.6 (3)C15—Hf1—C1433.1 (2)
C14—C15—Hf174.1 (3)C1—Hf1—C12128.3 (2)
C11—C15—H15125.5C2—Hf1—C1288.6 (2)
C14—C15—H15125.5C3—Hf1—C12126.7 (2)
Hf1—C15—H15116.7C15—Hf1—C1253.7 (2)
C17—C16—C19111.0 (6)C14—Hf1—C1253.8 (2)
C17—C16—C18107.6 (6)C1—Hf1—C11142.6 (2)
C19—C16—C18108.9 (5)C2—Hf1—C11106.0 (2)
C17—C16—C11110.3 (5)C3—Hf1—C1195.6 (2)
C19—C16—C11111.3 (5)C15—Hf1—C1132.7 (2)
C18—C16—C11107.5 (5)C14—Hf1—C1154.5 (2)
C16—C17—H17A109.5C12—Hf1—C1132.5 (2)
C16—C17—H17B109.5C1—Hf1—C1396.4 (2)
H17A—C17—H17B109.5C2—Hf1—C13104.6 (2)
C16—C17—H17C109.5C3—Hf1—C13144.1 (2)
H17A—C17—H17C109.5C15—Hf1—C1354.1 (2)
H17B—C17—H17C109.5C14—Hf1—C1332.3 (2)
C16—C18—H18A109.5C12—Hf1—C1332.6 (2)
C16—C18—H18B109.5C11—Hf1—C1354.3 (2)
C15—C11—C12—C132.5 (6)Hf1—C14—C15—C1168.3 (3)
C16—C11—C12—C13172.8 (5)C13—C14—C15—Hf167.7 (3)
Hf1—C11—C12—C1366.9 (3)C12—C11—C16—C17179.8 (6)
C15—C11—C12—Hf164.5 (3)C15—C11—C16—C175.4 (8)
C16—C11—C12—Hf1120.2 (5)Hf1—C11—C16—C1786.6 (6)
C11—C12—C13—C142.1 (5)C12—C11—C16—C1956.5 (8)
Hf1—C12—C13—C1464.7 (3)C15—C11—C16—C19129.2 (6)
C11—C12—C13—C20173.5 (5)Hf1—C11—C16—C1937.1 (6)
Hf1—C12—C13—C20119.6 (5)C12—C11—C16—C1862.7 (7)
C11—C12—C13—Hf166.8 (3)C15—C11—C16—C18111.6 (6)
C12—C13—C14—C151.0 (5)Hf1—C11—C16—C18156.3 (5)
C20—C13—C14—C15174.6 (5)C14—C13—C20—C23134.0 (5)
Hf1—C13—C14—C1566.0 (3)C12—C13—C20—C2351.3 (7)
C12—C13—C14—Hf165.0 (3)Hf1—C13—C20—C2341.1 (6)
C20—C13—C14—Hf1119.4 (5)C14—C13—C20—C2211.3 (7)
C12—C11—C15—C141.8 (6)C12—C13—C20—C22174.0 (5)
C16—C11—C15—C14173.4 (5)Hf1—C13—C20—C2281.6 (5)
Hf1—C11—C15—C1467.3 (3)C14—C13—C20—C21106.5 (6)
C12—C11—C15—Hf165.4 (3)C12—C13—C20—C2168.2 (7)
C16—C11—C15—Hf1119.3 (5)Hf1—C13—C20—C21160.6 (4)
C13—C14—C15—C110.6 (6)
Selected geometric parameters (Å, º) top
C1—Hf12.198 (6)C12—Hf12.500 (4)
C2—Hf12.211 (6)C13—Hf12.524 (4)
C3—Hf12.213 (6)C14—Hf12.484 (5)
C11—Hf12.519 (5)C15—Hf12.468 (5)
C1—Hf1—C2103.7 (2)C2—Hf1—C3102.4 (3)
C1—Hf1—C399.7 (2)
 

Acknowledgements

We are grateful to the Factoría de Cristalización (CONSOLIDER-INGENIO 2010 CSD2006–00015) for support of this research.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCuenca, T., Montejano, C. & Royo, P. (1996). J. Organomet. Chem. 514, 93–96.  CrossRef CAS Web of Science Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationItagaki, K., Hasumi, S., Fujiki, M. & Nomura, K. (2009). J. Mol. Catal. A Chem. 303, 102–109.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSchäfer, S., Bauer, H., Becker, J., Sun, Y. & Sitzmann, H. (2013). Eur. J. Inorg. Chem. pp. 5694–5700.  Google Scholar
First citationShah, S. A. A., Dorn, H., Voigt, A., Roesky, H. W., Parisini, E., Schmidt, H.-G. & Noltemeyer, M. (1996). Organometallics, 15, 3176–3181.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSwenson, D. C., Guo, Z., Crowther, D. J., Baenziger, N. C. & Jordan, R. F. (2000). Acta Cryst. C56, e313–e314.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds