metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­kis(tri­ethyl­enediamin-1-ium) dodeca-μ2-chlorido-hexa­kis­(thio­cyanato-κN)hexa-octa­hedro-niobate

crossmark logo

aUniversität Potsdam, Institut für Chemie, Liebknecht-Str. 24-25, D-14476 Potsdam, Germany, and bUniversität Rostock, Institut für Chemie, Anorganische Festkörperchemie, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany
*Correspondence e-mail: Martin.Koeckerling@uni-rostock.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 April 2023; accepted 4 May 2023; online 12 May 2023)

The crystal structure of the cluster complex salt, (C6H13N2)4[Nb6(NCS)6Cl12] or (H-DABCO)4[Nb6Cl12(NCS)6] (DABCO = tri­ethyl­enedi­amine or 1,4-di­aza­bicyclo­[2.2.2]octa­ne), comprises octa­hedral Nb6 cluster cores, which are μ2-coordinated by 12 chloride ligands (bridging the octa­hedral edges, inner ligand sphere). Furthermore, each Nb atom is N-bonded to a terminal thio­cyanate ligand (outer ligand sphere). The discrete clusters carry a charge of −4, which is compensated by four monoprotonated DABCO mol­ecules. These are arranged in rows, which are N—H⋯Cl and N—H⋯N hydrogen bonded to the anions and among each other.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cluster complexes with octa­hedral cores of electron-poor transition metals, exhibiting strong metal–metal bonds, have been investigated for many decades (Braunstein et al., 1999[Braunstein, P., Oro, L. A. & Raithby, P. R. (1999). Editors. Metal Clusters in Chemistry. Weinheim: Wiley VCH.]; Cotton, 1964[Cotton, F. A. (1964). Inorg. Chem. 3, 1217-1220.]; Dehnen, 2017[Dehnen, S. (2017). Editor. Clusters - Contemporary Insight in Structure and Bonding, Vol. 174, Structure and Bonding, Series Editor, D. M. P. Mingos. Cham, Switzerland: Springer International Publishing AG.]; Janiak et al., 2012[Janiak, C., Meyer, H.-J., Gudat, D. & Alsfasser, R. (2012). Riedel: Moderne Anorganische Chemie, edited by H.-J. Meyer, pp. 546-553. Berlin, Boston: De Gruyter.]; Simon, 1988[Simon, A. (1988). Angew. Chem. 100, 163-188.]; Vaughan et al., 1950[Vaughan, P. A., Sturdivant, J. H. & Pauling, L. (1950). J. Am. Chem. Soc. 72, 5477-5486.]). Starting from [Nb6Cl12(CH3OH)4(OCH3)2]·DABCO·0.66CH2Cl2 (Sperlich & Köckerling, 2021[Sperlich, E. & Köckerling, M. (2021). Z. Anorg. Allg. Chem. 647, 1759-1763.]), the title compound was obtained by ligand-exchange reactions with thio­cyanate salts in methanol. The crystal structure of the title compound consists of discrete [Nb6Cl12(NCS)6]4− cluster anions and (H-DABCO)+ cations. The Nb atoms of the cluster anions are arranged octa­hedrally. The octa­hedral edges are μ2-bridged by Cl ligands and the exo sites occupied by the N-binding NCS ligands. Two symmetry-independent cluster units are present in the unit cell. One unit is located at the Wyckoff site 9e with point-group symmetry [\overline{1}], the other at site 3a with point-group symmetry [\overline{3}]. of the space group R[\overline{3}]. The cations are arranged in N—H⋯Cl and N—H⋯N hydrogen-bonded rows of four protonated DABCO mol­ecules between two cluster units. Two H-DABCO cations (comprising atoms N7, N8, and N9, N10) are situated on a threefold rotation axis, and one H-DABCO cation (comprising N11, N12) is statistically disordered over two sets of sites. The four protons per cationic row are statistically attached to the five possible sites. Selected hydrogen bonds are listed in Table 1[link]. The resulting structural arrangement is shown in Fig. 1[link]. The inter­atomic distances in the individual cations and anions are found in the expected regions. For both cluster units they are in the range of Nb6 cluster compounds with 16 cluster-based electrons, in line with the charge of −4. Comparable A4[Nb6Cl12(NCS)6] salts with the same discrete cluster anion have been reported for A = K, Rb, and NH4 (Reckeweg & Meyer, 1996[Reckeweg, O. & Meyer, H.-J. (1996). Z. Anorg. Allg. Chem. 622, 411-416.]), Ph4P (Flemming et al., 2009[Flemming, A., Bernsdorf, A. & Köckerling, M. (2009). J. Clust Sci. 20, 113-131.]), and Cs (Naumov et al., 2003[Naumov, N. G., Cordier, S. & Perrin, C. (2003). Solid State Sci. 5, 1359-1367.]). Fig. 2[link] shows the hexa­gonal packing of the cluster units with inter­mediate H-DABCO cations. Starting from compounds with such discrete iso-thio­cyanato ligated cluster units, cluster network compounds have already been synthesized (Pigorsch & Köckerling, 2016[Pigorsch, A. & Köckerling, M. (2016). Cryst. Growth Des. 16, 4240-4246.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5N⋯Cl5 1.00 2.46 3.368 (7) 150
N8—H8N⋯N9 1.00 1.80 2.795 (8) 180
N10—H10N⋯Cl7i 1.00 2.90 3.695 (5) 137
N12A—H12N⋯N6ii 1.00 1.59 2.59 (1) 176
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x-y+{\script{1\over 3}}, x-{\script{1\over 3}}, -z+{\script{2\over 3}}].
[Figure 1]
Figure 1
The structures of the discrete anionic cluster units and rows of cation units of (H-DABCO)4[Nb6Cl12(NCS)6]. Atoms are drawn with displacement ellipsoids at the 50% probability level. The Nb6 metal atom octa­hedron is shown in a polyhedral representation, and N—H⋯N and N—H⋯Cl hydrogen bonds as red dashed lines. Of the disordered parts, only one of each is displayed for better visibility.
[Figure 2]
Figure 2
Arrangement of cluster anions and (H-DABCO) cations in the unit cell in a view along the crystallographic c axis. The Nb6 metal atom octa­hedra are shown in a polyhedral representation.

Synthesis and crystallization

The cluster compound [Nb6Cl12(CH3OH)4(OCH3)2]·DABCO·0.66CH2Cl2 was used as starting material (Sperlich & Köckerling, 2021[Sperlich, E. & Köckerling, M. (2021). Z. Anorg. Allg. Chem. 647, 1759-1763.]). In a glass vial of 4 ml volume, 20 mg (15.56 µmol) of the precursor, 9 mg (93.37 µmol) of potassium thio­cyanate, KSCN, 12 mg (157.64 µmol) of ammonium thio­cyanate, (NH4)SCN, and 1 ml of methanol were filled. The vial was placed in a sand bath at 313 K. After one day it was taken out of the sand bath and allowed to stand untouched for several days at room temperature. During this time, the title compound crystallized from the reaction mixture in the form of black crystals (Fig. 3[link]). For analytically pure samples, the crystals were filtered from the solution and were washed with anhydrous ethanol and anhydrous methyl­ene chloride. Yields were up to 80%.

[Figure 3]
Figure 3
Microscopic view of crystals of (H-DABCO)4[Nb6Cl12(NCS)6].

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The sulfur atoms of two thio­cyanato groups (S2 and S3) are disordered over two sets of sites, both in a ratio of 0.51 (3):0.49 (3). One of the four H-DABCO units (comprising atoms N11 and N12) is equally disordered over two sets of sites, denoted as A and B.

Table 2
Experimental details

Crystal data
Chemical formula (C6H13N2)4[Nb6(NCS)6Cl12]
Mr 1784.08
Crystal system, space group Trigonal, R[\overline{3}]
Temperature (K) 123
a, c (Å) 25.399 (2), 30.418 (2)
V3) 16993 (3)
Z 12
Radiation type Mo Kα
μ (mm−1) 1.98
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
No. of measured, independent and observed [I > 2σ(I)] reflections 84629, 13784, 11834
Rint 0.040
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.093, 1.09
No. of reflections 13784
No. of parameters 502
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.03, −1.79
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2019[Brandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2019); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetrakis(triethylenediamin-1-ium) dodeca-µ2-chlorido-hexakis(thiocyanato-κN)hexa-octahedro-niobate top
Crystal data top
(C6H13N2)4[Nb6(NCS)6Cl12]Dx = 2.092 Mg m3
Mr = 1784.08Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 9867 reflections
a = 25.399 (2) Åθ = 2.5–32.6°
c = 30.418 (2) ŵ = 1.98 mm1
V = 16993 (3) Å3T = 123 K
Z = 12Block, black
F(000) = 105120.30 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
11834 reflections with I > 2σ(I)
Radiation source: microfocus sealed tubeRint = 0.040
φ and ω scansθmax = 32.6°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 3838
k = 3838
84629 measured reflectionsl = 4646
13784 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.020P)2 + 223.5098P]
where P = (Fo2 + 2Fc2)/3
13784 reflections(Δ/σ)max = 0.002
502 parametersΔρmax = 2.03 e Å3
0 restraintsΔρmin = 1.79 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. C-and N-bound hydrogen atoms were placed on idealized positions and refined using a riding models.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Nb10.15274 (2)0.27928 (2)0.38766 (2)0.01794 (5)
Nb20.21875 (2)0.30094 (2)0.30483 (2)0.01810 (5)
Nb30.24363 (2)0.40316 (2)0.36253 (2)0.01897 (5)
Nb40.65963 (2)0.39594 (2)0.37251 (2)0.02176 (6)
Cl10.20921 (4)0.22977 (4)0.36270 (3)0.0306 (2)
Cl20.24134 (4)0.35140 (4)0.43131 (3)0.0304 (2)
Cl30.13796 (4)0.21431 (3)0.26443 (3)0.0296 (2)
Cl40.24550 (4)0.35960 (4)0.23630 (2)0.0260 (1)
Cl50.31827 (3)0.37626 (4)0.33539 (3)0.0296 (2)
Cl60.27439 (3)0.47858 (3)0.30297 (3)0.0271 (1)
Cl70.73993 (4)0.41477 (4)0.42584 (2)0.0305 (2)
Cl80.72998 (6)0.48879 (4)0.33235 (3)0.0453 (3)
S10.17220 (6)0.16375 (5)0.50800 (4)0.0499 (3)
S2B_a0.3823 (2)0.2647 (2)0.2775 (6)0.065 (2)0.49 (3)
S2A_b0.3887 (3)0.2711 (4)0.2966 (3)0.049 (2)0.51 (3)
S3A_c0.4484 (1)0.5661 (4)0.3962 (4)0.043 (1)0.49 (3)
S3B_d0.4442 (2)0.5774 (2)0.3810 (3)0.035 (1)0.51 (3)
S40.67419 (8)0.51041 (6)0.50030 (4)0.0591 (4)
N10.1412 (1)0.2221 (1)0.4453 (1)0.0304 (6)
N20.2775 (2)0.2684 (1)0.2764 (1)0.0343 (7)
N30.3273 (1)0.4780 (2)0.3911 (1)0.0355 (7)
N40.6530 (2)0.4609 (2)0.4167 (1)0.0454 (9)
N50.4310 (4)0.4556 (4)0.2629 (2)0.102 (2)
H5N0.38860.43070.27450.123*
N60.5372 (3)0.5180 (2)0.2347 (1)0.062 (1)
N70.33330.66670.2131 (2)0.0427 (13)
N80.33330.66670.2968 (2)0.0291 (10)
H8N0.33330.66670.32970.035*
N90.33330.66670.3887 (2)0.0270 (9)
N100.33330.66670.4714 (2)0.0450 (14)
H10N0.33330.66670.50430.054*
C10.1537 (2)0.1978 (2)0.4716 (1)0.0248 (6)
C20.3228 (2)0.2677 (2)0.2819 (2)0.045 (1)
C30.3772 (2)0.5172 (2)0.3901 (1)0.0341 (7)
C40.6618 (2)0.4819 (2)0.4516 (1)0.0365 (8)
C50.4472 (5)0.5205 (5)0.2635 (3)0.126 (4)
H5A0.42580.52920.23990.151*
H5B0.43700.53160.29220.151*
C60.5137 (5)0.5538 (4)0.2561 (3)0.111 (4)
H6A0.52430.59000.23780.133*
H6B0.53440.56840.28480.133*
C70.4319 (3)0.4367 (3)0.2174 (2)0.066 (2)
H7A0.39810.43550.20030.079*
H7B0.42770.39580.21670.079*
C80.4923 (3)0.4833 (3)0.1985 (2)0.068 (2)
H8A0.48670.51210.17980.082*
H8B0.50850.46280.17980.082*
C90.4715 (4)0.4440 (6)0.2907 (3)0.139 (5)
H9A0.45430.39980.29530.166*
H9B0.47720.46380.31970.166*
C100.5314 (4)0.4705 (3)0.2665 (2)0.080 (2)
H10A0.56540.48870.28790.097*
H10B0.53380.43780.25050.097*
C110.3838 (3)0.6592 (3)0.2300 (2)0.062 (1)
H11A0.42320.69610.22350.074*
H11B0.38340.62420.21540.074*
C120.3769 (2)0.6486 (2)0.2798 (2)0.0367 (8)
H12A0.36180.60510.28630.044*
H12B0.41690.67290.29440.044*
C130.3955 (2)0.6873 (2)0.4054 (1)0.0384 (8)
H13A0.42210.73120.39920.046*
H13B0.41280.66470.39040.046*
C140.3926 (2)0.6760 (3)0.4550 (2)0.050 (1)
H14A0.39610.63960.46120.060*
H14B0.42650.71140.46990.060*
N11A_e0.4625 (7)0.4273 (5)0.4797 (5)0.057 (3)0.5
N12A_e0.4077 (5)0.3171 (4)0.4549 (4)0.035 (2)0.5
H12N_e0.38600.27380.44490.042*0.5
C15A_e0.4859 (5)0.3932 (5)0.5062 (4)0.054 (2)0.5
H15A_e0.47960.39670.53790.065*0.5
H15B_e0.52990.41040.50090.065*0.5
C16A_e0.4508 (4)0.3260 (5)0.4919 (3)0.045 (2)0.5
H16A_e0.48000.31320.48230.054*0.5
H16B_e0.42770.30040.51730.054*0.5
C17A_e0.4761 (7)0.4240 (5)0.4331 (3)0.065 (3)0.5
H17A_e0.52060.44290.42900.078*0.5
H17B_e0.46170.44680.41510.078*0.5
C18A_e0.4454 (5)0.3588 (5)0.4180 (3)0.055 (3)0.5
H18A_e0.47640.34850.40860.066*0.5
H18B_e0.41890.35330.39250.066*0.5
C19A_e0.3974 (5)0.4013 (6)0.4859 (4)0.060 (3)0.5
H19A_e0.38310.42510.46910.072*0.5
H19B_e0.38850.40300.51740.072*0.5
C20A_e0.3641 (5)0.3353 (5)0.4703 (4)0.052 (2)0.5
H20A_e0.33970.30840.49470.062*0.5
H20B_e0.33610.33060.44600.062*0.5
N11B_f0.5240 (5)0.5477 (5)0.5162 (4)0.047 (2)0.5
H11N_f0.50070.50400.50710.08 (4)*0.5
N12B_f0.5836 (6)0.6587 (5)0.5401 (4)0.046 (2)0.5
C15B_f0.5711 (5)0.5853 (5)0.4820 (3)0.053 (2)0.5
H15C_f0.55080.58750.45480.064*0.5
H15D_f0.59590.56640.47470.064*0.5
C16B_f0.6117 (6)0.6492 (6)0.5005 (4)0.066 (3)0.5
H16C_f0.65200.65460.50820.079*0.5
H16D_f0.61780.67990.47800.079*0.5
C17B_f0.4833 (5)0.5719 (6)0.5220 (4)0.065 (3)0.5
H17C_f0.45560.55150.54710.078*0.5
H17D_f0.45830.56440.49530.078*0.5
C18B_f0.5214 (6)0.6400 (6)0.5307 (6)0.078 (4)0.5
H18C_f0.51960.66240.50460.094*0.5
H18D_f0.50390.65070.55590.094*0.5
C19B_f0.5587 (6)0.5548 (6)0.5587 (3)0.064 (3)0.5
H19C_f0.53100.52600.58110.077*0.5
H19D_f0.59170.54560.55330.077*0.5
C20B_f0.5852 (7)0.6194 (7)0.5751 (4)0.071 (3)0.5
H20C_f0.56170.62010.60080.085*0.5
H20D_f0.62780.63490.58460.085*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nb10.0177 (1)0.0180 (1)0.0190 (1)0.00960 (9)0.00115 (8)0.00467 (8)
Nb20.0173 (1)0.0171 (1)0.0219 (1)0.01010 (9)0.00278 (8)0.00274 (8)
Nb30.0150 (1)0.0168 (1)0.0208 (1)0.00477 (8)0.00174 (8)0.00031 (8)
Nb40.0344 (1)0.0229 (1)0.0134 (1)0.0183 (1)0.00046 (9)0.00156 (8)
Cl10.0358 (4)0.0326 (4)0.0356 (4)0.0263 (3)0.0092 (3)0.0136 (3)
Cl20.0268 (3)0.0362 (4)0.0221 (3)0.0111 (3)0.0070 (3)0.0030 (3)
Cl30.0323 (4)0.0202 (3)0.0319 (4)0.0097 (3)0.0030 (3)0.0067 (3)
Cl40.0296 (3)0.0275 (3)0.0239 (3)0.0165 (3)0.0086 (3)0.0068 (3)
Cl50.0156 (3)0.0345 (4)0.0377 (4)0.0118 (3)0.0001 (3)0.0010 (3)
Cl60.0251 (3)0.0165 (3)0.0326 (4)0.0051 (2)0.0029 (3)0.0053 (3)
Cl70.0320 (4)0.0323 (4)0.0178 (3)0.0089 (3)0.0054 (3)0.0070 (3)
Cl80.0811 (8)0.0182 (3)0.0238 (4)0.0152 (4)0.0029 (4)0.0004 (3)
S10.0696 (8)0.0401 (5)0.0467 (6)0.0325 (5)0.0303 (5)0.0006 (4)
S2B_a0.041 (1)0.091 (2)0.082 (7)0.047 (2)0.016 (2)0.036 (2)
S2A_b0.036 (2)0.082 (3)0.041 (3)0.041 (2)0.000 (1)0.006 (2)
S3A_c0.0190 (9)0.039 (2)0.053 (3)0.0002 (9)0.005 (1)0.005 (2)
S3B_d0.0195 (8)0.028 (1)0.047 (3)0.0042 (8)0.002 (1)0.001 (1)
S40.093 (1)0.0522 (7)0.0262 (5)0.0316 (7)0.0004 (5)0.0151 (4)
N10.032 (1)0.033 (1)0.030 (1)0.019 (1)0.006 (1)0.012 (1)
N20.036 (2)0.032 (1)0.045 (2)0.024 (1)0.016 (1)0.009 (1)
N30.025 (1)0.032 (2)0.033 (2)0.002 (1)0.004 (1)0.007 (1)
N40.088 (3)0.044 (2)0.026 (1)0.049 (2)0.003 (2)0.006 (1)
N50.117 (5)0.174 (8)0.042 (3)0.093 (6)0.016 (3)0.030 (4)
N60.114 (4)0.063 (3)0.033 (2)0.061 (3)0.012 (2)0.002 (2)
N70.042 (2)0.042 (2)0.044 (3)0.021 (1)0.000.00
N80.024 (1)0.024 (1)0.040 (3)0.0118 (6)0.000.00
N90.027 (1)0.027 (1)0.028 (2)0.0133 (7)0.000.00
N100.051 (2)0.051 (2)0.032 (3)0.026 (1)0.000.00
C10.026 (1)0.026 (1)0.024 (1)0.015 (1)0.001 (1)0.001 (1)
C20.039 (2)0.038 (2)0.067 (3)0.026 (2)0.026 (2)0.015 (2)
C30.022 (1)0.030 (2)0.043 (2)0.008 (1)0.001 (1)0.013 (1)
C40.061 (2)0.025 (2)0.025 (2)0.023 (2)0.005 (2)0.001 (1)
C50.146 (9)0.17 (1)0.123 (8)0.122 (9)0.045 (7)0.086 (7)
C60.19 (1)0.080 (5)0.098 (6)0.099 (7)0.065 (6)0.047 (4)
C70.088 (4)0.057 (3)0.058 (3)0.040 (3)0.007 (3)0.001 (3)
C80.101 (5)0.067 (4)0.040 (3)0.045 (4)0.010 (3)0.010 (2)
C90.114 (7)0.25 (1)0.071 (5)0.107 (9)0.015 (5)0.085 (7)
C100.125 (6)0.062 (4)0.061 (4)0.051 (4)0.025 (4)0.007 (3)
C110.063 (3)0.084 (4)0.060 (3)0.053 (3)0.001 (3)0.013 (3)
C120.028 (2)0.032 (2)0.057 (2)0.020 (1)0.002 (2)0.003 (2)
C130.026 (2)0.042 (2)0.046 (2)0.015 (2)0.002 (2)0.002 (2)
C140.043 (2)0.063 (3)0.043 (2)0.025 (2)0.014 (2)0.010 (2)
N11A_e0.069 (8)0.038 (5)0.053 (6)0.019 (6)0.014 (5)0.013 (5)
N12A_e0.041 (4)0.038 (4)0.034 (4)0.025 (4)0.012 (3)0.013 (4)
C15A_e0.046 (5)0.059 (6)0.056 (6)0.025 (5)0.013 (4)0.019 (5)
C16A_e0.050 (5)0.065 (6)0.036 (4)0.042 (5)0.011 (4)0.020 (4)
C17A_e0.10 (1)0.065 (7)0.041 (5)0.052 (7)0.024 (6)0.023 (5)
C18A_e0.066 (6)0.070 (7)0.039 (4)0.041 (6)0.020 (4)0.020 (4)
C19A_e0.063 (6)0.074 (7)0.064 (7)0.051 (6)0.009 (5)0.001 (6)
C20A_e0.055 (6)0.060 (6)0.060 (6)0.043 (5)0.015 (5)0.010 (5)
N11B_f0.048 (6)0.043 (5)0.043 (5)0.018 (5)0.013 (4)0.012 (5)
N12B_f0.047 (5)0.057 (6)0.043 (5)0.032 (6)0.000 (4)0.001 (5)
C15B_f0.070 (7)0.068 (6)0.035 (4)0.046 (6)0.014 (4)0.012 (4)
C16B_f0.069 (7)0.065 (7)0.053 (6)0.025 (6)0.030 (6)0.010 (5)
C17B_f0.048 (6)0.093 (9)0.060 (6)0.040 (6)0.009 (5)0.021 (6)
C18B_f0.060 (7)0.082 (9)0.12 (1)0.060 (7)0.014 (8)0.013 (9)
C19B_f0.089 (8)0.099 (9)0.040 (5)0.072 (8)0.021 (5)0.031 (5)
C20B_f0.081 (9)0.10 (1)0.044 (5)0.060 (8)0.007 (5)0.009 (6)
Geometric parameters (Å, º) top
Nb1—N12.200 (3)C5—C61.48 (1)
Nb1—Cl12.4530 (8)C5—H5A0.9900
Nb1—Cl6i2.4605 (8)C5—H5B0.9900
Nb1—Cl22.4617 (8)C6—H6A0.9900
Nb1—Cl4i2.4631 (8)C6—H6B0.9900
Nb1—Nb2i2.9165 (4)C7—C81.506 (9)
Nb1—Nb3i2.9220 (4)C7—H7A0.9900
Nb1—Nb22.9221 (4)C7—H7B0.9900
Nb1—Nb32.9241 (4)C8—H8A0.9900
Nb2—N22.211 (3)C8—H8B0.9900
Nb2—Cl12.4467 (8)C9—C101.51 (1)
Nb2—Cl42.4527 (8)C9—H9A0.9900
Nb2—Cl32.4593 (8)C9—H9B0.9900
Nb2—Cl52.4651 (8)C10—H10A0.9900
Nb2—Nb1i2.9164 (4)C10—H10B0.9900
Nb2—Nb3i2.9207 (4)C11—C121.534 (7)
Nb2—Nb32.9293 (4)C11—H11A0.9900
Nb3—N32.201 (3)C11—H11B0.9900
Nb3—Cl22.4561 (8)C12—H12A0.9900
Nb3—Cl52.4573 (8)C12—H12B0.9900
Nb3—Cl3i2.4602 (8)C13—C141.532 (6)
Nb3—Cl62.4627 (8)C13—H13A0.9900
Nb3—Nb2i2.9207 (4)C13—H13B0.9900
Nb3—Nb1i2.9221 (4)C14—H14A0.9900
Nb4—N42.199 (3)C14—H14B0.9900
Nb4—Cl82.456 (1)N11A_e—C19A_e1.45 (2)
Nb4—Cl7ii2.4568 (9)N11A_e—C17A_e1.47 (2)
Nb4—Cl72.4587 (9)N11A_e—C15A_e1.50 (2)
Nb4—Cl8iii2.462 (1)N12A_e—C20A_e1.47 (1)
Nb4—Nb4iii2.9199 (5)N12A_e—C16A_e1.51 (2)
Nb4—Nb4iv2.9199 (5)N12A_e—C18A_e1.51 (1)
Nb4—Nb4ii2.9213 (5)N12A_e—H12N_e1.0000
Nb4—Nb4v2.9214 (5)C15A_e—C16A_e1.54 (2)
Cl3—Nb3i2.4602 (8)C15A_e—H15A_e0.9900
Cl4—Nb1i2.4629 (8)C15A_e—H15B_e0.9900
Cl6—Nb1i2.4606 (8)C16A_e—H16A_e0.9900
Cl7—Nb4v2.4569 (9)C16A_e—H16B_e0.9900
Cl8—Nb4iv2.462 (1)C17A_e—C18A_e1.50 (2)
S1—C11.612 (3)C17A_e—H17A_e0.9900
S2B_a—C21.557 (5)C17A_e—H17B_e0.9900
S2A_b—C21.692 (7)C18A_e—H18A_e0.9900
S3A_c—C31.613 (4)C18A_e—H18B_e0.9900
S3B_d—C31.646 (5)C19A_e—C20A_e1.53 (2)
S4—C41.611 (4)C19A_e—H19A_e0.9900
N1—C11.149 (4)C19A_e—H19B_e0.9900
N2—C21.171 (5)C20A_e—H20A_e0.9900
N3—C31.156 (4)C20A_e—H20B_e0.9900
N4—C41.158 (5)N11B_f—C17B_f1.45 (2)
N5—C71.471 (8)N11B_f—C15B_f1.51 (1)
N5—C91.472 (9)N11B_f—C19B_f1.52 (2)
N5—C51.49 (1)N11B_f—H11N_f1.0000
N5—H5N1.0000N12B_f—C18B_f1.43 (2)
N6—C61.466 (9)N12B_f—C20B_f1.48 (2)
N6—C101.495 (7)N12B_f—C16B_f1.48 (2)
N6—C81.512 (7)C15B_f—C16B_f1.53 (2)
N7—C111.479 (6)C15B_f—H15C_f0.9900
N7—C11vi1.479 (6)C15B_f—H15D_f0.9900
N7—C11vii1.480 (6)C16B_f—H16C_f0.9900
N8—C12vii1.488 (4)C16B_f—H16D_f0.9900
N8—C12vi1.488 (4)C17B_f—C18B_f1.52 (2)
N8—C121.489 (4)C17B_f—H17C_f0.9900
N8—H8N1.0000C17B_f—H17D_f0.9900
N9—C131.483 (4)C18B_f—H18C_f0.9900
N9—C13vii1.483 (4)C18B_f—H18D_f0.9900
N9—C13vi1.483 (4)C19B_f—C20B_f1.51 (2)
N10—C141.489 (5)C19B_f—H19C_f0.9900
N10—C14vii1.489 (5)C19B_f—H19D_f0.9900
N10—C14vi1.489 (5)C20B_f—H20C_f0.9900
N10—H10N1.0000C20B_f—H20D_f0.9900
N1—Nb1—Cl180.10 (8)C12vi—N8—C12108.6 (3)
N1—Nb1—Cl6i82.43 (9)C12vii—N8—H8N110.3
Cl1—Nb1—Cl6i87.98 (3)C12vi—N8—H8N110.3
N1—Nb1—Cl280.31 (9)C12—N8—H8N110.3
Cl1—Nb1—Cl289.84 (3)C13—N9—C13vii109.0 (3)
Cl6i—Nb1—Cl2162.72 (3)C13—N9—C13vi109.0 (3)
N1—Nb1—Cl4i83.16 (8)C13vii—N9—C13vi109.0 (3)
Cl1—Nb1—Cl4i163.08 (3)C14—N10—C14vii109.3 (3)
Cl6i—Nb1—Cl4i87.38 (3)C14—N10—C14vi109.3 (3)
Cl2—Nb1—Cl4i89.77 (3)C14vii—N10—C14vi109.3 (3)
N1—Nb1—Nb2i136.57 (8)C14—N10—H10N109.6
Cl1—Nb1—Nb2i143.33 (2)C14vii—N10—H10N109.6
Cl6i—Nb1—Nb2i95.69 (2)C14vi—N10—H10N109.6
Cl2—Nb1—Nb2i96.27 (2)N1—C1—S1179.1 (3)
Cl4i—Nb1—Nb2i53.44 (2)N2—C2—S2B_a166.7 (8)
N1—Nb1—Nb3i136.00 (9)N2—C2—S2A_b172.2 (6)
Cl1—Nb1—Nb3i94.66 (2)N3—C3—S3A_c169.8 (7)
Cl6i—Nb1—Nb3i53.63 (2)N3—C3—S3B_d169.7 (6)
Cl2—Nb1—Nb3i143.65 (2)N4—C4—S4179.2 (4)
Cl4i—Nb1—Nb3i95.66 (2)C6—C5—N5103.6 (7)
Nb2i—Nb1—Nb3i60.229 (9)C6—C5—H5A111.0
N1—Nb1—Nb2133.33 (8)N5—C5—H5A111.0
Cl1—Nb1—Nb253.29 (2)C6—C5—H5B111.0
Cl6i—Nb1—Nb296.66 (2)N5—C5—H5B111.0
Cl2—Nb1—Nb295.74 (2)H5A—C5—H5B109.0
Cl4i—Nb1—Nb2143.51 (2)N6—C6—C5114.6 (6)
Nb2i—Nb1—Nb290.08 (1)N6—C6—H6A108.6
Nb3i—Nb1—Nb259.97 (1)C5—C6—H6A108.6
N1—Nb1—Nb3133.73 (9)N6—C6—H6B108.6
Cl1—Nb1—Nb396.97 (2)C5—C6—H6B108.6
Cl6i—Nb1—Nb3143.84 (2)H6A—C6—H6B107.6
Cl2—Nb1—Nb353.43 (2)N5—C7—C8106.2 (6)
Cl4i—Nb1—Nb396.37 (2)N5—C7—H7A110.5
Nb2i—Nb1—Nb360.009 (8)C8—C7—H7A110.5
Nb3i—Nb1—Nb390.22 (1)N5—C7—H7B110.5
Nb2—Nb1—Nb360.140 (9)C8—C7—H7B110.5
N2—Nb2—Cl180.88 (9)H7A—C7—H7B108.7
N2—Nb2—Cl482.00 (9)C7—C8—N6110.8 (5)
Cl1—Nb2—Cl4162.82 (3)C7—C8—H8A109.5
N2—Nb2—Cl383.5 (1)N6—C8—H8A109.5
Cl1—Nb2—Cl388.20 (3)C7—C8—H8B109.5
Cl4—Nb2—Cl388.42 (3)N6—C8—H8B109.5
N2—Nb2—Cl579.4 (1)H8A—C8—H8B108.1
Cl1—Nb2—Cl589.22 (3)N5—C9—C10106.3 (6)
Cl4—Nb2—Cl589.08 (3)N5—C9—H9A110.5
Cl3—Nb2—Cl5162.92 (3)C10—C9—H9A110.5
N2—Nb2—Nb1i135.74 (8)N5—C9—H9B110.5
Cl1—Nb2—Nb1i143.38 (2)C10—C9—H9B110.5
Cl4—Nb2—Nb1i53.77 (2)H9A—C9—H9B108.7
Cl3—Nb2—Nb1i95.52 (2)N6—C10—C9110.2 (6)
Cl5—Nb2—Nb1i96.61 (2)N6—C10—H10A109.6
N2—Nb2—Nb3i137.10 (9)C9—C10—H10A109.6
Cl1—Nb2—Nb3i94.83 (2)N6—C10—H10B109.6
Cl4—Nb2—Nb3i96.68 (2)C9—C10—H10B109.6
Cl3—Nb2—Nb3i53.59 (2)H10A—C10—H10B108.1
Cl5—Nb2—Nb3i143.48 (2)N7—C11—C12109.6 (4)
Nb1i—Nb2—Nb3i60.125 (8)N7—C11—H11A109.7
N2—Nb2—Nb1134.24 (8)C12—C11—H11A109.7
Cl1—Nb2—Nb153.49 (2)N7—C11—H11B109.7
Cl4—Nb2—Nb1143.69 (2)C12—C11—H11B109.7
Cl3—Nb2—Nb196.83 (2)H11A—C11—H11B108.2
Cl5—Nb2—Nb195.17 (2)N8—C12—C11109.0 (4)
Nb1i—Nb2—Nb189.93 (1)N8—C12—H12A109.9
Nb3i—Nb2—Nb160.014 (9)C11—C12—H12A109.9
N2—Nb2—Nb3132.7 (1)N8—C12—H12B109.9
Cl1—Nb2—Nb396.98 (2)C11—C12—H12B109.9
Cl4—Nb2—Nb395.70 (2)H12A—C12—H12B108.3
Cl3—Nb2—Nb3143.72 (2)N9—C13—C14109.1 (4)
Cl5—Nb2—Nb353.36 (2)N9—C13—H13A109.9
Nb1i—Nb2—Nb359.983 (9)C14—C13—H13A109.9
Nb3i—Nb2—Nb390.147 (9)N9—C13—H13B109.9
Nb1—Nb2—Nb359.963 (9)C14—C13—H13B109.9
N3—Nb3—Cl283.07 (9)H13A—C13—H13B108.3
N3—Nb3—Cl580.0 (1)N10—C14—C13108.1 (4)
Cl2—Nb3—Cl587.27 (3)N10—C14—H14A110.1
N3—Nb3—Cl3i83.1 (1)C13—C14—H14A110.1
Cl2—Nb3—Cl3i88.24 (3)N10—C14—H14B110.1
Cl5—Nb3—Cl3i162.87 (3)C13—C14—H14B110.1
N3—Nb3—Cl679.96 (9)H14A—C14—H14B108.4
Cl2—Nb3—Cl6163.01 (3)C19A_e—N11A_e—C17A_e110 (1)
Cl5—Nb3—Cl688.87 (3)C19A_e—N11A_e—C15A_e110.9 (9)
Cl3i—Nb3—Cl690.63 (3)C17A_e—N11A_e—C15A_e108 (1)
N3—Nb3—Nb2i136.56 (9)C20A_e—N12A_e—C16A_e108.6 (9)
Cl2—Nb3—Nb2i96.29 (2)C20A_e—N12A_e—C18A_e109.1 (8)
Cl5—Nb3—Nb2i143.44 (2)C16A_e—N12A_e—C18A_e107.0 (9)
Cl3i—Nb3—Nb2i53.56 (2)C20A_e—N12A_e—H12N_e110.7
Cl6—Nb3—Nb2i96.65 (2)C16A_e—N12A_e—H12N_e110.7
N3—Nb3—Nb1i133.51 (9)C18A_e—N12A_e—H12N_e110.7
Cl2—Nb3—Nb1i143.38 (2)N11A_e—C15A_e—C16A_e108.2 (9)
Cl5—Nb3—Nb1i96.64 (2)N11A_e—C15A_e—H15A_e110.1
Cl3i—Nb3—Nb1i96.81 (2)C16A_e—C15A_e—H15A_e110.1
Cl6—Nb3—Nb1i53.56 (2)N11A_e—C15A_e—H15B_e110.1
Nb2i—Nb3—Nb1i60.019 (9)C16A_e—C15A_e—H15B_e110.1
N3—Nb3—Nb1136.67 (9)H15A_e—C15A_e—H15B_e108.4
Cl2—Nb3—Nb153.60 (2)N12A_e—C16A_e—C15A_e110.5 (7)
Cl5—Nb3—Nb195.30 (2)N12A_e—C16A_e—H16A_e109.5
Cl3i—Nb3—Nb195.31 (2)C15A_e—C16A_e—H16A_e109.5
Cl6—Nb3—Nb1143.32 (2)N12A_e—C16A_e—H16B_e109.5
Nb2i—Nb3—Nb159.867 (8)C15A_e—C16A_e—H16B_e109.5
Nb1i—Nb3—Nb189.78 (1)H16A_e—C16A_e—H16B_e108.1
N3—Nb3—Nb2133.54 (9)N11A_e—C17A_e—C18A_e110.4 (9)
Cl2—Nb3—Nb295.68 (2)N11A_e—C17A_e—H17A_e109.6
Cl5—Nb3—Nb253.60 (2)C18A_e—C17A_e—H17A_e109.6
Cl3i—Nb3—Nb2143.40 (2)N11A_e—C17A_e—H17B_e109.6
Cl6—Nb3—Nb295.31 (2)C18A_e—C17A_e—H17B_e109.6
Nb2i—Nb3—Nb289.855 (9)H17A_e—C17A_e—H17B_e108.1
Nb1i—Nb3—Nb259.790 (9)C17A_e—C18A_e—N12A_e110.1 (8)
Nb1—Nb3—Nb259.898 (9)C17A_e—C18A_e—H18A_e109.6
N4—Nb4—Cl882.8 (1)N12A_e—C18A_e—H18A_e109.6
N4—Nb4—Cl7ii80.0 (1)C17A_e—C18A_e—H18B_e109.6
Cl8—Nb4—Cl7ii162.74 (3)N12A_e—C18A_e—H18B_e109.6
N4—Nb4—Cl779.5 (1)H18A_e—C18A_e—H18B_e108.2
Cl8—Nb4—Cl790.39 (4)N11A_e—C19A_e—C20A_e109.7 (8)
Cl7ii—Nb4—Cl788.07 (4)N11A_e—C19A_e—H19A_e109.7
N4—Nb4—Cl8iii83.4 (1)C20A_e—C19A_e—H19A_e109.7
Cl8—Nb4—Cl8iii88.75 (1)N11A_e—C19A_e—H19B_e109.7
Cl7ii—Nb4—Cl8iii87.71 (4)C20A_e—C19A_e—H19B_e109.7
Cl7—Nb4—Cl8iii162.93 (3)H19A_e—C19A_e—H19B_e108.2
N4—Nb4—Nb4iii136.9 (1)N12A_e—C20A_e—C19A_e110.7 (9)
Cl8—Nb4—Nb4iii95.17 (3)N12A_e—C20A_e—H20A_e109.5
Cl7ii—Nb4—Nb4iii96.27 (2)C19A_e—C20A_e—H20A_e109.5
Cl7—Nb4—Nb4iii143.51 (2)N12A_e—C20A_e—H20B_e109.5
Cl8iii—Nb4—Nb4iii53.49 (2)C19A_e—C20A_e—H20B_e109.5
N4—Nb4—Nb4iv136.4 (1)H20A_e—C20A_e—H20B_e108.1
Cl8—Nb4—Nb4iv53.67 (2)C17B_f—N11B_f—C15B_f108.8 (9)
Cl7ii—Nb4—Nb4iv143.57 (2)C17B_f—N11B_f—C19B_f110 (1)
Cl7—Nb4—Nb4iv96.22 (2)C15B_f—N11B_f—C19B_f106 (1)
Cl8iii—Nb4—Nb4iv96.98 (3)C17B_f—N11B_f—H11N_f110.6
Nb4iii—Nb4—Nb4iv60.03 (1)C15B_f—N11B_f—H11N_f110.6
N4—Nb4—Nb4ii133.5 (1)C19B_f—N11B_f—H11N_f110.6
Cl8—Nb4—Nb4ii143.64 (2)C18B_f—N12B_f—C20B_f109 (1)
Cl7ii—Nb4—Nb4ii53.57 (2)C18B_f—N12B_f—C16B_f109 (1)
Cl7—Nb4—Nb4ii95.77 (2)C20B_f—N12B_f—C16B_f107 (1)
Cl8iii—Nb4—Nb4ii95.01 (3)N11B_f—C15B_f—C16B_f108.4 (8)
Nb4iii—Nb4—Nb4ii59.987 (6)N11B_f—C15B_f—H15C_f110.0
Nb4iv—Nb4—Nb4ii90.0C16B_f—C15B_f—H15C_f110.0
N4—Nb4—Nb4v133.0 (1)N11B_f—C15B_f—H15D_f110.0
Cl8—Nb4—Nb4v97.08 (3)C16B_f—C15B_f—H15D_f110.0
Cl7ii—Nb4—Nb4v95.81 (2)H15C_f—C15B_f—H15D_f108.4
Cl7—Nb4—Nb4v53.51 (2)N12B_f—C16B_f—C15B_f110.4 (9)
Cl8iii—Nb4—Nb4v143.46 (2)N12B_f—C16B_f—H16C_f109.6
Nb4iii—Nb4—Nb4v90.0C15B_f—C16B_f—H16C_f109.6
Nb4iv—Nb4—Nb4v59.986 (6)N12B_f—C16B_f—H16D_f109.6
Nb4ii—Nb4—Nb4v60.0C15B_f—C16B_f—H16D_f109.6
Nb2—Cl1—Nb173.22 (2)H16C_f—C16B_f—H16D_f108.1
Nb3—Cl2—Nb172.97 (2)N11B_f—C17B_f—C18B_f108.6 (9)
Nb2—Cl3—Nb3i72.84 (2)N11B_f—C17B_f—H17C_f110.0
Nb2—Cl4—Nb1i72.78 (2)C18B_f—C17B_f—H17C_f110.0
Nb3—Cl5—Nb273.04 (2)N11B_f—C17B_f—H17D_f110.0
Nb1i—Cl6—Nb372.81 (2)C18B_f—C17B_f—H17D_f110.0
Nb4v—Cl7—Nb472.93 (2)H17C_f—C17B_f—H17D_f108.4
Nb4—Cl8—Nb4iv72.84 (3)N12B_f—C18B_f—C17B_f112.4 (9)
C1—N1—Nb1158.1 (3)N12B_f—C18B_f—H18C_f109.1
C2—N2—Nb2143.3 (4)C17B_f—C18B_f—H18C_f109.1
C3—N3—Nb3154.5 (3)N12B_f—C18B_f—H18D_f109.1
C4—N4—Nb4146.7 (3)C17B_f—C18B_f—H18D_f109.1
C7—N5—C9110.4 (7)H18C_f—C18B_f—H18D_f107.9
C7—N5—C5109.4 (6)C20B_f—C19B_f—N11B_f109.0 (8)
C9—N5—C5112.4 (9)C20B_f—C19B_f—H19C_f109.9
C7—N5—H5N108.1N11B_f—C19B_f—H19C_f109.9
C9—N5—H5N108.1C20B_f—C19B_f—H19D_f109.9
C5—N5—H5N108.1N11B_f—C19B_f—H19D_f109.9
C6—N6—C10107.9 (6)H19C_f—C19B_f—H19D_f108.3
C6—N6—C8105.2 (5)N12B_f—C20B_f—C19B_f110 (1)
C10—N6—C8105.1 (5)N12B_f—C20B_f—H20C_f109.6
C11—N7—C11vi108.6 (3)C19B_f—C20B_f—H20C_f109.6
C11—N7—C11vii108.6 (3)N12B_f—C20B_f—H20D_f109.6
C11vi—N7—C11vii108.6 (3)C19B_f—C20B_f—H20D_f109.6
C12vii—N8—C12vi108.6 (3)H20C_f—C20B_f—H20D_f108.1
C12vii—N8—C12108.6 (3)
Nb2—N2—C2—S2B_a156 (2)C17A_e—N11A_e—C15A_e—C16A_e63 (1)
Nb3—N3—C3—S3A_c130 (2)C20A_e—N12A_e—C16A_e—C15A_e60 (1)
Nb3—N3—C3—S3B_d51 (3)C18A_e—N12A_e—C16A_e—C15A_e57 (1)
C7—N5—C5—C675.1 (9)N11A_e—C15A_e—C16A_e—N12A_e3 (1)
C9—N5—C5—C648.0 (9)C19A_e—N11A_e—C17A_e—C18A_e61 (1)
C10—N6—C6—C568.9 (9)C15A_e—N11A_e—C17A_e—C18A_e60 (1)
C8—N6—C6—C542.8 (9)N11A_e—C17A_e—C18A_e—N12A_e3 (2)
N5—C5—C6—N622 (1)C20A_e—N12A_e—C18A_e—C17A_e56 (1)
C9—N5—C7—C873.2 (9)C16A_e—N12A_e—C18A_e—C17A_e61 (1)
C5—N5—C7—C851.2 (8)C17A_e—N11A_e—C19A_e—C20A_e58 (1)
N5—C7—C8—N619.7 (7)C15A_e—N11A_e—C19A_e—C20A_e61 (1)
C6—N6—C8—C767.5 (7)C16A_e—N12A_e—C20A_e—C19A_e58 (1)
C10—N6—C8—C746.2 (7)C18A_e—N12A_e—C20A_e—C19A_e58 (1)
C7—N5—C9—C1049 (1)N11A_e—C19A_e—C20A_e—N12A_e2 (1)
C5—N5—C9—C1073 (1)C17B_f—N11B_f—C15B_f—C16B_f67 (1)
C6—N6—C10—C940.7 (9)C19B_f—N11B_f—C15B_f—C16B_f51 (1)
C8—N6—C10—C971.2 (8)C18B_f—N12B_f—C16B_f—C15B_f49 (2)
N5—C9—C10—N622 (1)C20B_f—N12B_f—C16B_f—C15B_f69 (1)
C11vi—N7—C11—C1249.6 (5)N11B_f—C15B_f—C16B_f—N12B_f14 (2)
C11vii—N7—C11—C1268.4 (5)C15B_f—N11B_f—C17B_f—C18B_f52 (1)
C12vii—N8—C12—C1149.6 (5)C19B_f—N11B_f—C17B_f—C18B_f64 (1)
C12vi—N8—C12—C1168.3 (4)C20B_f—N12B_f—C18B_f—C17B_f51 (2)
N7—C11—C12—N816.1 (5)C16B_f—N12B_f—C18B_f—C17B_f65 (2)
C13vii—N9—C13—C1469.6 (4)N11B_f—C17B_f—C18B_f—N12B_f12 (2)
C13vi—N9—C13—C1449.2 (4)C17B_f—N11B_f—C19B_f—C20B_f49 (1)
C14vii—N10—C14—C1349.7 (5)C15B_f—N11B_f—C19B_f—C20B_f68 (1)
C14vi—N10—C14—C1369.9 (4)C18B_f—N12B_f—C20B_f—C19B_f66 (1)
N9—C13—C14—N1017.3 (5)C16B_f—N12B_f—C20B_f—C19B_f51 (1)
C19A_e—N11A_e—C15A_e—C16A_e58 (1)N11B_f—C19B_f—C20B_f—N12B_f15 (1)
Symmetry codes: (i) x+1/3, y+2/3, z+2/3; (ii) y+1, xy, z; (iii) xy+1/3, x1/3, z+2/3; (iv) y+1/3, x+y+2/3, z+2/3; (v) x+y+1, x+1, z; (vi) x+y, x+1, z; (vii) y+1, xy+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···Cl51.002.463.368 (7)150
N8—H8N···N91.001.802.795 (8)180
N10—H10N···Cl7viii1.002.903.695 (5)137
N12A—H12N···N6iii1.001.592.59 (1)176
N10—H10N···Cl7ix1.002.903.695 (5)137
N10—H10N···Cl7x1.002.903.695 (5)137
Symmetry codes: (iii) xy+1/3, x1/3, z+2/3; (viii) x+1, y+1, z+1; (ix) y, x+y+1, z+1; (x) xy, x, z+1.
 

Acknowledgements

We gratefully acknowledge the maintenance of the XRD equipment through Dr Alexander Villinger (University of Rostock).

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (Germany), SPP1708 (grant No. KO1616/8).

References

First citationBrandenburg, K. & Putz, H. (2019). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBraunstein, P., Oro, L. A. & Raithby, P. R. (1999). Editors. Metal Clusters in Chemistry. Weinheim: Wiley VCH.  Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCotton, F. A. (1964). Inorg. Chem. 3, 1217–1220.  CrossRef CAS Web of Science Google Scholar
First citationDehnen, S. (2017). Editor. Clusters – Contemporary Insight in Structure and Bonding, Vol. 174, Structure and Bonding, Series Editor, D. M. P. Mingos. Cham, Switzerland: Springer International Publishing AG.  Google Scholar
First citationFlemming, A., Bernsdorf, A. & Köckerling, M. (2009). J. Clust Sci. 20, 113–131.  Web of Science CSD CrossRef CAS Google Scholar
First citationJaniak, C., Meyer, H.-J., Gudat, D. & Alsfasser, R. (2012). Riedel: Moderne Anorganische Chemie, edited by H.-J. Meyer, pp. 546–553. Berlin, Boston: De Gruyter.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationNaumov, N. G., Cordier, S. & Perrin, C. (2003). Solid State Sci. 5, 1359–1367.  Web of Science CrossRef ICSD CAS Google Scholar
First citationPigorsch, A. & Köckerling, M. (2016). Cryst. Growth Des. 16, 4240–4246.  Web of Science CSD CrossRef CAS Google Scholar
First citationReckeweg, O. & Meyer, H.-J. (1996). Z. Anorg. Allg. Chem. 622, 411–416.  CrossRef ICSD CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimon, A. (1988). Angew. Chem. 100, 163–188.  CrossRef CAS Google Scholar
First citationSperlich, E. & Köckerling, M. (2021). Z. Anorg. Allg. Chem. 647, 1759–1763.  Web of Science CSD CrossRef CAS Google Scholar
First citationVaughan, P. A., Sturdivant, J. H. & Pauling, L. (1950). J. Am. Chem. Soc. 72, 5477–5486.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146