organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Aqua­tri­fluorido­boron–1,3-dioxolan-2-one (1/2)

crossmark logo

aJožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia, and bInstitut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB 08193, Bellaterra, Spain
*Correspondence e-mail: matic.lozinsek@ijs.si

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 January 2023; accepted 24 January 2023; online 26 January 2023)

The crystal structure of the co-crystal of aqua­tri­fluorido­boron with two ethyl­ene carbonate (systematic name: 1,3-dioxolan-2-one) mol­ecules, BF3H2O·2OC(OCH2)2, was determined by low-temperature single-crystal X-ray diffraction. The co-crystal crystallizes in the ortho­rhom­bic space group P212121 with four formula units per unit cell. The asymmetric unit consists of an aqua­tri­fluorido­boron mol­ecule and two ethyl­ene carbonate mol­ecules, connected by O—H⋯O=C hydrogen bonds. This crystal structure is an inter­esting example of a superacidic BF3H2O species co-crystallized with an organic carbonate.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Adducts synthesized from boron trifluoride and various organic carbonates have been reported as potential functional electrolyte additives for secondary (rechargeable) lithium-ion batteries (Eisele et al., 2020[Eisele, L., Laszczynski, N., Schneider, M., Lucht, B. & Krossing, I. (2020). J. Electrochem. Soc. 167, 060514.]), and have been shown to modify the electrode surfaces, resulting in reduced cell resistance and better capacity retention at high current rates. Recently, the use of BF3-based additives has been extended to divalent-metal batteries, namely calcium-ion batteries (Forero-Saboya et al., 2021[Forero-Saboya, J., Bodin, C. & Ponrouch, A. (2021). Electrochem. Commun. 124, 106936.]; Bodin et al., 2023[Bodin, C., Forero Saboya, J., Jankowski, P., Radan, K., Foix, D., Courrèges, C., Yousef, I., Dedryvère, R., Davoisne, C., Lozinšek, M. & Ponrouch, A. (2023). Batteries Supercaps 6, e202200433.]), where their decomposition into boron-crosslinked polymeric matrices in the passivation layer was found to be crucial for calcium plating and stripping. Such BF3 adducts are moisture sensitive and readily hydrolyze to form BF3H2O (Simonov et al., 1996[Simonov, Y. A., Fonari, M. S., Lipkowski, J., Gelmboldt, V. O. & Ganin, E. V. (1996). J. Inclusion Phenom. Mol. Recognit. Chem. 24, 149-161.]; Fonari et al., 1997[Fonari, M. S., Simonov, Y. A., Mazus, M. D., Ganin, E. V. & Gelmboldt, V. O. (1997). Crystallogr. Rep. 42, 790-794.]). The title co-crystal formed from the boron trifluoride–ethyl­ene carbonate (1/1) adduct, BF3·OC(OCH2)2, upon exposure to moisture.

The BF3H2O·2OC(OCH2)2 co-crystal crystallizes in the ortho­rhom­bic Sohncke space group P212121 with one aqua­tri­fluorido­boron and two ethyl­ene carbonate mol­ecules in the asymmetric unit (Fig. 1[link]). The two OC(OCH2)2 mol­ecules have an essentially identical mol­ecular shape (slightly twisted), which also agrees well with the crystal structure determination of 1,3-dioxolan-2-one (Atterberry & Bond, 2019[Atterberry, S. & Bond, M. R. (2019). CSD Communication (CCDC 1965649). CCDC, Cambridge, England.]). The B—O and B—F bond lengths [1.5236 (18) Å and 1.3718 (18)–1.3760 (17) Å, respectively] in the BF3H2O mol­ecule of the title co-crystal are similar to those found in BF3H2O (Mootz & Steffen, 1981a[Mootz, D. & Steffen, M. (1981a). Z. Anorg. Allg. Chem. 483, 171-180.]), BF3H2O·H2O (Mootz & Steffen, 1981b[Mootz, D. & Steffen, M. (1981b). Acta Cryst. B37, 1110-1112.]), BF3H2O·C4H8O2 (Barthen & Frank, 2019[Barthen, P. & Frank, W. (2019). Acta Cryst. E75, 1787-1791.]), or adducts of BF3 and organic carbonates (Bodin et al., 2023[Bodin, C., Forero Saboya, J., Jankowski, P., Radan, K., Foix, D., Courrèges, C., Yousef, I., Dedryvère, R., Davoisne, C., Lozinšek, M. & Ponrouch, A. (2023). Batteries Supercaps 6, e202200433.]). The F—B—F angles [110.75 (12)–112.57 (12)°] are larger than the O—B—F angles, with the angle involving F1 [109.23 (11)°] being significantly larger than the other two angles [105.47 (11)° and 106.41 (12)°]. The hydrogen atoms of the H2O moiety in the BF3H2O adduct are inclined toward the F1 atom, with the angle between the B—O bond and the plane defined by the water atoms being 128 (2)°. The overall shape of the BF3 moiety in BF3H2O in terms of bond lengths and angles is similar to that of the BF4 anion (Lozinšek, 2021[Lozinšek, M. (2021). IUCrData, 6, x211215.]).

[Figure 1]
Figure 1
The asymmetric unit and the atom-labelling scheme of the BF3H2O·2OC(OCH2)2 co-crystal. Anisotropic displacement ellipsoids are drawn at the 50% probability level, hydrogen atoms are depicted as spheres of arbitrary radius, and hydrogen bonds are indicated by blue dashed lines.

Aqua­tri­fluorido­boron is stabilized in the solid state by hydrogen-bonding inter­actions with oxygen hydrogen-bond acceptors, such as 1,4-dioxane (Barthen & Frank, 2019[Barthen, P. & Frank, W. (2019). Acta Cryst. E75, 1787-1791.]) or crown ethers (Bott et al., 1991[Bott, S. B., Alvanipour, A. & Atwood, J. L. (1991). J. Inclusion Phenom. Mol. Recognit. Chem. 10, 153-158.]; Simonov et al., 1996[Simonov, Y. A., Fonari, M. S., Lipkowski, J., Gelmboldt, V. O. & Ganin, E. V. (1996). J. Inclusion Phenom. Mol. Recognit. Chem. 24, 149-161.]; Fonari et al., 1997[Fonari, M. S., Simonov, Y. A., Mazus, M. D., Ganin, E. V. & Gelmboldt, V. O. (1997). Crystallogr. Rep. 42, 790-794.]; Gelmboldt et al., 2012[Gelmboldt, V. O., Ganin, E. V. & Fonari, M. S. (2012). J. Fluorine Chem. 135, 15-24.]). In the present case, the BF3H2O mol­ecule is hydrogen-bonded to the carbonyl oxygen atoms of the two ethyl­ene carbonate mol­ecules, forming a C=O⋯H—O—H⋯O=C fragment with a D22(5) graph-set motif (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]) and O⋯O distances of 2.5637 (15) Å and 2.5985 (15) Å (Table 1[link], Figs. 1[link] and 2[link]). A similar hydrogen-bonding motif was observed in the crystal structure of the BF3H2O·2Ph3PO co-crystal (Chekhlov, 2005[Chekhlov, A. N. (2005). Russ. J. Coord. Chem. 31, 9-13.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.90 (3) 1.67 (3) 2.5637 (15) 175 (3)
O1—H1B⋯O5 0.82 (3) 1.79 (3) 2.5985 (15) 166 (2)
[Figure 2]
Figure 2
Crystal packing of BF3H2O·2OC(OCH2)2 viewed along [100]. Hydrogen bonds are indicated by blue dashed lines.

Synthesis and crystallization

Single crystals of the BF3H2O·2OC(OCH2)2 co-crystal were discovered when a crystalline sample of the air-sensitive BF3·OC(OCH2)2 adduct was examined under a protective cold nitro­gen stream at about −50 °C. The BF3·OC(OCH2)2 compound was synthesized from dry ethyl­ene carbonate and BF3 gas under anhydrous conditions, as described previously (Bodin et al., 2023[Bodin, C., Forero Saboya, J., Jankowski, P., Radan, K., Foix, D., Courrèges, C., Yousef, I., Dedryvère, R., Davoisne, C., Lozinšek, M. & Ponrouch, A. (2023). Batteries Supercaps 6, e202200433.]). Platelet-shaped co-crystals of BF3H2O·2OC(OCH2)2 were located in a droplet at the tip of the aluminium trough (Veith & Bärnighausen, 1974[Veith, M. & Bärnighausen, H. (1974). Acta Cryst. B30, 1806-1813.]) of the low-temperature crystal mounting apparatus, which likely formed by an inadvertent introduction of a small amount of moisture. Selected crystals were mounted on the diffractometer employing a previously described procedure for mounting crystals at low temperatures (Lozinšek et al., 2021[Lozinšek, M., Mercier, H. P. A. & Schrobilgen, G. J. (2021). Angew. Chem. Int. Ed. 60, 8149-8156.]). The crystals melted and turned into droplets when exposed to air at room temperature.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link]. Positions and isotropic thermal displacement parameters of hydrogen atoms were freely refined (Cooper et al., 2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]).

Table 2
Experimental details

Crystal data
Chemical formula 2C3H4O3·H2BF3O
Mr 261.95
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 5.44197 (4), 13.09134 (8), 14.36102 (9)
V3) 1023.12 (1)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.65
Crystal size (mm) 0.18 × 0.08 × 0.05
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, Eiger2 R CdTe 1M
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.])
Tmin, Tmax 0.663, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 34542, 2134, 2100
Rint 0.038
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.050, 1.04
No. of reflections 2134
No. of parameters 195
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.11, −0.13
Absolute structure Flack x determined using 853 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.05 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2022); cell refinement: CrysAlis PRO (Rigaku OD, 2022); data reduction: CrysAlis PRO (Rigaku OD, 2022); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: Olex2 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 2005); software used to prepare material for publication: publCIF (Westrip, 2010).

Aquatrifluoridoboron–1,3-dioxolan-2-one (1/2) top
Crystal data top
2C3H4O3·H2BF3ODx = 1.701 Mg m3
Mr = 261.95Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 24984 reflections
a = 5.44197 (4) Åθ = 4.6–75.5°
b = 13.09134 (8) ŵ = 1.65 mm1
c = 14.36102 (9) ÅT = 150 K
V = 1023.12 (1) Å3Plate, clear colourless
Z = 40.18 × 0.08 × 0.05 mm
F(000) = 536
Data collection top
XtaLAB Synergy, Dualflex, Eiger2 R CdTe 1M
diffractometer
2134 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2100 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 13.3333 pixels mm-1θmax = 76.1°, θmin = 4.6°
ω scansh = 66
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
k = 1516
Tmin = 0.663, Tmax = 1.000l = 1818
34542 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0311P)2 + 0.1146P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max < 0.001
wR(F2) = 0.050Δρmax = 0.11 e Å3
S = 1.04Δρmin = 0.13 e Å3
2134 reflectionsExtinction correction: SHELXL (Sheldrick, 2015b), Fc* = kFc[1+0.001xFc2λ3/sin(2θ)]–1/4
195 parametersExtinction coefficient: 0.0035 (5)
0 restraintsAbsolute structure: Flack x determined using 853 quotients [(I+)–(I)]/[(I+)+(I)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.05 (3)
Hydrogen site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.05387 (16)0.46158 (7)0.69151 (6)0.0345 (2)
F20.31541 (19)0.57475 (6)0.75716 (6)0.0347 (2)
F30.35784 (17)0.40399 (6)0.78723 (6)0.0320 (2)
O10.4683 (2)0.46651 (8)0.64281 (7)0.0283 (2)
H1A0.518 (5)0.404 (2)0.6252 (19)0.071 (8)*
H1B0.432 (5)0.5005 (19)0.5968 (17)0.052 (6)*
O20.6234 (2)0.29312 (8)0.58425 (7)0.0312 (2)
O30.29867 (18)0.19871 (7)0.62526 (7)0.0266 (2)
O40.59130 (18)0.13169 (7)0.53775 (7)0.0255 (2)
C10.5104 (2)0.21312 (10)0.58256 (9)0.0232 (3)
C20.2189 (3)0.09379 (11)0.61128 (10)0.0267 (3)
H2A0.062 (4)0.0949 (14)0.5867 (13)0.033 (5)*
H2B0.220 (3)0.0629 (13)0.6729 (12)0.025 (4)*
C30.4125 (3)0.04997 (10)0.54606 (10)0.0249 (3)
H3A0.349 (4)0.0354 (14)0.4844 (13)0.031 (4)*
H3B0.497 (4)0.0097 (15)0.5697 (12)0.030 (5)*
B10.2884 (3)0.47702 (12)0.72354 (11)0.0252 (3)
O50.3601 (2)0.59963 (8)0.51501 (8)0.0359 (3)
O60.60783 (19)0.63618 (7)0.39559 (7)0.0280 (2)
O70.31353 (19)0.74337 (7)0.43534 (6)0.0266 (2)
C40.4246 (3)0.65572 (10)0.45246 (9)0.0240 (3)
C50.6409 (3)0.72193 (11)0.33235 (10)0.0305 (3)
H5B0.793 (4)0.7521 (16)0.3486 (14)0.040 (5)*
H5A0.649 (4)0.6923 (14)0.2694 (14)0.038 (5)*
C60.4207 (3)0.78959 (11)0.35281 (10)0.0291 (3)
H6B0.470 (3)0.8616 (15)0.3687 (13)0.032 (4)*
H6A0.296 (4)0.7853 (15)0.3028 (14)0.040 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0260 (4)0.0419 (5)0.0356 (4)0.0012 (4)0.0027 (3)0.0046 (4)
F20.0475 (5)0.0265 (4)0.0300 (4)0.0037 (4)0.0046 (4)0.0043 (3)
F30.0379 (5)0.0309 (4)0.0273 (4)0.0026 (4)0.0013 (4)0.0085 (3)
O10.0324 (5)0.0254 (5)0.0271 (5)0.0034 (4)0.0049 (4)0.0046 (4)
O20.0325 (5)0.0237 (4)0.0373 (5)0.0033 (4)0.0051 (5)0.0004 (4)
O30.0256 (5)0.0243 (4)0.0299 (5)0.0006 (4)0.0066 (4)0.0026 (4)
O40.0236 (5)0.0243 (4)0.0285 (5)0.0008 (4)0.0043 (4)0.0025 (4)
C10.0240 (6)0.0236 (6)0.0220 (6)0.0025 (5)0.0007 (5)0.0016 (5)
C20.0243 (7)0.0258 (6)0.0300 (7)0.0032 (5)0.0023 (6)0.0027 (5)
C30.0236 (6)0.0234 (6)0.0275 (6)0.0009 (5)0.0003 (5)0.0010 (5)
B10.0282 (8)0.0253 (7)0.0220 (7)0.0020 (6)0.0007 (6)0.0015 (5)
O50.0459 (6)0.0315 (5)0.0303 (5)0.0073 (5)0.0016 (5)0.0098 (4)
O60.0299 (5)0.0225 (4)0.0314 (5)0.0031 (4)0.0017 (4)0.0006 (4)
O70.0303 (5)0.0240 (4)0.0255 (4)0.0035 (4)0.0055 (4)0.0024 (4)
C40.0278 (7)0.0212 (6)0.0229 (6)0.0023 (5)0.0024 (5)0.0002 (5)
C50.0343 (8)0.0271 (7)0.0302 (7)0.0041 (6)0.0083 (6)0.0000 (6)
C60.0355 (8)0.0244 (7)0.0273 (6)0.0000 (6)0.0034 (6)0.0069 (5)
Geometric parameters (Å, º) top
F1—B11.3718 (18)C2—C31.522 (2)
F2—B11.3753 (17)C3—H3A0.969 (19)
F3—B11.3760 (17)C3—H3B0.97 (2)
O1—H1A0.90 (3)O5—C41.2122 (17)
O1—H1B0.82 (3)O6—C41.3139 (18)
O1—B11.5236 (18)O6—C51.4550 (17)
O2—C11.2147 (17)O7—C41.3200 (16)
O3—C11.3187 (16)O7—C61.4530 (17)
O3—C21.4545 (16)C5—H5B0.95 (2)
O4—C11.3208 (16)C5—H5A0.98 (2)
O4—C31.4512 (17)C5—C61.519 (2)
C2—H2A0.92 (2)C6—H6B1.01 (2)
C2—H2B0.972 (18)C6—H6A0.99 (2)
H1A—O1—H1B110 (2)F1—B1—O1109.23 (11)
B1—O1—H1A119.4 (18)F2—B1—F3112.57 (12)
B1—O1—H1B114.2 (17)F2—B1—O1106.41 (12)
C1—O3—C2109.38 (10)F3—B1—O1105.47 (11)
C1—O4—C3109.35 (10)C4—O6—C5109.37 (11)
O2—C1—O3123.81 (12)C4—O7—C6109.27 (11)
O2—C1—O4122.46 (12)O5—C4—O6124.23 (13)
O3—C1—O4113.73 (12)O5—C4—O7122.13 (14)
O3—C2—H2A108.3 (12)O6—C4—O7113.64 (11)
O3—C2—H2B105.4 (10)O6—C5—H5B106.1 (13)
O3—C2—C3103.55 (11)O6—C5—H5A105.9 (11)
H2A—C2—H2B110.9 (16)O6—C5—C6103.38 (11)
C3—C2—H2A114.2 (12)H5B—C5—H5A110.5 (17)
C3—C2—H2B113.6 (11)C6—C5—H5B113.6 (13)
O4—C3—C2103.71 (11)C6—C5—H5A116.3 (12)
O4—C3—H3A108.0 (11)O7—C6—C5103.40 (11)
O4—C3—H3B107.7 (11)O7—C6—H6B108.2 (11)
C2—C3—H3A112.9 (12)O7—C6—H6A107.1 (12)
C2—C3—H3B114.7 (11)C5—C6—H6B112.2 (11)
H3A—C3—H3B109.3 (16)C5—C6—H6A111.6 (11)
F1—B1—F2110.75 (12)H6B—C6—H6A113.6 (15)
F1—B1—F3112.08 (13)
O3—C2—C3—O45.22 (14)O6—C5—C6—O79.38 (14)
C1—O3—C2—C34.14 (14)C4—O6—C5—C67.83 (15)
C1—O4—C3—C24.81 (14)C4—O7—C6—C58.29 (15)
C2—O3—C1—O2178.23 (13)C5—O6—C4—O5177.25 (14)
C2—O3—C1—O41.26 (15)C5—O6—C4—O72.92 (16)
C3—O4—C1—O2178.06 (13)C6—O7—C4—O5176.09 (13)
C3—O4—C1—O32.44 (15)C6—O7—C4—O63.74 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.90 (3)1.67 (3)2.5637 (15)175 (3)
O1—H1B···O50.82 (3)1.79 (3)2.5985 (15)166 (2)
C3—H3B···F3i0.97 (2)2.474 (19)3.3085 (16)144.2 (14)
C6—H6B···F1ii1.01 (2)2.51 (2)3.3974 (17)146.4 (14)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1/2, y+3/2, z+1.
 

Funding information

Funding for this research was provided by: European Research Council (ERC) (StG HiPeR-F and StG CAMBAT) (grant agreement Nos. 950625 and 715087); Marie Skłodowska-Curie Actions (COFUND-2016 DOC-FAM) under the European Union's Horizon 2020 research and innovation programme (grant No. 754397); Jožef Stefan Institute Director's Fund; Slovenian Research Agency (grant No. N1-0189); Spanish Ministry for Economy, Industry and Competitiveness Severo Ochoa Programme for Centres of Excellence in R&D (contract No. CEX2019-000917-S).

References

First citationAtterberry, S. & Bond, M. R. (2019). CSD Communication (CCDC 1965649). CCDC, Cambridge, England.  Google Scholar
First citationBarthen, P. & Frank, W. (2019). Acta Cryst. E75, 1787–1791.  CSD CrossRef IUCr Journals Google Scholar
First citationBodin, C., Forero Saboya, J., Jankowski, P., Radan, K., Foix, D., Courrèges, C., Yousef, I., Dedryvère, R., Davoisne, C., Lozinšek, M. & Ponrouch, A. (2023). Batteries Supercaps 6, e202200433.  CSD CrossRef Google Scholar
First citationBott, S. B., Alvanipour, A. & Atwood, J. L. (1991). J. Inclusion Phenom. Mol. Recognit. Chem. 10, 153–158.  CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChekhlov, A. N. (2005). Russ. J. Coord. Chem. 31, 9–13.  Web of Science CrossRef CAS Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEisele, L., Laszczynski, N., Schneider, M., Lucht, B. & Krossing, I. (2020). J. Electrochem. Soc. 167, 060514.  CSD CrossRef Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFonari, M. S., Simonov, Y. A., Mazus, M. D., Ganin, E. V. & Gelmboldt, V. O. (1997). Crystallogr. Rep. 42, 790–794.  Google Scholar
First citationForero-Saboya, J., Bodin, C. & Ponrouch, A. (2021). Electrochem. Commun. 124, 106936.  Google Scholar
First citationGelmboldt, V. O., Ganin, E. V. & Fonari, M. S. (2012). J. Fluorine Chem. 135, 15–24.  CrossRef CAS Google Scholar
First citationLozinšek, M. (2021). IUCrData, 6, x211215.  Google Scholar
First citationLozinšek, M., Mercier, H. P. A. & Schrobilgen, G. J. (2021). Angew. Chem. Int. Ed. 60, 8149–8156.  Google Scholar
First citationMootz, D. & Steffen, M. (1981a). Z. Anorg. Allg. Chem. 483, 171–180.  CSD CrossRef ICSD CAS Google Scholar
First citationMootz, D. & Steffen, M. (1981b). Acta Cryst. B37, 1110–1112.  CrossRef ICSD CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimonov, Y. A., Fonari, M. S., Lipkowski, J., Gelmboldt, V. O. & Ganin, E. V. (1996). J. Inclusion Phenom. Mol. Recognit. Chem. 24, 149–161.  CrossRef CAS Google Scholar
First citationVeith, M. & Bärnighausen, H. (1974). Acta Cryst. B30, 1806–1813.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146