metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(Carbazol-9-ido-κN)di­chlorido­(η5:η1-2,3,4,5-tetra­methyl­penta­fulvene)tantalum(V)

crossmark logo

aCarl von Ossietzky Universität Oldenburg, Fakultät V - Mathematik und Naturwissenschaften, Institut für Chemie, Carl-von-Ossietzky-Strasse 9-11, D-26111 Oldenburg, Germany
*Correspondence e-mail: ruediger.beckhaus@uni-oldenburg.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 15 November 2022; accepted 20 December 2022; online 23 December 2022)

The reaction of (η5:η1-2,3,4,5-tetra­methyl­penta­fulvene)tantalum(V) dicarbazolide chloride (1) with etheric HCl results in the formation of the title compound (2), [Ta(C10H14)(C12H8N)Cl2]. The TaV atom has a distorted tetra­hedral coordination environment in a three-legged piano-stool fashion. The conformation of the penta­fulvene exocyclic C atom to the three other ligands is staggered and not eclipsed, as found in the crystal structure of 1. Inter­molecular inter­actions include ππ stacking, H⋯π inter­actions and weak C—H⋯Cl hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Penta­fulvenes are versatile compounds in organic and organometallic chemistry (Preethalayam et al., 2017[Preethalayam, P., Krishnan, K. S., Thulasi, S., Chand, S. S., Joseph, J., Nair, V., Jaroschik, F. & Radhakrishnan, K. V. (2017). Chem. Rev. 117, 3930-3989.]). The latter is dominated by group 4 complexes and their broad scope of consecutive reactions (Beckhaus, 2018[Beckhaus, R. (2018). Coord. Chem. Rev. 376, 467-477.]). For group 5 derivatives, a bis­(penta­fulvene)niobium complex was synthesized (Manssen et al., 2018[Manssen, M., Dierks, A., de Graaff, S., Schmidtmann, M. & Beckhaus, R. (2018). Angew. Chem. 130, 12238-12242.]), and subsequently alkyl­idene (de Graaff et al., 2021[Graaff, S. de, Chandi, A., Schmidtmann, M. & Beckhaus, R. (2021). Organometallics, 40, 3298-3305.]), and ethyl­ene penta­fulvene complexes were investigated (de Graaff et al., 2022[Graaff, S. de, Schwitalla, K., Haaker, C. V., Bengen, N., Schmidtmann, M. & Beckhaus, R. (2022). Dalton Trans. 51, 12502-12511.]). For tantalum, a series of penta­fulvene complexes has been prepared by C—H activation of a cyclo­penta­dienyl methyl group, also known as `tuck-in' complexes: from deca­methyl tantalocene hydride by oxidative addition of one methyl C—H bond to the metal (Antonelli et al., 1993[Antonelli, D. M., Schaefer, W. P., Parkin, G. & Bercaw, J. E. (1993). J. Organomet. Chem. 462, 213-220.]) and trapping by elemental sulfur (Brunner et al., 1996[Brunner, H., Wachter, J., Gehart, G., Leblanc, J. & Moïse, C. (1996). Organometallics, 15, 1327-1330.]), as well as by rearrangement of a borataalkene tantalocene (Cook et al., 2002[Cook, K. S., Piers, W. E. & McDonald, R. (2002). J. Am. Chem. Soc. 124, 5411-5418.]), or Cp*Ta[N(iPr)C(NMe2)N(iPr)](κ1-NNMe2) (Keane et al., 2013[Keane, A. J., Zavalij, P. Y. & Sita, L. R. (2013). J. Am. Chem. Soc. 135, 9580-9583.]). Uncommonly, Riley et al. (1999[Riley, P. N., Parker, J. R., Fanwick, P. E. & Rothwell, I. P. (1999). Organometallics, 18, 3579-3583.]) found the C—H activation at the Cp* ligand of Cp*TaCl4 by an amide, synthesizing 1, η5:η1-(2,3,4,5-tetra­methyl­penta­fulvene)tantalum(V) dicarbazolide chloride.

The mol­ecular structure of the title compound 2 is shown in Fig. 1[link]. The TaV atom is coordinated in a tetra­hedrally distorted three-legged piano-stool fashion. Two angles between the three η1-ligands are smaller [Cl1—Ta1—Cl2: 88.239 (10)°; N1—Ta1—Cl2: 93.54 (3)°], the third being widened due to the direct neighboring of the penta­fulvene exocyclic η1-carbon (C6exo) coordination site [N1—Ta1—Cl1: 114.15 (3)°]. The C6exo atom coordinates roughly opposite of Cl2 to the central tantalum atom [C6—Ta1—Cl2: 171.58 (3)°]. Relative to the centroid of the five-membered ring (Ct), the angles to the chloride ligands are smaller than to the nitro­gen ligands [Cl1—Ta1—Ct: 116.715 (8)°; Cl2—Ta1—Ct: 115.508 (9)°; N1—Ta1—Ct: 121.012 (3)°]. The bond length Ta1—N1 [2.0433 (9) Å] and the sum of angles at N1 [347.1 (2)°] indicates a weak inter­action of the nitro­gen lone pair with the metal. The penta­fulvene coordinates in a π-η5:σ-η1 fashion and exhibits typical distortion parameters (Fig. 2[link]a). The C—C bond lengths within the penta­fulvene are summarized in Fig. 2[link]b. The penta­fulvene has a ring slippage Δ of 0.31 Å and a θ angle of the Cipso—Cexo bond out of the plane of the five-membered ring of 36.30 (12)°. The Cipso—Cexo bond is a single to double bond [C1–C6: 1.4311 (7) Å; Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]] and the distance between the central tantalum atom and the Cexo atom exceeds the sum of their covalent radii [Ta1—C6: 2.379 (11) Å; sum of covalent radii 2.11 Å (Pyykkö & Atsumi, 2009[Pyykkö, P. & Atsumi, M. (2009). Chem. Eur. J. 15, 12770-12779.])].

[Figure 1]
Figure 1
Mol­ecular structure of 2. Displacement ellipsoids correspond to the 50% probability level.
[Figure 2]
Figure 2
(a) Schematic representation of key structural factors characterizing a penta­fulvene complex. (b) Schematic drawing of the penta­fulvene ligand above the central tantalum atom. C—C bond lengths of the penta­fulvene ligand are given in Å.

On the supra­molecular level, around an inversion center, two mol­ecules mutually inter­act via two weak carbazolide C—H⋯Cl hydrogen bonds [H13⋯Cl2: 2.7719 (12) Å; Fig. 3[link]a]. Consequently, the Ta1—Cl2 bond [2.3965 (3) Å) is longer than the Ta1—Cl1 bond [2.3452 (3) Å]. These pairs form a double-chain (Fig. 3[link]b), linked by supra­molecular contacts of the penta­fulvene and the carbazolide ligands via ππ stacking [C1⋯C17: 3.3867 (15) Å] and an H⋯π inter­action [C15⋯H10c: 2.773 (6) Å]. Numerical details of other hydrogen-bonding inter­actions are summerized in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8b⋯Cl2i 0.98 2.91 (1) 3.7119 (14) 140 (1)
C12—H12⋯Cl2 0.95 2.64 (1) 3.3663 (12) 134 (1)
C13—H13⋯Cl2ii 0.95 2.77 (1) 3.7217 (12) 179 (1)
C15—H15⋯Cl2iii 0.95 2.86 (1) 3.7923 (12) 167 (1)
C18—H18⋯Cl1iii 0.95 3.13 (1) 3.7645 (11) 126 (1)
C18—H18⋯Cl2iii 0.95 2.85 (1) 3.7795 (12) 167 (1)
C19—H19⋯Cl1iii 0.95 3.08 (1) 3.7479 (12) 128 (1)
C20—H20⋯Cl1iv 0.95 2.95 (1) 3.5548 (12) 123 (1)
Symmetry codes: (i) x, y+1, z; (ii) [-x, -y+1, -z+1]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 3]
Figure 3
(a) A view along the b axis showing the packing of mol­ecule pairs of 2 inter­acting via C—H⋯Cl hydrogen bonds. (b) Double chains of 2 formed by ππ stacking and H⋯π inter­actions. Color code: C dark gray, H white, Cl green, N blue, Ta light gray.

Synthesis and crystallization

All steps were carried out under a dry argon atmosphere in a glovebox and under a dry nitro­gen atmosphere using Schlenk techniques. Compound 1 was prepared according to Riley et al. (1999[Riley, P. N., Parker, J. R., Fanwick, P. E. & Rothwell, I. P. (1999). Organometallics, 18, 3579-3583.]), substituting potassium for lithium. Solvents were dried according to standard procedures over Na/K alloy with benzo­phenone as indicator and distilled under a nitro­gen atmosphere. Etheric HCl was acquired from Sigma-Aldrich.

Complex 1 (550 mg, 0.8 mmol) was dissolved in tetra­hydro­furan (20 ml) and cooled to 223 K. One equivalent of etheric HCl (2 M, 0.4 ml, 0.8 mmol) was added dropwise and the solution was slowly brought to room temperature. After stirring over night, the solvents were removed in vacuo and the residue was extracted with toluene (10 ml). The solution was diluted with n-hexane (10 ml) and stored at 277 K for three days to yield a red crystalline material containing 1 and 2 (1:1). 1H NMR (300 MHz, C6D6, 294 K): δ = 0.79 (s, 3H, 1), 0.85 (s, 3H, 1), 1.27 (s, 6H, 2), 1.49 (s, 3H, 1), 1.53 (s, 6H, 2), 2.13 (s, 3H, 1), 2.62 (s, 2H, 2), 3.27 (d, 2JHH = 7.4 Hz, 1H, 1), 3.65 (d, 2JHH = 7.4 Hz, 1H, 1), 6.30–8.29 (aromatic signals unassigned) p.p.m.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Refinement using SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and anisotropic displacement parameters results in high residual electron densities next to the tantalum atom (maximum: 4.16 e Å−3; minimum: −2.83 e Å−3). Refinement with OLEX2 (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) provides the possibility to refine the tantalum atom with anharmonic displacement parameters. Thereby, the residue electron density is lowered significantly (maximum: 1.28 e Å−3; minimum: −1.24 e Å−3). Refining all atoms anharmonically was dismissed, because it lowers the reliability factors only marginally, but more than triples the refinement parameters (263 versus 888 parameters).

Table 2
Experimental details

Crystal data
Chemical formula [Ta(C10H14)(C12H8N)Cl2]
Mr 552.28
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 17.8422 (12), 7.3442 (5), 16.7885 (11)
β (°) 117.950 (2)
V3) 1943.3 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.94
Crystal size (mm) 0.12 × 0.11 × 0.05
 
Data collection
Diffractometer Bruker Photon III CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.511, 0.651
No. of measured, independent and observed [I ≥ 2u(I)] reflections 128718, 12240, 11363
Rint 0.043
(sin θ/λ)max−1) 0.909
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.044, 1.11
No. of reflections 12240
No. of parameters 264
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.28, −1.24
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), and OLEX2 (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: Olex2 (Bourhis et al., 2015); molecular graphics: Olex2 (Bourhis et al., 2015); software used to prepare material for publication: Olex2 (Bourhis et al., 2015).

(Carbazol-9-ido-κN)dichlorido(η5:η1-2,3,4,5-tetramethylpentafulvene)tantalum(V) top
Crystal data top
[Ta(C10H14)(C12H8N)Cl2]F(000) = 1072.380
Mr = 552.28Dx = 1.888 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.8422 (12) ÅCell parameters from 9727 reflections
b = 7.3442 (5) Åθ = 2.6–40.3°
c = 16.7885 (11) ŵ = 5.94 mm1
β = 117.950 (2)°T = 100 K
V = 1943.3 (2) Å3Block, red
Z = 40.12 × 0.11 × 0.05 mm
Data collection top
Bruker Photon III CPAD
diffractometer
11363 reflections with I 2θ(I)
φ and ω scansRint = 0.043
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 40.3°, θmin = 2.4°
Tmin = 0.511, Tmax = 0.651h = 3232
128718 measured reflectionsk = 1313
12240 independent reflectionsl = 3030
Refinement top
Refinement on F235 constraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.0164P)2 + 1.1947P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
12240 reflectionsΔρmax = 1.28 e Å3
264 parametersΔρmin = 1.24 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ta10.278227 (6)0.666931 (14)0.609660 (6)0.01317 (5)
Cl10.392598 (18)0.63539 (4)0.754919 (18)0.02060 (5)
Cl20.188124 (17)0.54264 (4)0.666091 (19)0.01858 (5)
N10.26155 (5)0.45000 (13)0.52677 (6)0.01386 (12)
C10.31669 (7)0.90414 (15)0.55660 (7)0.01712 (16)
C20.30629 (8)0.98409 (15)0.62994 (8)0.01875 (17)
C30.21917 (8)0.97380 (15)0.60722 (8)0.01822 (17)
C40.17348 (7)0.89795 (15)0.51906 (8)0.01707 (16)
C50.23188 (7)0.85726 (15)0.48611 (7)0.01642 (16)
C60.38444 (7)0.77942 (18)0.57472 (8)0.01934 (18)
H6a0.44053 (7)0.80823 (18)0.62603 (8)0.0232 (2)*
H6b0.38711 (7)0.72515 (18)0.52213 (8)0.0232 (2)*
C70.37542 (10)1.06857 (19)0.71354 (9)0.0256 (2)
H7a0.3710 (6)1.20151 (19)0.7085 (4)0.0384 (3)*
H7b0.3696 (6)1.0293 (16)0.76616 (15)0.0384 (3)*
H7c0.43078 (10)1.0301 (16)0.7205 (5)0.0384 (3)*
C80.17969 (10)1.03756 (19)0.66363 (10)0.0256 (2)
H8a0.22378 (17)1.052 (2)0.7263 (2)0.0384 (3)*
H8b0.1516 (9)1.1549 (10)0.6408 (7)0.0384 (3)*
H8c0.1378 (7)0.9479 (10)0.6608 (8)0.0384 (3)*
C90.07868 (8)0.88368 (19)0.46864 (9)0.0225 (2)
H9a0.06216 (9)0.8053 (15)0.4158 (5)0.0337 (3)*
H9b0.05769 (11)0.8313 (17)0.5081 (3)0.0337 (3)*
H9c0.05421 (9)1.0052 (3)0.4490 (8)0.0337 (3)*
C100.21185 (8)0.78707 (18)0.39424 (7)0.01993 (18)
H10a0.2608 (3)0.7197 (15)0.39786 (18)0.0299 (3)*
H10b0.1626 (5)0.7060 (14)0.3724 (4)0.0299 (3)*
H10c0.1992 (8)0.8897 (2)0.3526 (2)0.0299 (3)*
C110.18132 (6)0.39330 (14)0.45672 (7)0.01415 (14)
C120.10037 (7)0.42830 (16)0.44654 (8)0.01689 (16)
H120.09314 (7)0.49491 (16)0.49097 (8)0.02027 (19)*
C130.03042 (7)0.36314 (17)0.36962 (8)0.01928 (18)
H130.02505 (7)0.38633 (17)0.36168 (8)0.0231 (2)*
C140.04027 (7)0.26427 (18)0.30388 (8)0.01979 (18)
H140.00838 (7)0.22206 (18)0.25180 (8)0.0238 (2)*
C150.12064 (7)0.22749 (16)0.31426 (7)0.01721 (16)
H150.12740 (7)0.16001 (16)0.26977 (7)0.02065 (19)*
C160.19144 (6)0.29109 (14)0.39104 (7)0.01395 (14)
C170.28193 (6)0.27368 (14)0.42311 (7)0.01377 (14)
C180.32964 (7)0.18151 (15)0.38960 (8)0.01630 (16)
H180.30272 (7)0.12006 (15)0.33329 (8)0.01957 (19)*
C190.41763 (7)0.18178 (16)0.44069 (8)0.01833 (17)
H190.45125 (7)0.12051 (16)0.41887 (8)0.0220 (2)*
C200.45710 (7)0.27159 (17)0.52402 (8)0.01864 (17)
H200.51720 (7)0.26906 (17)0.55802 (8)0.0224 (2)*
C210.41031 (7)0.36438 (16)0.55811 (7)0.01696 (16)
H210.43742 (7)0.42398 (16)0.61491 (7)0.02035 (19)*
C220.32212 (6)0.36687 (14)0.50595 (7)0.01367 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ta10.01119 (6)0.01644 (8)0.01408 (7)0.00048 (3)0.00775 (5)0.00024 (3)
Cl10.01654 (10)0.02804 (12)0.01445 (9)0.00206 (9)0.00495 (8)0.00104 (8)
Cl20.01698 (10)0.02367 (11)0.01952 (10)0.00074 (8)0.01225 (8)0.00389 (8)
N10.0117 (3)0.0159 (3)0.0152 (3)0.0003 (2)0.0074 (2)0.0015 (2)
C10.0197 (4)0.0167 (4)0.0181 (4)0.0030 (3)0.0115 (3)0.0003 (3)
C20.0256 (5)0.0139 (4)0.0200 (4)0.0037 (3)0.0135 (4)0.0021 (3)
C30.0228 (4)0.0155 (4)0.0200 (4)0.0021 (3)0.0130 (4)0.0002 (3)
C40.0187 (4)0.0159 (4)0.0182 (4)0.0030 (3)0.0100 (3)0.0023 (3)
C50.0192 (4)0.0166 (4)0.0155 (4)0.0004 (3)0.0098 (3)0.0016 (3)
C60.0165 (4)0.0244 (5)0.0207 (4)0.0033 (3)0.0118 (3)0.0016 (4)
C70.0300 (6)0.0238 (5)0.0232 (5)0.0088 (4)0.0127 (4)0.0072 (4)
C80.0324 (6)0.0230 (5)0.0292 (6)0.0029 (4)0.0210 (5)0.0041 (4)
C90.0192 (4)0.0235 (5)0.0250 (5)0.0062 (4)0.0106 (4)0.0036 (4)
C100.0243 (5)0.0215 (4)0.0153 (4)0.0007 (4)0.0105 (4)0.0018 (3)
C110.0122 (3)0.0154 (4)0.0151 (3)0.0006 (3)0.0066 (3)0.0001 (3)
C120.0128 (3)0.0197 (4)0.0194 (4)0.0011 (3)0.0086 (3)0.0007 (3)
C130.0121 (4)0.0240 (5)0.0207 (4)0.0016 (3)0.0068 (3)0.0011 (4)
C140.0135 (4)0.0251 (5)0.0180 (4)0.0009 (3)0.0050 (3)0.0003 (4)
C150.0153 (4)0.0204 (4)0.0146 (4)0.0005 (3)0.0060 (3)0.0010 (3)
C160.0126 (3)0.0154 (3)0.0144 (3)0.0004 (3)0.0068 (3)0.0001 (3)
C170.0124 (3)0.0156 (4)0.0142 (3)0.0009 (3)0.0069 (3)0.0001 (3)
C180.0154 (4)0.0195 (4)0.0162 (4)0.0014 (3)0.0093 (3)0.0011 (3)
C190.0154 (4)0.0232 (5)0.0194 (4)0.0031 (3)0.0106 (3)0.0000 (3)
C200.0128 (4)0.0240 (5)0.0195 (4)0.0034 (3)0.0079 (3)0.0006 (3)
C210.0121 (3)0.0228 (4)0.0155 (4)0.0013 (3)0.0061 (3)0.0007 (3)
C220.0118 (3)0.0162 (4)0.0138 (3)0.0012 (3)0.0068 (3)0.0001 (3)
Geometric parameters (Å, º) top
Ta1—Cl12.3452 (3)C8—H8c0.9800
Ta1—Cl22.3965 (3)C9—H9a0.9800
Ta1—N12.0433 (9)C9—H9b0.9800
Ta1—C12.2074 (11)C9—H9c0.9800
Ta1—C22.3732 (11)C10—H10a0.9800
Ta1—C32.4801 (11)C10—H10b0.9800
Ta1—C42.4536 (11)C10—H10c0.9800
Ta1—C52.3091 (11)C11—C121.3965 (14)
Ta1—C62.3791 (11)C11—C161.4137 (14)
N1—C111.4238 (13)C12—H120.9500
N1—C221.4202 (13)C12—C131.3941 (16)
C1—C21.4525 (16)C13—H130.9500
C1—C51.4594 (16)C13—C141.3994 (18)
C1—C61.4311 (17)C14—H140.9500
C2—C31.4183 (18)C14—C151.3876 (16)
C2—C71.5012 (18)C15—H150.9500
C3—C41.4263 (16)C15—C161.3960 (15)
C3—C81.4959 (17)C16—C171.4486 (14)
C4—C51.4217 (16)C17—C181.3957 (15)
C4—C91.4988 (17)C17—C221.4079 (14)
C5—C101.5020 (16)C18—H180.9500
C6—H6a0.9900C18—C191.3922 (16)
C6—H6b0.9900C19—H190.9500
C7—H7a0.9800C19—C201.4015 (17)
C7—H7b0.9800C20—H200.9500
C7—H7c0.9800C20—C211.3917 (16)
C8—H8a0.9800C21—H210.9500
C8—H8b0.9800C21—C221.3969 (15)
Cl2—Ta1—Cl188.239 (10)C10—C5—C4127.35 (11)
N1—Ta1—Cl1114.15 (3)C1—C6—Ta165.39 (6)
N1—Ta1—Cl293.54 (3)H6a—C6—Ta1117.19 (3)
C1—Ta1—Cl1102.36 (3)H6a—C6—C1117.19 (7)
C1—Ta1—Cl2148.56 (3)H6b—C6—Ta1117.19 (3)
C1—Ta1—N1108.30 (4)H6b—C6—C1117.19 (6)
C2—Ta1—Cl185.73 (3)H6b—C6—H6a114.2
C2—Ta1—Cl2116.91 (3)H7a—C7—C2109.5
C2—Ta1—N1144.74 (4)H7b—C7—C2109.5
C2—Ta1—C136.75 (4)H7b—C7—H7a109.5
C3—Ta1—Cl1105.24 (3)H7c—C7—C2109.5
C3—Ta1—Cl289.66 (3)H7c—C7—H7a109.5
C3—Ta1—N1140.55 (4)H7c—C7—H7b109.5
C3—Ta1—C159.08 (4)H8a—C8—C3109.5
C3—Ta1—C233.89 (4)H8b—C8—C3109.5
C4—Ta1—Cl1138.73 (3)H8b—C8—H8a109.5
C4—Ta1—Cl292.94 (3)H8c—C8—C3109.5
C4—Ta1—N1106.95 (4)H8c—C8—H8a109.5
C4—Ta1—C159.64 (4)H8c—C8—H8b109.5
C4—Ta1—C257.21 (4)H9a—C9—C4109.5
C4—Ta1—C333.60 (4)H9b—C9—C4109.5
C5—Ta1—Cl1139.87 (3)H9b—C9—H9a109.5
C5—Ta1—Cl2124.16 (3)H9c—C9—C4109.5
C5—Ta1—N189.07 (4)H9c—C9—H9a109.5
C5—Ta1—C137.62 (4)H9c—C9—H9b109.5
C5—Ta1—C259.83 (4)H10a—C10—C5109.5
C5—Ta1—C357.63 (4)H10b—C10—C5109.5
C5—Ta1—C434.57 (4)H10b—C10—H10a109.5
C6—Ta1—Cl183.41 (3)H10c—C10—C5109.5
C6—Ta1—Cl2171.58 (3)H10c—C10—H10a109.5
C6—Ta1—N188.93 (4)H10c—C10—H10b109.5
C6—Ta1—C136.12 (4)C12—C11—N1128.98 (9)
C6—Ta1—C263.62 (4)C16—C11—N1110.67 (8)
C6—Ta1—C393.54 (4)C16—C11—C12120.34 (9)
C6—Ta1—C494.03 (4)H12—C12—C11120.80 (6)
C6—Ta1—C563.87 (4)C13—C12—C11118.41 (10)
C11—N1—Ta1124.03 (7)C13—C12—H12120.80 (7)
C22—N1—Ta1128.17 (7)H13—C13—C12119.34 (7)
C22—N1—C11104.92 (8)C14—C13—C12121.33 (10)
C2—C1—Ta177.85 (6)C14—C13—H13119.34 (6)
C5—C1—Ta174.97 (6)H14—C14—C13119.79 (6)
C5—C1—C2106.66 (10)C15—C14—C13120.42 (10)
C6—C1—Ta178.49 (7)C15—C14—H14119.79 (7)
C6—C1—C2120.62 (10)H15—C15—C14120.48 (7)
C6—C1—C5118.22 (10)C16—C15—C14119.04 (10)
C1—C2—Ta165.41 (6)C16—C15—H15120.48 (6)
C3—C2—Ta177.19 (6)C15—C16—C11120.45 (9)
C3—C2—C1108.05 (10)C17—C16—C11106.53 (8)
C7—C2—Ta1124.43 (9)C17—C16—C15133.01 (10)
C7—C2—C1125.74 (12)C18—C17—C16132.62 (9)
C7—C2—C3126.17 (11)C22—C17—C16106.69 (8)
C2—C3—Ta168.92 (6)C22—C17—C18120.63 (9)
C4—C3—Ta172.18 (6)H18—C18—C17120.80 (6)
C4—C3—C2108.73 (10)C19—C18—C17118.40 (10)
C8—C3—Ta1126.62 (8)C19—C18—H18120.80 (6)
C8—C3—C2126.51 (11)H19—C19—C18119.68 (6)
C8—C3—C4124.72 (11)C20—C19—C18120.63 (10)
C3—C4—Ta174.22 (6)C20—C19—H19119.68 (6)
C5—C4—Ta167.15 (6)H20—C20—C19119.22 (6)
C5—C4—C3108.62 (10)C21—C20—C19121.56 (10)
C9—C4—Ta1129.19 (8)C21—C20—H20119.22 (6)
C9—C4—C3123.93 (10)H21—C21—C20121.14 (6)
C9—C4—C5127.19 (11)C22—C21—C20117.72 (10)
C1—C5—Ta167.41 (6)C22—C21—H21121.14 (6)
C4—C5—Ta178.28 (6)C17—C22—N1110.98 (8)
C4—C5—C1107.78 (10)C21—C22—N1127.94 (9)
C10—C5—Ta1121.82 (8)C21—C22—C17121.02 (9)
C10—C5—C1124.80 (10)
Ta1—N1—C11—C1221.34 (10)N1—C11—C16—C15177.53 (9)
Ta1—N1—C11—C16157.54 (8)N1—C11—C16—C173.18 (9)
Ta1—N1—C22—C17156.81 (9)N1—C22—C17—C162.47 (10)
Ta1—N1—C22—C2125.74 (11)N1—C22—C17—C18179.87 (9)
Ta1—C1—C2—C366.06 (7)N1—C22—C21—C20179.22 (12)
Ta1—C1—C2—C7115.89 (8)C1—C2—C3—C43.05 (10)
Ta1—C1—C5—C468.63 (7)C1—C2—C3—C8179.13 (9)
Ta1—C1—C5—C10113.97 (7)C1—C5—C4—C31.63 (10)
Ta1—C2—C1—C570.04 (7)C1—C5—C4—C9175.84 (9)
Ta1—C2—C1—C668.61 (7)C2—C3—C4—C50.87 (10)
Ta1—C2—C3—C461.51 (7)C2—C3—C4—C9173.56 (9)
Ta1—C2—C3—C8120.67 (8)C3—C4—C5—C10175.68 (9)
Ta1—C3—C2—C158.46 (7)C11—C12—C13—C140.24 (13)
Ta1—C3—C2—C7123.51 (8)C11—C16—C15—C140.73 (13)
Ta1—C3—C4—C558.60 (7)C11—C16—C17—C18176.53 (8)
Ta1—C3—C4—C9126.96 (7)C11—C16—C17—C220.43 (10)
Ta1—C4—C3—C259.48 (7)C12—C13—C14—C150.48 (15)
Ta1—C4—C3—C8122.65 (8)C13—C14—C15—C160.23 (14)
Ta1—C4—C5—C161.41 (7)C14—C15—C16—C17178.34 (10)
Ta1—C4—C5—C10121.28 (7)C15—C16—C17—C182.63 (16)
Ta1—C5—C1—C272.07 (7)C15—C16—C17—C22179.59 (14)
Ta1—C5—C1—C667.75 (7)C16—C17—C18—C19175.66 (13)
Ta1—C5—C4—C363.04 (7)C16—C17—C22—C21175.18 (9)
Ta1—C5—C4—C9122.75 (7)C17—C18—C19—C200.42 (13)
Ta1—C6—C1—C268.27 (7)C17—C22—C21—C202.00 (12)
Ta1—C6—C1—C565.82 (7)C18—C19—C20—C210.59 (14)
N1—C11—C12—C13177.59 (12)C19—C20—C21—C220.62 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8b···Cl2i0.982.91 (1)3.7119 (14)140 (1)
C12—H12···Cl20.952.64 (1)3.3663 (12)134 (1)
C13—H13···Cl2ii0.952.77 (1)3.7217 (12)179 (1)
C15—H15···Cl2iii0.952.86 (1)3.7923 (12)167 (1)
C18—H18···Cl1iii0.953.13 (1)3.7645 (11)126 (1)
C18—H18···Cl2iii0.952.85 (1)3.7795 (12)167 (1)
C19—H19···Cl1iii0.953.08 (1)3.7479 (12)128 (1)
C20—H20···Cl1iv0.952.95 (1)3.5548 (12)123 (1)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x, y+1/2, z1/2; (iv) x+1, y1/2, z+3/2.
 

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. 2226).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAntonelli, D. M., Schaefer, W. P., Parkin, G. & Bercaw, J. E. (1993). J. Organomet. Chem. 462, 213–220.  CrossRef CAS Google Scholar
First citationBeckhaus, R. (2018). Coord. Chem. Rev. 376, 467–477.  Web of Science CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrunner, H., Wachter, J., Gehart, G., Leblanc, J. & Moïse, C. (1996). Organometallics, 15, 1327–1330.  CrossRef CAS Google Scholar
First citationCook, K. S., Piers, W. E. & McDonald, R. (2002). J. Am. Chem. Soc. 124, 5411–5418.  CrossRef PubMed CAS Google Scholar
First citationGraaff, S. de, Chandi, A., Schmidtmann, M. & Beckhaus, R. (2021). Organometallics, 40, 3298–3305.  Google Scholar
First citationGraaff, S. de, Schwitalla, K., Haaker, C. V., Bengen, N., Schmidtmann, M. & Beckhaus, R. (2022). Dalton Trans. 51, 12502–12511.  PubMed Google Scholar
First citationKeane, A. J., Zavalij, P. Y. & Sita, L. R. (2013). J. Am. Chem. Soc. 135, 9580–9583.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationManssen, M., Dierks, A., de Graaff, S., Schmidtmann, M. & Beckhaus, R. (2018). Angew. Chem. 130, 12238–12242.  Google Scholar
First citationPreethalayam, P., Krishnan, K. S., Thulasi, S., Chand, S. S., Joseph, J., Nair, V., Jaroschik, F. & Radhakrishnan, K. V. (2017). Chem. Rev. 117, 3930–3989.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPyykkö, P. & Atsumi, M. (2009). Chem. Eur. J. 15, 12770–12779.  Web of Science CrossRef PubMed Google Scholar
First citationRiley, P. N., Parker, J. R., Fanwick, P. E. & Rothwell, I. P. (1999). Organometallics, 18, 3579–3583.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146