inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Nitro­sonium tetra­fluorido­borate, NOBF4

crossmark logo

aDepartment of Inorganic Chemistry and Technology, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
*Correspondence e-mail: matic.lozinsek@ijs.si

Edited by M. Weil, Vienna University of Technology, Austria (Received 9 November 2021; accepted 16 November 2021; online 18 November 2021)

The crystal structure of oxido­nitro­gen(1+) tetra­fluorido­borate (nitro­sonium tetra­fluorido­borate), NO+BF4, was refined on the basis of single-crystal X-ray diffraction data at 150 K. The compound crystallizes in the baryte structure type with ortho­rhom­bic Pnma symmetry. The crystal structure exhibits cationic disorder with equal occupation of N and O atoms at the same site.

3D view (loading...)
[Scheme 3D1]

Structure description

Numerous nitro­sonium fluorido salts are known (e.g., Sunder et al., 1979[Sunder, W. A., Wayda, A. L., Distefano, D., Falconer, W. E. & Griffiths, J. E. (1979). J. Fluorine Chem. 14, 299-325.]; Mazej et al., 2009[Mazej, Z., Ponikvar-Svet, M., Liebman, J. F., Passmore, J. & Jenkins, H. D. B. (2009). J. Fluorine Chem. 130, 788-791.]) and several of them have been structurally characterized (e.g., Adam et al., 1996[Adam, S., Ellern, A. & Seppelt, K. (1996). Chem. Eur. J. 2, 398-402.]). Nonetheless, for nitro­sonium tetra­fluorido­borate (NOBF4), which is an efficient one-electron oxidant, nitro­sating and diazo­tizing agent (Olah et al., 2004[Olah, G. A., Prakash, G. K. S., Wang, Q., Li, X.-y., Prakash, G. K. S. & Hu, J. (2004). Nitrosonium Tetrafluoroborate. In Encyclopedia of Reagents for Organic Synthesis.]), only the unit-cell parameters derived from X-ray powder diffraction data have been reported previously (a = 6.983 Å, b = 8.911 Å, c = 5.675 Å, space group Pbnm; Evans et al., 1964[Evans, J. C., Rinn, H. W., Kuhn, S. J. & Olah, G. A. (1964). Inorg. Chem. 3, 857-861.]). Nitro­sonium tetra­fluorido­borate crystallizes in the baryte (BaSO4) structure type and is isotypic with ammonium, alkali metal (K, Rb, Cs) (Clark & Lynton, 1969[Clark, M. J. R. & Lynton, H. (1969). Can. J. Chem. 47, 2579-2586.]) and di­oxy­gen(1+) tetra­fluorido­borates (Wilson et al., 1971[Wilson, J. N., Curtis, R. M. & Goetschel, C. T. (1971). J. Appl. Cryst. 4, 261-262.]). The current unit cell (Table 1[link]) refined from single-crystal X-ray data at 150 K is in good agreement with the aforementioned previously published values.

Table 1
Experimental details

Crystal data
Chemical formula NO+BF4
Mr 116.82
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 150
a, b, c (Å) 8.8588 (3), 5.6268 (2), 6.8460 (2)
V3) 341.25 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.31
Crystal size (mm) 0.24 × 0.19 × 0.12
 
Data collection
Diffractometer New Gemini, Dual, Cu at home/near, Atlas
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, The Woodlands, TX, USA.])
Tmin, Tmax 0.948, 0.975
No. of measured, independent and observed [I > 2σ(I)] reflections 16165, 976, 824
Rint 0.054
(sin θ/λ)max−1) 0.864
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.081, 1.10
No. of reflections 976
No. of parameters 37
Δρmax, Δρmin (e Å−3) 0.22, −0.28
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, The Woodlands, TX, USA.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]; Palatinus & van der Lee, 2008[Palatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975-984.]; Palatinus et al., 2012[Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575-580.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The asymmetric unit of the NOBF4 crystal structure is composed of atoms B1, F1, and F2, which coincide with the crystallographic mirror plane (Wyckoff position 4c; site symmetry .m.), whereas atoms F3 and disordered N1/O1, are located on general positions (Wyckoff position 8d) (Fig. 1[link]). The BF4 anion has a slightly distorted tetra­hedral shape, with F—B—F bond angles ranging from 108.42 (6) to 111.11 (7)° and B—F bond lengths of 1.3863 (10), 1.3872 (10) and 1.4042 (6) Å involving atoms F1, F2, and F3, respectively. Similar values were observed in NO2BF4 (Krossing et al., 2007[Krossing, I., Raabe, I. & Birtalan, E. (2007). Acta Cryst. E63, i43-i44.]) and other BF4 salts (Radan et al., 2011[Radan, K., Lozinšek, M., Goreshnik, E. & Žemva, B. (2011). J. Fluorine Chem. 132, 767-771.]; Lozinšek et al., 2009[Lozinšek, M., Bunič, T., Goreshnik, E., Meden, A., Tramšek, M., Tavčar, G. & Žemva, B. (2009). J. Solid State Chem. 182, 2897-2903.]) or complexes (Tavčar & Žemva, 2005[Tavčar, G. & Žemva, B. (2005). Inorg. Chem. 44, 1525-1529.]). The NO+ cation is disordered across a crystallographic mirror plane, with atoms N1 and O1 sharing the same site. It is noteworthy that the orientational cationic disorder in the salt NOBF4 was studied previously by heat capacity measurements from 10 to 304 K (Callanan et al., 1981[Callanan, J. E., Granville, N. W., Green, N. H., Staveley, L. A. K., Weir, R. D. & White, M. A. (1981). J. Chem. Phys. 74, 1911-1915.]). The N—O bond length of 1.0216 (10) Å in NOBF4 is similar to the values reported for other nitro­sonium fluoride salts, for instance: 1.052 (6) Å in NOUF6 at 100 K (Scheibe et al., 2016[Scheibe, B., Lippert, S., Rudel, S. S., Buchner, M. R., Burghaus, O., Pietzonka, C., Koch, M., Karttunen, A. J. & Kraus, F. (2016). Chem. Eur. J. 22, 12145-12153.]) and 1.012 (6) Å in NOSbF6 at 150 K (Mazej & Goreshnik, 2021[Mazej, Z. & Goreshnik, E. (2021). Eur. J. Inorg. Chem. pp. 1776-1785.]), with both salts also exhibiting disordered NO+ groups. Each anion is surrounded by seven cations and vice versa, with fourteen (N/O)⋯F contacts shorter than 3.0 Å; the shortest contacts [2.6211 (6), 2.6222 (6), and 2.6560 (6) Å] involve atom F3. In the crystal structure, the NO+ cations are oriented parallel to the b axis (Fig. 2[link]).

[Figure 1]
Figure 1
Expanded asymmetric unit of NOBF4 with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) x, −y + [{1\over 2}], z.]
[Figure 2]
Figure 2
View of the packing in the unit cell of the NOBF4 crystal structure.

Synthesis and crystallization

A sample of NOBF4 suitable for single-crystal X-ray diffraction was obtained from a commercial source (Alfa Aesar, 98%). Crystals were placed onto a watch glass and covered with a protective layer of perfluoro­deca­lin (ABCR, AB102850, 98%, cis and trans) inside an argon-filled glovebox (MBraun, H2O < 0.5 ppm). A suitable colorless crystal was selected under a polarizing microscope outside the glovebox, mounted on a MiTeGen Dual Thickness MicroLoop with the aid of Baysilone-Paste, and quickly transferred into a cold nitro­gen stream of the X-ray diffractometer.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The coordinates and anisotropic displacement parameters of the disordered atoms O1 and N1 sharing the same site were constrained to be equal (EXYZ, EADP) and their site occupancy factor set to 0.5.

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2021); cell refinement: CrysAlis PRO (Rigaku OD, 2021); data reduction: CrysAlis PRO (Rigaku OD, 2021); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007; Palatinus & van der Lee, 2008; Palatinus et al., 2012); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 2005); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Oxidonitrogen(1+) tetrafluoridoborate top
Crystal data top
NO+·BF4Dx = 2.274 Mg m3
Mr = 116.82Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 8015 reflections
a = 8.8588 (3) Åθ = 3.8–37.6°
b = 5.6268 (2) ŵ = 0.31 mm1
c = 6.8460 (2) ÅT = 150 K
V = 341.25 (2) Å3Irregular, clear colourless
Z = 40.24 × 0.19 × 0.12 mm
F(000) = 224
Data collection top
New Gemini, Dual, Cu at home/near, Atlas
diffractometer
976 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source824 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
Detector resolution: 10.6426 pixels mm-1θmax = 37.9°, θmin = 3.8°
ω scansh = 1515
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2021)
k = 99
Tmin = 0.948, Tmax = 0.975l = 1111
16165 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: iterative
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.045P)2 + 0.0254P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.081(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.22 e Å3
976 reflectionsΔρmin = 0.28 e Å3
37 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.34796 (7)0.2500000.97160 (7)0.02402 (13)
F20.59689 (6)0.2500000.88293 (9)0.02508 (13)
F30.42423 (4)0.45243 (7)0.70118 (6)0.02149 (11)
B10.44886 (9)0.2500000.81682 (11)0.01500 (14)
O10.31375 (5)0.34078 (9)0.35238 (7)0.02274 (12)0.5
N10.31375 (5)0.34078 (9)0.35238 (7)0.02274 (12)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0301 (3)0.0280 (3)0.0140 (2)0.0000.00714 (18)0.000
F20.0191 (2)0.0290 (3)0.0272 (3)0.0000.01088 (19)0.000
F30.02134 (18)0.02461 (19)0.01852 (18)0.00146 (13)0.00060 (11)0.00719 (12)
B10.0152 (3)0.0187 (3)0.0111 (3)0.0000.0013 (2)0.000
O10.0181 (2)0.0266 (2)0.0235 (2)0.00024 (16)0.00237 (14)0.00430 (17)
N10.0181 (2)0.0266 (2)0.0235 (2)0.00024 (16)0.00237 (14)0.00430 (17)
Geometric parameters (Å, º) top
F1—B11.3863 (10)F3—B11.4042 (6)
F2—B11.3872 (10)O1—N1i1.0216 (10)
F1—B1—F2111.11 (7)F2—B1—F3i109.32 (4)
F1—B1—F3i109.32 (4)F2—B1—F3109.32 (4)
F1—B1—F3109.31 (4)F3i—B1—F3108.42 (6)
Symmetry code: (i) x, y+1/2, z.
 

Funding information

The author is grateful for research funding from the Jožef Stefan Institute Director's Fund, the Slovenian Research Agency (N1-0189, P1-0045), and the European Research Council (950625).

References

First citationAdam, S., Ellern, A. & Seppelt, K. (1996). Chem. Eur. J. 2, 398–402.  CrossRef ICSD CAS Web of Science Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCallanan, J. E., Granville, N. W., Green, N. H., Staveley, L. A. K., Weir, R. D. & White, M. A. (1981). J. Chem. Phys. 74, 1911–1915.  CrossRef CAS Google Scholar
First citationClark, M. J. R. & Lynton, H. (1969). Can. J. Chem. 47, 2579–2586.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEvans, J. C., Rinn, H. W., Kuhn, S. J. & Olah, G. A. (1964). Inorg. Chem. 3, 857–861.  CrossRef CAS Google Scholar
First citationKrossing, I., Raabe, I. & Birtalan, E. (2007). Acta Cryst. E63, i43–i44.  CrossRef IUCr Journals Google Scholar
First citationLozinšek, M., Bunič, T., Goreshnik, E., Meden, A., Tramšek, M., Tavčar, G. & Žemva, B. (2009). J. Solid State Chem. 182, 2897–2903.  Google Scholar
First citationMazej, Z. & Goreshnik, E. (2021). Eur. J. Inorg. Chem. pp. 1776–1785.  CrossRef Google Scholar
First citationMazej, Z., Ponikvar-Svet, M., Liebman, J. F., Passmore, J. & Jenkins, H. D. B. (2009). J. Fluorine Chem. 130, 788–791.  CrossRef CAS Google Scholar
First citationOlah, G. A., Prakash, G. K. S., Wang, Q., Li, X.-y., Prakash, G. K. S. & Hu, J. (2004). Nitrosonium Tetrafluoroborate. In Encyclopedia of Reagents for Organic SynthesisGoogle Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalatinus, L. & van der Lee, A. (2008). J. Appl. Cryst. 41, 975–984.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRadan, K., Lozinšek, M., Goreshnik, E. & Žemva, B. (2011). J. Fluorine Chem. 132, 767–771.  CrossRef CAS Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Rigaku Corporation, The Woodlands, TX, USA.  Google Scholar
First citationScheibe, B., Lippert, S., Rudel, S. S., Buchner, M. R., Burghaus, O., Pietzonka, C., Koch, M., Karttunen, A. J. & Kraus, F. (2016). Chem. Eur. J. 22, 12145–12153.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSunder, W. A., Wayda, A. L., Distefano, D., Falconer, W. E. & Griffiths, J. E. (1979). J. Fluorine Chem. 14, 299–325.  CrossRef CAS Google Scholar
First citationTavčar, G. & Žemva, B. (2005). Inorg. Chem. 44, 1525–1529.  Web of Science PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilson, J. N., Curtis, R. M. & Goetschel, C. T. (1971). J. Appl. Cryst. 4, 261–262.  CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds