metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[(4-chloro­phen­­oxy)acetato-κO](ethyl­enedi­amine-κ2N,N′)zinc

CROSSMARK_Color_square_no_text.svg

aInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str. 83, Tashkent 700125, Uzbekistan, and bInstitute of General and Inorganic Chemistry of Uzbekistan Academy of Sciences, M. Ulugbek Str. 77a, Tashkent 100170, Uzbekistan
*Correspondence e-mail: atom.uz@mail.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 28 August 2018; accepted 4 September 2018; online 11 September 2018)

The mononuclear title complex, [Zn(C8H6ClO3)2(C2H8N2)], was obtained by the reaction of zinc(II) acetate dihydrate with p-chloro­phen­oxy­acetic acid (pCPA) and ethyl­enedi­amine (EDA) in a water/ethanol mixture. The ZnII cation has a distorted tetra­hedral coordination sphere involving two carboxyl­ate O atoms of two monodentate pCPA ligands and two N atoms of one chelating EDA ligand. The pCPA ligands coordinate asymmetrically to the ZnII cation with two different Zn—O distances of 1.967 (3) and 1.978 (3) Å. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains propagating parallel to [100]. These chains are linked by C—H⋯O hydrogen bonds, C—H⋯π stacking and Cl⋯Cl inter­actions, generating a three-dimensional supra­molecular network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Phen­oxy­acetic acid (pCPA) and its derivatives are biologically active compounds which are widely used as herbicides and plant-growth substances. The inter­action of metal ions with pCPA results in the formation of complexes in which it demonstrates monodentate (Ashurov et al., 2012[Ashurov, J., Ziyaev, M., Ibragimov, B. & Talipov, S. (2012). Acta Cryst. E68, m1464.]; Ma et al., 2013[Ma, D.-Y., Guo, H.-F., Dong, J. & Xu, J. (2013). J. Mol. Struct. 1054-1055, 46-52.], 2014[Ma, D.-Y., Guo, H.-F., Qin, L., Li, Y., Ruan, Q.-T., Huang, Y.-W. & Xu, J. (2014). J. Chem. Crystallogr. 44, 63-69.]; Li et al., 2014[Li, L., Diao, K., Ding, Y. & Yin, X. (2014). Mol. Cryst. Liq. Cryst. 588, 63-73.]) and bidentate (Li et al., 2014[Li, L., Diao, K., Ding, Y. & Yin, X. (2014). Mol. Cryst. Liq. Cryst. 588, 63-73.]; Smith et al., 1981[Smith, G., O'Reilly, E. J., Kennard, C. H. L., Stadnicka, K. & Oleksyn, B. (1981). Inorg. Chim. Acta, 47, 111-120.]; Sun et al., 2007[Sun, Y., Wang, Z., Zhang, H., Cao, Y., Zhang, S., Chen, Y., Huang, Ch. & Yu, X. (2007). Inorg. Chim. Acta, 360, 2565-2572.]) coordination. pCPA ligands can also show bridging properties (Liwporncharoenvong & Luck, 2005[Liwporncharoenvong, T. & Luck, R. L. (2005). Acta Cryst. E61, m1191-m1193.]; Li et al., 2013[Li, L., Diaoa, K., Ding, Y. & Yin, X. (2013). Mol. Cryst. Liq. Cryst. 575, 173-187.]; Jin et al., 2015[Jin, Sh., Liu, H., Chen, G., An, Z., Lou, Y., Huang, K. & Wang, D. (2015). Polyhedron, 95, 91-107.]; An et al., 2002[An, J., Wang, Sh., Yan, B. & Chen, Z. (2002). J. Coord. Chem. 55, 1223-1232.]) and form chain structures (Wang et al., 2006[Wang, Z., Zhang, H., Chen, Y., Huang, Ch., Sun, R., Cao, Y. & Yu, X. (2006). J. Solid State Chem. 179, 1536-1544.], 2008[Wang, Z., Liu, D. Sh., Zhang, H.-H., Huang, Ch. C., Cao, Y. N. & Yu, X. H. (2008). J. Coord. Chem. 61, 419-425.]; Li et al., 2013[Li, L., Diaoa, K., Ding, Y. & Yin, X. (2013). Mol. Cryst. Liq. Cryst. 575, 173-187.]). Ethyl­enedi­amine (EDA) ligands can coordinate to metal ions in a monodentate fashion (Xue et al., 2016[Xue, H., Zhao, J. Zh., Pan, R., Yang, B. F., Yang, G. Y. & Liu, H. Sh. (2016). Chem. Eur. J. 22, 12322-12331.]; Mitzinger et al., 2016[Mitzinger, S., Broeckaert, L., Massa, W., Weigend, F. & Dehnen, S. (2016). Nat. Commun. 7(10480), 1-10.]; Zhang et al., 2009[Zhang, Q., Chung, I., Jang, J. I., Ketterson, J. B. & Kanatzidis, M. G. (2009). Chem. Mater. 21, 12-14.]; Fanizzi et al., 1984[Fanizzi, F. P., Natile, G., Maresca, L., Lanfredi, A. M. M. & Tiripicchio, A. (1984). J. Chem. Soc. Dalton Trans. 7, 1467-1470.]; Saidi et al., 2013[Saidi, K., Kamoun, S., Ayedi, H. F. & Arous, M. (2013). J. Phys. Chem. Solids, 74, 1560-1569.]) and in some complexes behave as bridging ligands (Binnemans et al., 2013[Binnemans, K., Brooks, N. R., Depuydt, D., Meervelt, L. V., Schaltin, S. & Fransaer, J. (2013). ChemPlusChem, 78, 578-588.]; House & Steel, 1999[House, D. A. & Steel, P. J. (1999). Inorg. Chim. Acta, 288, 53-56.]; Bratsos et al., 2011[Bratsos, I., Simonin, C., Zangrando, E., Gianferrara, T., Bergamo, A. & Alessio, E. (2011). Dalton Trans. 40, 9533-9543.]; Doring & Jones, 2013[Doring, C. & Jones, P. G. (2013). Z. Naturforsch. Teil B, 68, 474-492.]; Kuhn et al., 2008[Kuhn, N., Abu-Salem, Q., Maichle-Mossmer, C. & Steimann, M. (2008). Z. Anorg. Allg. Chem. 634, 1276-1280.]). In many cases, EDA demonstrates a chelating property. There are metal complexes in which noncoordinating EDA mol­ecules are situated in the outer sphere (Peipei et al., 2017[Peipei, S., Shuzhen, L., Jingyu, H., Yali, Sh., Hui, S. & Dingxian, J. (2017). Transition Met. Chem. 42, 387-393.]; Tian et al., 2017[Tian, F. Y., Liu, G. H., Li, B., Song, Y. T. & Wang, J. (2017). Russ. J. Coord. Chem. 43, 304-313.]; Mirzaei et al., 2014[Mirzaei, M., Eshtiagh-Hosseini, H., Bauza, A., Zarghami, S., Ballester, P., Mague, J. T. & Frontera, A. (2014). CrystEngComm, 16, 6149-6158.]). A search in the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that crystal structures have been reported for complexes of pCPA and EDA with many metal ions. However, no mixed-ligand metal complex including pCPA and EDA is documented in the CSD. Here, the synthesis and structure of the related title compound bis[(4-chloro­phen­oxy)acetato-κO](ethyl­enedi­amine-κ2N,N′)zinc is described.

The asymmetric unit of the title compound consists of a mononuclear complex of formula [Zn(C8H7ClO3)2(C2H8N2)], as shown in Fig. 1[link]. The coordination polyhedron of the ZnII cation is a distorted tetra­hedron defined by an N2O2 coordination set. The distortion is indicated by bond angles O2—Zn1—O2′ [99.47 (11)°], O2—Zn1—N1 [117.37 (11)°], O2—Zn1—N2 [114.42 (12)°], O2′—Zn1—N1 [119.57 (13)°], O2′—Zn1—N2 [122.20 (12)°] and N1—Zn1—N2 [85.14 (13)°]. The dihedral angle between the N1/Zn1/N2 plane and the O2/Zn1/O2′ plane is 87.60 (16)°. The ZnII cation is coordinated by one EDA mol­ecule, which acts as an N,N′-chelating ligand. The Zn1—N1 and Zn1—N2 distances are 2.041 (4) and 2.052 (3) Å, respectively. The bidentate coordination of the EDA ligand results in the formation of a five-membered chelate ring with an inter­nal angle of 116.0 (15)° for N1—Zn1—N2. The N1—C9—C10—N2 torsion angle within the EDA mol­ecule is −53.0 (4)°. The two pCPA ligands are asymmetrically coordinated to the ZnII cation, with Zn—O distances of 1.967 (3) and 1.978 (3) Å. The dihedral angle between the N1/Zn/N2 plane and the O2/Zn/O2′ plane is 87.61 (7)°. In both pCPA ligands, the oxyacetate group and the aromatic ring are not perfectly coplanar, the torsion angles being −174.2 (3) (C1—O1—C7—C8) and −170.8 (3)° (C1′—O1′—C7′—C8′). The dihedral angles between the acetate and 4-chloro­phen­oxy least-squares planes in the two independent ligands are 5.985 (3) and 5.513 (3)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Unlabelled atoms of the second cCPA ligand are related to the first by a prime character but are not crystallographically equivalent.

In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds (Table 1[link] and Fig. 2[link]), forming chains propagating parallel to [100] (Figs. 2[link] and 3[link]). The N—H⋯O hydrogen-bonding inter­actions between amine donor groups and carboxyl­ate acceptors groups result in R42(12) ring motifs. The chains are linked by C—H⋯O hydrogen bonds (Table 1[link]), forming a sheet structure extending parallel to (010) (Fig. 3[link]). The mol­ecules are further linked by C—H⋯π stacking [3.438 (3) Å] between benzene rings and methyl­ene groups of pCPA, and by Cl1⋯Cl1i,ii inter­actions {3.438 (2) [symmetry code: (i) −x + 4, −y + 1, −z] and 3.801(3) Å [symmetry code: (ii) −x + 3, −y + 1, −z]}, generating a three-dimensional supra­molecular network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O3′i 0.89 2.06 2.931 (4) 166
N2—H2B⋯O3ii 0.89 2.08 2.950 (4) 167
C3—H3⋯O3′iii 0.93 2.59 3.346 (5) 139
C3′—H3′⋯O3iv 0.93 2.50 3.314 (5) 146
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) [x+{\script{3\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x-{\script{3\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Formation of chains and hydrogen bonds in the title complex. Hydrogen bonds are shown as dashed lines.
[Figure 3]
Figure 3
The packing of the mol­ecules in the title complex in a view along [010]. Inter­molecular hydrogen bonding is shown as dashed red lines.

Synthesis and crystallization

To an aqueous solution (2.5 ml) of Zn(CH3COO)2 (0.049 g, 0.268 mmol) was added slowly under constant stirring an ethanol solution (5 ml) containing EDA (0.016 g) and pCPA (0.1 g, 0.536 mmol). Colourless crystals were obtained by solvent evaporation at room temperature after one week (yield 75%). Elemental analysis calculated for C18H20Cl2N2O6Zn: C 43.53, H 4.06, N 5.64%; found: C 43.58, H 4.12, N 5.69%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C8H6ClO3)2(C2H8N2)]
Mr 496.63
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 5.6621 (11), 19.366 (13), 18.816 (4)
β (°) 96.09 (2)
V3) 2051.6 (15)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.40
Crystal size (mm) 0.42 × 0.36 × 0.12
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Ruby
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.569, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 8985, 4125, 2146
Rint 0.041
(sin θ/λ)max−1) 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.123, 0.84
No. of reflections 4125
No. of parameters 262
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.97, −0.35
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis[(4-chlorophenoxy)acetato-κO](ethylenediamine-κ2N,N')zinc top
Crystal data top
[Zn(C8H6ClO3)2(C2H8N2)]F(000) = 1016
Mr = 496.63Dx = 1.608 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 5.6621 (11) ÅCell parameters from 568 reflections
b = 19.366 (13) Åθ = 3.3–75.7°
c = 18.816 (4) ŵ = 4.40 mm1
β = 96.09 (2)°T = 293 K
V = 2051.6 (15) Å3Block, colorless
Z = 40.42 × 0.36 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur Ruby
diffractometer
4125 independent reflections
Radiation source: Enhance (Cu) X-ray Source2146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 10.2576 pixels mm-1θmax = 75.3°, θmin = 3.3°
ω scansh = 67
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1424
Tmin = 0.569, Tmax = 1.000l = 2323
8985 measured reflections
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0653P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.84(Δ/σ)max < 0.001
4125 reflectionsΔρmax = 0.97 e Å3
262 parametersΔρmin = 0.34 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.48309 (8)0.70588 (3)0.38879 (3)0.05115 (17)
Cl11.7835 (2)0.54592 (7)0.03685 (7)0.0914 (4)
Cl1'0.8303 (3)0.54629 (7)0.73405 (8)0.1022 (5)
O20.6929 (4)0.64544 (13)0.33966 (14)0.0542 (7)
O2'0.2828 (4)0.63502 (13)0.42866 (14)0.0569 (7)
O30.8426 (5)0.74137 (14)0.29750 (16)0.0583 (7)
O3'0.1265 (5)0.72723 (13)0.47574 (16)0.0602 (8)
O11.1489 (5)0.67189 (13)0.22793 (16)0.0692 (9)
O1'0.1830 (5)0.65479 (15)0.53761 (19)0.0882 (11)
N10.6398 (5)0.78062 (16)0.45419 (19)0.0613 (9)
H1A0.56910.78340.49410.074*
H1B0.79260.77080.46580.074*
N20.3406 (5)0.78667 (15)0.32804 (18)0.0588 (9)
H2A0.41370.79110.28870.071*
H2B0.18670.77940.31520.071*
C80.8322 (6)0.6779 (2)0.3031 (2)0.0492 (9)
C11.2919 (7)0.6383 (2)0.1844 (2)0.0540 (10)
C8'0.1401 (6)0.6639 (2)0.4674 (2)0.0504 (10)
C70.9894 (6)0.63128 (19)0.2646 (2)0.0518 (10)
H7A1.07910.60110.29870.062*
H7B0.89260.60270.23070.062*
C7'0.0217 (6)0.6143 (2)0.5016 (2)0.0548 (10)
H7'A0.10830.58570.46540.066*
H7'B0.07090.58450.53530.066*
C61.3034 (7)0.5669 (2)0.1764 (2)0.0618 (12)
H61.21020.53810.20130.074*
C21.4358 (7)0.6799 (2)0.1478 (2)0.0615 (11)
H21.43200.72750.15450.074*
C31.5848 (7)0.6527 (2)0.1017 (2)0.0602 (11)
H31.67820.68120.07630.072*
C2'0.4549 (7)0.6694 (2)0.6210 (2)0.0643 (12)
H2'0.43630.71670.61510.077*
C3'0.6059 (7)0.6452 (2)0.6682 (2)0.0627 (12)
H3'0.68820.67570.69480.075*
C4'0.6321 (7)0.5753 (2)0.6751 (2)0.0616 (11)
C1'0.3307 (7)0.6237 (2)0.5824 (2)0.0608 (11)
C6'0.3578 (8)0.5530 (2)0.5898 (2)0.0659 (12)
H6'0.27450.52230.56370.079*
C5'0.5131 (8)0.5287 (2)0.6373 (2)0.0661 (12)
H5'0.53530.48160.64310.079*
C41.5910 (7)0.5819 (2)0.0942 (2)0.0613 (11)
C90.6155 (7)0.8462 (2)0.4149 (3)0.0699 (13)
H9A0.73910.85000.38320.084*
H9B0.63250.88450.44830.084*
C51.4556 (8)0.5395 (2)0.1306 (2)0.0671 (13)
H51.46490.49190.12490.081*
C100.3740 (7)0.8491 (2)0.3721 (2)0.0690 (13)
H10A0.25090.85190.40410.083*
H10B0.36320.88970.34180.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0394 (2)0.0495 (3)0.0668 (4)0.0015 (3)0.0163 (2)0.0043 (3)
Cl10.0874 (9)0.1086 (10)0.0866 (9)0.0091 (7)0.0490 (7)0.0154 (8)
Cl1'0.1095 (11)0.1037 (10)0.1036 (11)0.0081 (9)0.0589 (9)0.0235 (9)
O20.0457 (15)0.0576 (15)0.0637 (18)0.0021 (12)0.0256 (13)0.0020 (14)
O2'0.0452 (14)0.0623 (16)0.0669 (19)0.0009 (13)0.0236 (13)0.0063 (15)
O30.0477 (16)0.0576 (16)0.073 (2)0.0030 (14)0.0237 (14)0.0016 (16)
O3'0.0441 (15)0.0581 (16)0.082 (2)0.0018 (12)0.0249 (14)0.0045 (15)
O10.0669 (19)0.0579 (16)0.091 (2)0.0050 (14)0.0453 (17)0.0115 (16)
O1'0.080 (2)0.0644 (18)0.133 (3)0.0086 (16)0.068 (2)0.016 (2)
N10.0416 (18)0.071 (2)0.073 (3)0.0009 (16)0.0118 (16)0.013 (2)
N20.0435 (17)0.059 (2)0.076 (2)0.0024 (16)0.0179 (16)0.0044 (19)
C80.039 (2)0.058 (2)0.052 (3)0.0022 (18)0.0112 (18)0.008 (2)
C10.050 (2)0.059 (2)0.056 (3)0.0027 (19)0.0201 (19)0.006 (2)
C8'0.037 (2)0.061 (2)0.054 (3)0.0005 (18)0.0092 (18)0.000 (2)
C70.052 (2)0.054 (2)0.052 (2)0.0012 (19)0.0202 (19)0.003 (2)
C7'0.049 (2)0.062 (2)0.056 (3)0.0040 (19)0.0186 (19)0.001 (2)
C60.065 (3)0.057 (2)0.068 (3)0.006 (2)0.031 (2)0.009 (2)
C20.053 (2)0.060 (2)0.075 (3)0.003 (2)0.022 (2)0.004 (2)
C30.054 (2)0.074 (3)0.056 (3)0.003 (2)0.024 (2)0.007 (2)
C2'0.061 (3)0.050 (2)0.086 (3)0.006 (2)0.028 (2)0.005 (2)
C3'0.059 (3)0.067 (3)0.066 (3)0.002 (2)0.021 (2)0.008 (2)
C4'0.058 (3)0.071 (3)0.059 (3)0.003 (2)0.019 (2)0.007 (2)
C1'0.054 (2)0.062 (2)0.071 (3)0.002 (2)0.024 (2)0.002 (2)
C6'0.066 (3)0.057 (2)0.078 (3)0.011 (2)0.020 (2)0.000 (2)
C5'0.067 (3)0.060 (2)0.072 (3)0.005 (2)0.013 (2)0.011 (2)
C40.056 (2)0.078 (3)0.052 (3)0.005 (2)0.016 (2)0.006 (2)
C90.055 (3)0.052 (2)0.106 (4)0.009 (2)0.027 (3)0.020 (3)
C50.071 (3)0.062 (3)0.073 (3)0.002 (2)0.030 (2)0.009 (2)
C100.058 (3)0.051 (2)0.101 (4)0.010 (2)0.028 (3)0.005 (2)
Geometric parameters (Å, º) top
Zn1—O21.967 (2)C7'—H7'A0.9700
Zn1—O2'1.978 (3)C7'—H7'B0.9700
Zn1—N12.041 (3)C6—H60.9300
Zn1—N22.052 (3)C6—C51.386 (5)
Cl1—C41.757 (4)C2—H20.9300
Cl1'—C4'1.752 (4)C2—C31.377 (5)
O2—C81.267 (4)C3—H30.9300
O2'—C8'1.274 (4)C3—C41.379 (6)
O3—C81.235 (4)C2'—H2'0.9300
O3'—C8'1.240 (4)C2'—C3'1.378 (5)
O1—C11.375 (4)C2'—C1'1.384 (5)
O1—C71.430 (4)C3'—H3'0.9300
O1'—C7'1.428 (4)C3'—C4'1.369 (5)
O1'—C1'1.386 (4)C4'—C5'1.370 (6)
N1—H1A0.8900C1'—C6'1.385 (6)
N1—H1B0.8900C6'—H6'0.9300
N1—C91.469 (5)C6'—C5'1.401 (6)
N2—H2A0.8900C5'—H5'0.9300
N2—H2B0.8900C4—C51.359 (6)
N2—C101.466 (5)C9—H9A0.9700
C8—C71.506 (5)C9—H9B0.9700
C1—C61.392 (5)C9—C101.513 (6)
C1—C21.381 (5)C5—H50.9300
C8'—C7'1.516 (5)C10—H10A0.9700
C7—H7A0.9700C10—H10B0.9700
C7—H7B0.9700
O2—Zn1—O2'99.47 (11)C5—C6—C1119.2 (4)
O2—Zn1—N1117.37 (12)C5—C6—H6120.4
O2—Zn1—N2114.42 (12)C1—C2—H2119.2
O2'—Zn1—N1119.57 (13)C3—C2—C1121.6 (4)
O2'—Zn1—N2122.20 (12)C3—C2—H2119.2
N1—Zn1—N285.14 (14)C2—C3—H3121.0
C8—O2—Zn1113.7 (2)C2—C3—C4117.9 (4)
C8'—O2'—Zn1109.7 (2)C4—C3—H3121.0
C1—O1—C7118.0 (3)C3'—C2'—H2'119.8
C1'—O1'—C7'120.5 (3)C3'—C2'—C1'120.4 (4)
Zn1—N1—H1A110.2C1'—C2'—H2'119.8
Zn1—N1—H1B110.2C2'—C3'—H3'120.7
H1A—N1—H1B108.5C4'—C3'—C2'118.5 (4)
C9—N1—Zn1107.4 (3)C4'—C3'—H3'120.7
C9—N1—H1A110.2C3'—C4'—Cl1'117.4 (3)
C9—N1—H1B110.2C3'—C4'—C5'122.5 (4)
Zn1—N2—H2A110.3C5'—C4'—Cl1'120.0 (3)
Zn1—N2—H2B110.3C2'—C1'—O1'114.5 (4)
H2A—N2—H2B108.6C2'—C1'—C6'120.7 (4)
C10—N2—Zn1107.1 (3)C6'—C1'—O1'124.8 (4)
C10—N2—H2A110.3C1'—C6'—H6'120.7
C10—N2—H2B110.3C1'—C6'—C5'118.7 (4)
O2—C8—C7113.4 (3)C5'—C6'—H6'120.7
O3—C8—O2125.3 (4)C4'—C5'—C6'119.2 (4)
O3—C8—C7121.3 (3)C4'—C5'—H5'120.4
O1—C1—C6124.9 (4)C6'—C5'—H5'120.4
O1—C1—C2115.9 (4)C3—C4—Cl1118.8 (3)
C2—C1—C6119.2 (4)C5—C4—Cl1119.3 (4)
O2'—C8'—C7'114.4 (3)C5—C4—C3121.9 (4)
O3'—C8'—O2'123.9 (4)N1—C9—H9A109.8
O3'—C8'—C7'121.6 (3)N1—C9—H9B109.8
O1—C7—C8109.8 (3)N1—C9—C10109.3 (3)
O1—C7—H7A109.7H9A—C9—H9B108.3
O1—C7—H7B109.7C10—C9—H9A109.8
C8—C7—H7A109.7C10—C9—H9B109.8
C8—C7—H7B109.7C6—C5—H5119.9
H7A—C7—H7B108.2C4—C5—C6120.1 (4)
O1'—C7'—C8'107.4 (3)C4—C5—H5119.9
O1'—C7'—H7'A110.2N2—C10—C9109.1 (3)
O1'—C7'—H7'B110.2N2—C10—H10A109.9
C8'—C7'—H7'A110.2N2—C10—H10B109.9
C8'—C7'—H7'B110.2C9—C10—H10A109.9
H7'A—C7'—H7'B108.5C9—C10—H10B109.9
C1—C6—H6120.4H10A—C10—H10B108.3
Zn1—O2—C8—O30.4 (6)C7—O1—C1—C63.9 (6)
Zn1—O2—C8—C7179.0 (2)C7—O1—C1—C2177.4 (4)
Zn1—O2'—C8'—O3'2.5 (5)C7'—O1'—C1'—C2'171.9 (4)
Zn1—O2'—C8'—C7'179.4 (3)C7'—O1'—C1'—C6'8.1 (7)
Zn1—N1—C9—C1038.5 (4)C6—C1—C2—C32.2 (7)
Zn1—N2—C10—C939.2 (4)C2—C1—C6—C51.3 (7)
Cl1—C4—C5—C6179.7 (3)C2—C3—C4—Cl1178.9 (3)
Cl1'—C4'—C5'—C6'179.2 (4)C2—C3—C4—C50.1 (7)
O2—C8—C7—O1176.9 (3)C3—C4—C5—C60.7 (7)
O2'—C8'—C7'—O1'174.9 (3)C2'—C3'—C4'—Cl1'178.6 (3)
O3—C8—C7—O13.7 (6)C2'—C3'—C4'—C5'0.4 (7)
O3'—C8'—C7'—O1'3.1 (6)C2'—C1'—C6'—C5'0.2 (7)
O1—C1—C6—C5180.0 (4)C3'—C2'—C1'—O1'179.2 (4)
O1—C1—C2—C3179.0 (4)C3'—C2'—C1'—C6'0.8 (7)
O1'—C1'—C6'—C5'179.8 (4)C3'—C4'—C5'—C6'0.2 (7)
N1—C9—C10—N253.0 (4)C1'—O1'—C7'—C8'170.8 (4)
C1—O1—C7—C8174.2 (3)C1'—C2'—C3'—C4'0.9 (7)
C1—C6—C5—C40.1 (7)C1'—C6'—C5'—C4'0.3 (7)
C1—C2—C3—C41.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O3i0.892.062.931 (4)166
N2—H2B···O3ii0.892.082.950 (4)167
C3—H3···O3iii0.932.593.346 (5)139
C3—H3···O3iv0.932.503.314 (5)146
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+3/2, y+3/2, z1/2; (iv) x3/2, y+3/2, z+1/2.
 

Funding information

Funding for this research was provided by: Center of Science and Technology, Uzbekistan (Grant for Fundamental Research No. BA-FA-F7-004).

References

First citationAn, J., Wang, Sh., Yan, B. & Chen, Z. (2002). J. Coord. Chem. 55, 1223–1232.  Web of Science CrossRef Google Scholar
First citationAshurov, J., Ziyaev, M., Ibragimov, B. & Talipov, S. (2012). Acta Cryst. E68, m1464.  CrossRef IUCr Journals Google Scholar
First citationBinnemans, K., Brooks, N. R., Depuydt, D., Meervelt, L. V., Schaltin, S. & Fransaer, J. (2013). ChemPlusChem, 78, 578–588.  Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBratsos, I., Simonin, C., Zangrando, E., Gianferrara, T., Bergamo, A. & Alessio, E. (2011). Dalton Trans. 40, 9533–9543.  Web of Science CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDoring, C. & Jones, P. G. (2013). Z. Naturforsch. Teil B, 68, 474–492.  Google Scholar
First citationFanizzi, F. P., Natile, G., Maresca, L., Lanfredi, A. M. M. & Tiripicchio, A. (1984). J. Chem. Soc. Dalton Trans. 7, 1467–1470.  CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHouse, D. A. & Steel, P. J. (1999). Inorg. Chim. Acta, 288, 53–56.  Web of Science CrossRef Google Scholar
First citationJin, Sh., Liu, H., Chen, G., An, Z., Lou, Y., Huang, K. & Wang, D. (2015). Polyhedron, 95, 91–107.  Web of Science CrossRef Google Scholar
First citationKuhn, N., Abu-Salem, Q., Maichle-Mossmer, C. & Steimann, M. (2008). Z. Anorg. Allg. Chem. 634, 1276–1280.  Web of Science CrossRef Google Scholar
First citationLi, L., Diaoa, K., Ding, Y. & Yin, X. (2013). Mol. Cryst. Liq. Cryst. 575, 173–187.  Web of Science CrossRef Google Scholar
First citationLi, L., Diao, K., Ding, Y. & Yin, X. (2014). Mol. Cryst. Liq. Cryst. 588, 63–73.  Web of Science CrossRef Google Scholar
First citationLiwporncharoenvong, T. & Luck, R. L. (2005). Acta Cryst. E61, m1191–m1193.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, D.-Y., Guo, H.-F., Dong, J. & Xu, J. (2013). J. Mol. Struct. 1054–1055, 46–52.  Web of Science CrossRef Google Scholar
First citationMa, D.-Y., Guo, H.-F., Qin, L., Li, Y., Ruan, Q.-T., Huang, Y.-W. & Xu, J. (2014). J. Chem. Crystallogr. 44, 63–69.  Web of Science CrossRef Google Scholar
First citationMirzaei, M., Eshtiagh-Hosseini, H., Bauza, A., Zarghami, S., Ballester, P., Mague, J. T. & Frontera, A. (2014). CrystEngComm, 16, 6149–6158.  Web of Science CrossRef Google Scholar
First citationMitzinger, S., Broeckaert, L., Massa, W., Weigend, F. & Dehnen, S. (2016). Nat. Commun. 7(10480), 1–10.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationPeipei, S., Shuzhen, L., Jingyu, H., Yali, Sh., Hui, S. & Dingxian, J. (2017). Transition Met. Chem. 42, 387–393.  Google Scholar
First citationSaidi, K., Kamoun, S., Ayedi, H. F. & Arous, M. (2013). J. Phys. Chem. Solids, 74, 1560–1569.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, G., O'Reilly, E. J., Kennard, C. H. L., Stadnicka, K. & Oleksyn, B. (1981). Inorg. Chim. Acta, 47, 111–120.  CSD CrossRef CAS Web of Science Google Scholar
First citationSun, Y., Wang, Z., Zhang, H., Cao, Y., Zhang, S., Chen, Y., Huang, Ch. & Yu, X. (2007). Inorg. Chim. Acta, 360, 2565–2572.  Web of Science CrossRef Google Scholar
First citationTian, F. Y., Liu, G. H., Li, B., Song, Y. T. & Wang, J. (2017). Russ. J. Coord. Chem. 43, 304–313.  Web of Science CrossRef Google Scholar
First citationWang, Z., Liu, D. Sh., Zhang, H.-H., Huang, Ch. C., Cao, Y. N. & Yu, X. H. (2008). J. Coord. Chem. 61, 419–425.  Web of Science CrossRef Google Scholar
First citationWang, Z., Zhang, H., Chen, Y., Huang, Ch., Sun, R., Cao, Y. & Yu, X. (2006). J. Solid State Chem. 179, 1536–1544.  Web of Science CrossRef Google Scholar
First citationXue, H., Zhao, J. Zh., Pan, R., Yang, B. F., Yang, G. Y. & Liu, H. Sh. (2016). Chem. Eur. J. 22, 12322–12331.  Web of Science CrossRef Google Scholar
First citationZhang, Q., Chung, I., Jang, J. I., Ketterson, J. B. & Kanatzidis, M. G. (2009). Chem. Mater. 21, 12–14.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds