metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Chlorido­bis­­(ethane-1,2-di­amine-κ2N,N′)(3-methyl­pyridine-κN)cobalt(III) dichloride monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bDepartment of Chemistry, Chellammal Womens College, Guindy, Chennai 600 032, India, and cDepartment of Chemistry, Pondicherry University, Pondicherry 605 014, India
*Correspondence e-mail: ksakthimurugesan2492@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 21 June 2018; accepted 16 July 2018; online 24 July 2018)

In the title hydrated salt, [CoCl(C6H7N)(C2H8N2)2]Cl2·H2O, the CoIII ion exhibits a distorted octa­hedral coordination envirnoment defined by four N atoms of two ethane-1,2-di­amine ligands, another N atom of the pyridine ligand and a Cl ligand. The pyridine N atom and the Cl ligand are in cis positions relative to each other. The crystal packing is dominated by inter­molecular N—H⋯Cl, O—H⋯Cl and O—H⋯H hydrogen-bonding inter­actions involving the amino groups of the complex cation, the lattice water mol­ecule and the non-coordinating Cl anions. Weak C—H⋯Cl inter­actions consolidate the three-dimensional hydrogen-bonded network structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cobalt is an essential and integral component of vitamin B12. Hence it is found physiologically in most tissues. Complexes of cobalt are useful for nutritional supplementation to provide this element in a form that effectively increases the bioavailability, for instance, vitamin B12 by microorganisms present in the gut. Cobalt(III) complexes with ethane-1,2-di­amine or with mixed ligands exhibit anti­tumor, anti­bacterial, anti­microbial, radiosenzitation and cytotoxicity activities (Sayed et al., 1992[Sayed, G. H., Shiba, S. A., Radwan, A., Mohamed, S. M. & Khalil, M. (1992). Chin. J. Chem. 10, 475-480.]; Teicher et al., 1990[Teicher, B. A., Abrams, M. J., Rosbe, K. W. & Herman, T. S. (1990). Cancer Res. 50, 6971-6975.]; Arslan et al., 2009[Arslan, H., Duran, N., Borekci, G., Ozer, C. K. & Akbay, C. (2009). Molecules, 14, 519-527.]; Delehanty et al., 2008[Delehanty, J. B., Bongard, J. E., Thach, C. D., Knight, D. A., Hickey, T. E. & Chang, E. L. (2008). Bioorg. Med. Chem. 16, 830-837.]). In addition, cobalt(III) complexes are known for electron-transfer and ligand-substitution reactions. In this context, we have synthesized another cobalt(III) complex with mixed ligands, [CoCl(C6H7N)(C2H8N2)2]Cl2·H2O, and report here its crystal structure.

The structural entities of the title compound are shown in Fig. 1[link]. The CoIII cation is octa­hedrally surrounded by four N atoms of two ethane-1,2-di­amine ligands, a pyridine N atom and a Cl ligand, whereby the pyridine N atom and the Cl ligand are cis to each other. The Co—N and Co—Cl bond lengths are typical for trivalent cobalt and comparable with related complexes comprising of N- and Cl-donating ligands (Anbalagan et al., 2009[Anbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836-m837.]; Ramesh et al., 2008[Ramesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300-m301.]; Ravichandran et al., 2009[Ravichandran, K., Ramesh, P., Mahalakshmi, C. M., Anbalagan, K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, m1458-m1459.]). The least-squares planes of the two ethane-1,2-di­amine ligands make a dihedral angle of 78.0 (2)°. Puckering parameters for the Co1/N1/C9/C8/N2 and Co1/N3/C7/C6/N4 rings are: q2 = 0.439 (3) Å, φ = 86.4 (3)° and q2 = 0.422 (3)°, φ = 82.2 (3)°, respectively. According to Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]), ring asymmetry parameters from out-of-plane displacements are Δ2(Co1) = 3.6 (2)°for the first metalla ring and Δ2(Co1) = 7.4 (2)° for the second ring.

[Figure 1]
Figure 1
The mol­ecular entities in the title structure with displacement ellipsoids at the 30% probability level.

The complex cation, chloride anions and lattice water mol­ecule are linked into a three-dimensional network by inter­molecular N—H⋯Cl, O—H⋯Cl and O—H⋯O hydrogen-bonding inter­actions, supplemented by weaker C—H⋯Cl inter­actions (Table 1[link] and Fig. 2[link]). This involves an R22(4) ring motif between two adjacent water mol­ecules (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl3 0.93 2.66 3.585 (3) 174
C8—H8A⋯Cl3i 0.97 2.90 3.395 (3) 113
C9—H9B⋯Cl3ii 0.97 2.95 3.440 (3) 113
N1—H1A⋯Cl3ii 0.85 (2) 2.41 (2) 3.194 (2) 153 (2)
N1—H1B⋯Cl4iii 0.86 (2) 2.48 (2) 3.292 (2) 157 (2)
N2—H2A⋯Cl4 0.85 (2) 2.57 (2) 3.370 (2) 158 (2)
N2—H2B⋯Cl3 0.86 (2) 2.70 (2) 3.383 (2) 137 (2)
N2—H2B⋯Cl3i 0.86 (2) 2.86 (2) 3.514 (3) 135 (2)
N3—H3A⋯Cl4 0.85 (2) 2.36 (2) 3.191 (2) 168 (3)
N3—H3B⋯Cl4iii 0.86 (2) 2.67 (2) 3.406 (2) 144 (2)
N4—H4A⋯Cl3 0.84 (2) 2.38 (2) 3.178 (3) 160 (2)
N4—H4B⋯Cl2iv 0.85 (2) 2.64 (2) 3.310 (2) 137 (2)
O1—H1C⋯Cl4 0.87 (2) 2.28 (2) 3.120 (3) 162 (4)
O1—H1D⋯O1v 0.85 (2) 2.45 (1) 2.940 (7) 118 (1)
Symmetry codes: (i) -x+1, -y, -z+2; (ii) x-1, y, z; (iii) -x, -y, -z+1; (iv) -x+1, -y+1, -z+2; (v) -x, -y-1, -z+1.
[Figure 2]
Figure 2
A view along the a axis of the title compound, emphasizing the mol­ecular packing. N—H⋯Cl, O—H⋯O, O—H⋯Cl and C—H⋯Cl hydrogen bonds are shown as dashed lines (see Table 1[link] for numerical details).
[Figure 3]
Figure 3
A partial of the crystal packing of the title compound, showing an R22(4) motif formed via an inversion-related pair of O—H⋯O hydrogen bonds (dashed lines).

Synthesis and crystallization

The complex was synthesized using di­chlorido­bis­(ethane-1,2-di­amine)­cobalt(III) chloride (Bailar & Clapp, 1945[Bailar, J. C. Jr & Clapp, L. B. (1945). J. Am. Chem. Soc. 67, 171-175.]) as a precursor. trans-[CoIII(en)2Cl2]Cl (2 g) was suspended in 3–4 drops of deionized water. Then 3-methyl­pyridine (3 ml) was added dropwise for 20 min, resulting in a colour change from dull green to violet–red. The final mixture was stirred for 30 min and continued for another 30 min until no further change was observed. The mixture was allowed to stand overnight. Finally, the obtained solid was washed 3–4 times with ethanol and dissolved in 5–10 ml of deionized water that had been pre-heated to 343 K. The title cobalt(III) complex was recrystallized by cooling this solution to which a few drops of conc. HCl were added. The resulting crystals were filtered, washed with ethanol and dried under vacuum.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [CoCl(C6H7N)(C2H8N2)2]Cl2·H2O
Mr 396.63
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 7.6771 (4), 10.8911 (5), 11.6132 (7)
α, β, γ (°) 113.439 (5), 99.872 (5), 102.384 (4)
V3) 833.67 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.51
Crystal size (mm) 0.25 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 5316, 2929, 2456
Rint 0.025
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.087, 1.09
No. of reflections 2929
No. of parameters 219
No. of restraints 16
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.61, −0.37
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Chloridobis(ethane-1,2-diamine-κ2N,N')(3-methylpyridine-κN)cobalt(III) dichloride monohydrate top
Crystal data top
[CoCl(C6H7N)(C2H8N2)2]Cl2·H2OZ = 2
Mr = 396.63F(000) = 412
Triclinic, P1Dx = 1.580 Mg m3
a = 7.6771 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.8911 (5) ÅCell parameters from 2456 reflections
c = 11.6132 (7) Åθ = 2.8–25.0°
α = 113.439 (5)°µ = 1.51 mm1
β = 99.872 (5)°T = 293 K
γ = 102.384 (4)°Block, violet-red
V = 833.67 (8) Å30.25 × 0.20 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2456 reflections with I > 2σ(I)
ω and φ scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 25.0°, θmin = 2.8°
h = 89
5316 measured reflectionsk = 1212
2929 independent reflectionsl = 1313
Refinement top
Refinement on F216 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0515P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2929 reflectionsΔρmax = 0.61 e Å3
219 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms of water molecules and amino groups were located from difference maps and refined with restraints on their bond lengths [(N,O)—H = 0.85 Å]).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3844 (3)0.2624 (3)1.1036 (3)0.0201 (6)
H10.46160.21351.06600.024*
C20.4109 (4)0.3106 (3)1.2368 (3)0.0234 (6)
C30.2932 (4)0.3807 (3)1.2909 (3)0.0262 (7)
H30.30580.41451.38010.031*
C40.1575 (4)0.4004 (3)1.2127 (3)0.0258 (7)
H40.07700.44681.24850.031*
C50.1409 (3)0.3511 (3)1.0809 (3)0.0218 (6)
H50.04950.36581.02870.026*
C60.5567 (4)0.2506 (3)0.7483 (3)0.0234 (6)
H6A0.56760.15650.71710.028*
H6B0.67540.31550.76180.028*
C70.4074 (4)0.2550 (3)0.6496 (3)0.0249 (6)
H7A0.41200.35150.67120.030*
H7B0.42220.21110.56260.030*
C80.0579 (3)0.0546 (3)0.7964 (3)0.0205 (6)
H8A0.03800.03440.88150.025*
H8B0.04650.15370.75140.025*
C90.0815 (3)0.0193 (3)0.7177 (3)0.0193 (6)
H9A0.07440.05260.62830.023*
H9B0.20670.06300.71620.023*
C100.5621 (4)0.2841 (3)1.3149 (3)0.0361 (8)
H10A0.62690.23401.25830.054*
H10B0.64790.37241.38200.054*
H10C0.50850.22901.35460.054*
N10.0337 (3)0.1366 (2)0.7830 (2)0.0169 (5)
N20.2452 (3)0.0339 (2)0.8119 (2)0.0157 (5)
N30.2283 (3)0.1755 (2)0.6559 (2)0.0174 (5)
N40.5063 (3)0.2910 (2)0.8731 (2)0.0176 (5)
N50.2547 (3)0.2816 (2)1.0253 (2)0.0162 (5)
Cl20.20805 (9)0.43180 (7)0.85882 (7)0.02175 (17)
Cl30.69806 (8)0.09570 (7)0.95580 (7)0.02316 (18)
Cl40.21383 (9)0.14314 (7)0.49221 (6)0.02355 (18)
Co10.23612 (4)0.22144 (3)0.83760 (3)0.01406 (13)
O10.0839 (4)0.4040 (3)0.4680 (4)0.0880 (12)
H1C0.017 (5)0.341 (4)0.477 (4)0.106*
H1D0.061 (6)0.415 (3)0.536 (2)0.106*
H1A0.087 (3)0.157 (3)0.8438 (19)0.021 (8)*
H1B0.088 (3)0.159 (3)0.727 (2)0.011 (7)*
H2A0.270 (3)0.007 (2)0.7402 (16)0.005 (6)*
H2B0.324 (3)0.033 (3)0.8730 (18)0.024 (8)*
H3A0.207 (4)0.0875 (19)0.613 (3)0.035 (9)*
H3B0.149 (3)0.201 (3)0.617 (3)0.035 (9)*
H4A0.559 (3)0.255 (2)0.914 (2)0.021 (8)*
H4B0.545 (3)0.3800 (17)0.918 (3)0.021 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0157 (13)0.0211 (14)0.0193 (15)0.0033 (11)0.0038 (11)0.0069 (12)
C20.0220 (15)0.0205 (14)0.0203 (15)0.0022 (12)0.0005 (12)0.0091 (12)
C30.0342 (17)0.0233 (15)0.0155 (15)0.0023 (13)0.0085 (12)0.0063 (13)
C40.0300 (16)0.0222 (14)0.0237 (16)0.0076 (13)0.0134 (13)0.0070 (13)
C50.0168 (14)0.0233 (14)0.0251 (16)0.0066 (12)0.0066 (12)0.0102 (13)
C60.0155 (14)0.0317 (15)0.0251 (16)0.0046 (12)0.0096 (12)0.0146 (13)
C70.0222 (15)0.0297 (15)0.0232 (16)0.0029 (12)0.0084 (12)0.0141 (13)
C80.0200 (14)0.0208 (14)0.0223 (15)0.0044 (11)0.0079 (11)0.0117 (12)
C90.0135 (13)0.0218 (14)0.0184 (15)0.0000 (11)0.0037 (11)0.0082 (12)
C100.0334 (17)0.0446 (19)0.0266 (18)0.0097 (15)0.0021 (14)0.0162 (15)
N10.0144 (11)0.0241 (12)0.0141 (12)0.0067 (10)0.0034 (10)0.0104 (11)
N20.0129 (11)0.0204 (11)0.0107 (12)0.0032 (9)0.0008 (9)0.0061 (10)
N30.0155 (12)0.0191 (12)0.0180 (13)0.0036 (10)0.0030 (10)0.0105 (11)
N40.0140 (11)0.0182 (12)0.0175 (13)0.0036 (10)0.0009 (9)0.0071 (11)
N50.0143 (11)0.0172 (11)0.0145 (12)0.0021 (9)0.0033 (9)0.0065 (10)
Cl20.0220 (3)0.0182 (3)0.0227 (4)0.0065 (3)0.0029 (3)0.0082 (3)
Cl30.0162 (3)0.0339 (4)0.0271 (4)0.0100 (3)0.0087 (3)0.0191 (3)
Cl40.0265 (4)0.0270 (4)0.0179 (4)0.0121 (3)0.0043 (3)0.0099 (3)
Co10.0103 (2)0.0168 (2)0.0132 (2)0.00278 (14)0.00175 (14)0.00627 (16)
O10.069 (2)0.067 (2)0.156 (4)0.0194 (17)0.063 (2)0.066 (2)
Geometric parameters (Å, º) top
C1—N51.339 (4)C9—N11.485 (3)
C1—C21.381 (4)C9—H9A0.9700
C1—H10.9300C9—H9B0.9700
C2—C31.380 (4)C10—H10A0.9600
C2—C101.499 (4)C10—H10B0.9600
C3—C41.373 (4)C10—H10C0.9600
C3—H30.9300N1—Co11.952 (2)
C4—C51.377 (4)N1—H1A0.852 (15)
C4—H40.9300N1—H1B0.859 (16)
C5—N51.357 (3)N2—Co11.962 (2)
C5—H50.9300N2—H2A0.852 (15)
C6—N41.484 (3)N2—H2B0.858 (16)
C6—C71.499 (4)N3—Co11.952 (2)
C6—H6A0.9700N3—H3A0.847 (17)
C6—H6B0.9700N3—H3B0.855 (17)
C7—N31.490 (3)N4—Co11.957 (2)
C7—H7A0.9700N4—H4A0.836 (16)
C7—H7B0.9700N4—H4B0.848 (16)
C8—N21.485 (3)N5—Co11.980 (2)
C8—C91.500 (4)Cl2—Co12.2664 (7)
C8—H8A0.9700O1—H1C0.874 (18)
C8—H8B0.9700O1—H1D0.845 (19)
N5—C1—C2124.2 (2)H10B—C10—H10C109.5
N5—C1—H1117.9C9—N1—Co1109.48 (15)
C2—C1—H1117.9C9—N1—H1A106.5 (18)
C3—C2—C1117.3 (3)Co1—N1—H1A116.0 (18)
C3—C2—C10123.2 (3)C9—N1—H1B106.8 (18)
C1—C2—C10119.5 (3)Co1—N1—H1B111.6 (16)
C4—C3—C2119.7 (3)H1A—N1—H1B106.0 (19)
C4—C3—H3120.1C8—N2—Co1109.53 (16)
C2—C3—H3120.1C8—N2—H2A105.7 (16)
C3—C4—C5119.7 (3)Co1—N2—H2A109.5 (16)
C3—C4—H4120.1C8—N2—H2B108.4 (19)
C5—C4—H4120.1Co1—N2—H2B115.4 (19)
N5—C5—C4121.6 (3)H2A—N2—H2B107.8 (19)
N5—C5—H5119.2C7—N3—Co1110.22 (16)
C4—C5—H5119.2C7—N3—H3A111 (2)
N4—C6—C7108.4 (2)Co1—N3—H3A109 (2)
N4—C6—H6A110.0C7—N3—H3B102 (2)
C7—C6—H6A110.0Co1—N3—H3B115 (2)
N4—C6—H6B110.0H3A—N3—H3B109 (2)
C7—C6—H6B110.0C6—N4—Co1110.18 (16)
H6A—C6—H6B108.4C6—N4—H4A107.2 (19)
N3—C7—C6105.6 (2)Co1—N4—H4A110.4 (19)
N3—C7—H7A110.6C6—N4—H4B110.0 (19)
C6—C7—H7A110.6Co1—N4—H4B109.6 (17)
N3—C7—H7B110.6H4A—N4—H4B109 (2)
C6—C7—H7B110.6C1—N5—C5117.4 (2)
H7A—C7—H7B108.8C1—N5—Co1121.98 (17)
N2—C8—C9107.0 (2)C5—N5—Co1120.51 (19)
N2—C8—H8A110.3N1—Co1—N389.50 (9)
C9—C8—H8A110.3N1—Co1—N4173.58 (9)
N2—C8—H8B110.3N3—Co1—N485.02 (9)
C9—C8—H8B110.3N1—Co1—N285.27 (9)
H8A—C8—H8B108.6N3—Co1—N291.85 (10)
N1—C9—C8106.3 (2)N4—Co1—N291.55 (10)
N1—C9—H9A110.5N1—Co1—N593.08 (9)
C8—C9—H9A110.5N3—Co1—N5176.00 (9)
N1—C9—H9B110.5N4—Co1—N592.58 (9)
C8—C9—H9B110.5N2—Co1—N591.41 (9)
H9A—C9—H9B108.7N1—Co1—Cl291.55 (7)
C2—C10—H10A109.5N3—Co1—Cl286.76 (7)
C2—C10—H10B109.5N4—Co1—Cl291.49 (8)
H10A—C10—H10B109.5N2—Co1—Cl2176.54 (7)
C2—C10—H10C109.5N5—Co1—Cl290.11 (7)
H10A—C10—H10C109.5H1C—O1—H1D105 (3)
N5—C1—C2—C31.2 (4)C8—C9—N1—Co141.2 (2)
N5—C1—C2—C10179.4 (3)C9—C8—N2—Co138.1 (2)
C1—C2—C3—C40.3 (4)C6—C7—N3—Co140.9 (2)
C10—C2—C3—C4179.7 (3)C7—C6—N4—Co134.9 (3)
C2—C3—C4—C50.6 (4)C2—C1—N5—C51.0 (4)
C3—C4—C5—N50.7 (4)C2—C1—N5—Co1175.57 (19)
N4—C6—C7—N348.6 (3)C4—C5—N5—C10.0 (4)
N2—C8—C9—N151.2 (3)C4—C5—N5—Co1176.61 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl30.932.663.585 (3)174
C8—H8A···Cl3i0.972.903.395 (3)113
C9—H9B···Cl3ii0.972.953.440 (3)113
N1—H1A···Cl3ii0.85 (2)2.41 (2)3.194 (2)153 (2)
N1—H1B···Cl4iii0.86 (2)2.48 (2)3.292 (2)157 (2)
N2—H2A···Cl40.85 (2)2.57 (2)3.370 (2)158 (2)
N2—H2B···Cl30.86 (2)2.70 (2)3.383 (2)137 (2)
N2—H2B···Cl3i0.86 (2)2.86 (2)3.514 (3)135 (2)
N3—H3A···Cl40.85 (2)2.36 (2)3.191 (2)168 (3)
N3—H3B···Cl4iii0.86 (2)2.67 (2)3.406 (2)144 (2)
N4—H4A···Cl30.84 (2)2.38 (2)3.178 (3)160 (2)
N4—H4B···Cl2iv0.85 (2)2.64 (2)3.310 (2)137 (2)
O1—H1C···Cl40.87 (2)2.28 (2)3.120 (3)162 (4)
O1—H1D···O1v0.85 (2)2.45 (1)2.940 (7)118 (1)
Symmetry codes: (i) x+1, y, z+2; (ii) x1, y, z; (iii) x, y, z+1; (iv) x+1, y+1, z+2; (v) x, y1, z+1.
 

Funding information

KA records his sincere thanks to the Council of Scientific and Industrial Research- HRDG, New Delhi, Department of Science and Technology – SERC, Government of India, New Delhi for financial support through major research projects.

References

First citationAnbalagan, K., Tamilselvan, M., Nirmala, S. & Sudha, L. (2009). Acta Cryst. E65, m836–m837.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationArslan, H., Duran, N., Borekci, G., Ozer, C. K. & Akbay, C. (2009). Molecules, 14, 519–527.  Web of Science CrossRef PubMed Google Scholar
First citationBailar, J. C. Jr & Clapp, L. B. (1945). J. Am. Chem. Soc. 67, 171–175.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelehanty, J. B., Bongard, J. E., Thach, C. D., Knight, D. A., Hickey, T. E. & Chang, E. L. (2008). Bioorg. Med. Chem. 16, 830–837.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRamesh, P., SubbiahPandi, A., Jothi, P., Revathi, C. & Dayalan, A. (2008). Acta Cryst. E64, m300–m301.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRavichandran, K., Ramesh, P., Mahalakshmi, C. M., Anbalagan, K. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, m1458–m1459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSayed, G. H., Shiba, S. A., Radwan, A., Mohamed, S. M. & Khalil, M. (1992). Chin. J. Chem. 10, 475–480.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeicher, B. A., Abrams, M. J., Rosbe, K. W. & Herman, T. S. (1990). Cancer Res. 50, 6971–6975.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds