organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(2Z)-2-(4-Chloro­benzyl­­idene)-4-[2-(2-oxooxazoliden-3-yl)eth­yl]-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: nadouchsebbarkheira@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 14 April 2017; accepted 29 April 2017; online 9 May 2017)

In the title mol­ecule, C20H17ClN2O3S, the oxazolidine ring is oriented towards the benzo­thia­zine moiety so that the centroid of the former is ca 5.05 Å from the sulfur atom of the latter. In the crystal, the mol­ecules are arranged in layers parallel to (101) and held together by the aid of C—H⋯O inter­actions, resulting in a three-dimensional network structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

A number of pharmacological tests have revealed 1,4-benzo­thia­zine derivatives to possess a wide spectrum of biological activities, even when they are part of a complex mol­ecule (Schiaffella et al., 2006[Schiaffella, F., Macchiarulo, A., Milanese, L., Vecchiarelli, A. & Fringuelli, R. (2006). Bioorg. Med. Chem. 14, 5196-5203.]; Gupta et al., 2009[Gupta, S., Ajmera, N., Meena, P., Gautam, N., Kumar, A. & Gautam, D. C. (2009). Jordan. J. Chem. 4, 209-221.]). As a result of the presence of a fold along the nitro­gen–sulfur axis, the biological activities of some 1,4-benzo­thia­zines are similar to that of pheno­thia­zines, featuring the same structural specificity (Bansode et al., 2009[Bansode, T. N., Shelke, J. V. & Dongre, V. G. (2009). Eur. J. Med. Chem. 44, 5094-5098.]; Dixit et al., 2009[Dixit, Y., Dixit, R., Gautam, N. & Gautam, D. C. (2009). Nucleosides Nucleotides Nucleic Acids, 28, 998-1006.]; Thomas et al., 2003[Thomas, L., Gupta, A. & Gupta, V. (2003). J. Fluor. Chem. 122, 207-213.]). Generally, 1,4-benzo­thia­zine derivatives have found widespread applications as analgesic (Warren & Knaus, 1987[Warren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411-415.]), anti­bacterial (Armenise et al., 2012[Armenise, D., Muraglia, M., Florio, M. A., De Laurentis, N., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 407-416.]; Sabatini et al., 2008[Sabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321-4330.]), anti­cancer (Jacquot et al., 2001[Jacquot, Y., Bermont, L., Giorgi, H., Refouvelet, B. L., Adessi, G., Daubrosse, E. & Xicluna, A. (2001). Eur. J. Med. Chem. 36, 127-136.]), anti­convulsant (Kalluraya et al., 2005[Kalluraya, B., Chimbalkar, R. M. & Hegde, J. C. (2005). Indian J. Heterocycl. Chem. 15, 15-18.]) or anthelmintic (Munirajasekar et al., 2011[Munirajasekar, D., Himaja, M. & Sunil, M. (2011). Int. Res. J. Pharm. 2, 114-117.]) agents. In a continuation of our research activities devoted to the development of N-substituted 1,4-benzo­thia­zine derivatives and the evaluation of their potential pharmacological activities (Sebbar et al., 2016[Sebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016). Res. Chem. Intermed. 42, 6845-6862.]; Ellouz et al., 2015[Ellouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022-o1023.]), we have synthesized a new heterocyclic system containing 1,4-benzo­thia­zine and oxazolidinone moieties.

In the title mol­ecule (Fig. 1[link]), the dihedral angle between the two benzene rings (C1–C6 and C10–C15) is 51.62 (5)°. A puckering analysis of the oxazolidine ring revealed a puckering amplitude with parameters Q(2) = 0.206 (2) Å and φ(2) = 131.9 (5)°. The ring has an envelope conformation with a twist on the C19—C20 bond and atom C20 as the flap. A similar analysis of the heterocyclic portion of the benzo­thia­zene moiety gave Q = 0.426 (1) Å, θ = 73.1 (6)° and φ = 341.4 (2)°. The oxazolidine ring is oriented towards the benzo­thia­zine unit such that the centroid of the oxazolidine ring is only 4.094 (2) Å from C7 and 5.053 (2) Å from S1 (Fig. 1[link]). The overall conformation of the mol­ecule is determined in part by intra­molecular C—H⋯O and C—H⋯S hydrogen bonds (Fig. 1[link] and Table 1[link]). In the crystal, the layered arrangement of the mol­ecules is sustained by a three-dimensional network of C—H⋯O inter­actions (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O3i 0.93 2.60 3.380 (2) 142
C9—H9⋯O1 0.93 2.34 2.7344 (18) 105
C11—H11⋯S1 0.93 2.50 3.1463 (15) 127
C16—H16B⋯O1 0.97 2.23 2.6923 (19) 108
C17—H17B⋯O2 0.97 2.54 2.9049 (18) 102
C20—H20A⋯O1ii 0.97 2.43 3.159 (2) 132
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x, -y+1, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound drawn with displacement ellipsoids at the 50% probability level. Intra­molecular C—H⋯O hydrogen bonds are shown by dashed lines.
[Figure 2]
Figure 2
A portion of the crystal structure with C—H⋯O and C—H⋯S hydrogen bonds shown as dashed lines.

Synthesis and crystallization

To a solution of (2Z)-2-(4-chloro­benzyl­idene)-3,4-di­hydro-2H-1,4-benzo­thia­zin-3-one (0.29 g, 1.00 mmol) in DMF (15 ml), was added tetra-n-butyl­ammonium bromide (0.1 mmol), 2.2 eq of bis (2-chloro­eth­yl)amine hydro­chloride and 2.00 eq of potassium carbonate. The mixture was stirred at 353 K for 6 h. After removal of salts by filtration, the solution was evaporated under reduced pressure and the residue obtained was dissolved in di­chloro­methane. The remaining salts were extracted with distilled water, and the mixture obtained was chromatographed on a silica gel column (eluent: ethyl acetate/hexa­ne: 4/1). The solid isolated was recrystallized from ethanol to afford colorless crystals in 64% yield.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H17ClN2O3S
Mr 400.86
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 6.2315 (3), 15.5466 (8), 18.9162 (10)
β (°) 98.845 (1)
V3) 1810.78 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.45 × 0.33 × 0.16
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.86, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 33990, 4719, 3743
Rint 0.032
(sin θ/λ)max−1) 0.678
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.123, 1.09
No. of reflections 4719
No. of parameters 244
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.28
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(2Z)-2-(4-Chlorobenzylidene)-4-[2-(2-oxooxazoliden-3-yl)ethyl]-3,4-dihydro-2H-1,4-benzothiazin-3-one top
Crystal data top
C20H17ClN2O3SF(000) = 832
Mr = 400.86Dx = 1.470 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.2315 (3) ÅCell parameters from 9941 reflections
b = 15.5466 (8) Åθ = 2.2–28.5°
c = 18.9162 (10) ŵ = 0.35 mm1
β = 98.845 (1)°T = 296 K
V = 1810.78 (16) Å3Block, colourless
Z = 40.45 × 0.33 × 0.16 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
4719 independent reflections
Radiation source: fine-focus sealed tube3743 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 8.3333 pixels mm-1θmax = 28.8°, θmin = 1.7°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2121
Tmin = 0.86, Tmax = 0.95l = 2525
33990 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0716P)2 + 0.1928P]
where P = (Fo2 + 2Fc2)/3
4719 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, collected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 15 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å). All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.87886 (7)0.06538 (3)0.34978 (2)0.06434 (14)
S10.61719 (6)0.22088 (3)0.61074 (2)0.05320 (13)
O10.0726 (2)0.31674 (8)0.51581 (6)0.0664 (3)
O20.63844 (18)0.47048 (12)0.70186 (8)0.0800 (4)
O30.6080 (2)0.54626 (10)0.59946 (8)0.0758 (4)
N10.20199 (18)0.31452 (7)0.63432 (6)0.0413 (3)
N20.30695 (17)0.50294 (8)0.63633 (7)0.0459 (3)
C10.5149 (2)0.23083 (9)0.69107 (7)0.0431 (3)
C20.6326 (3)0.19328 (11)0.75182 (8)0.0564 (4)
H20.75980.16340.74830.068*
C30.5618 (3)0.20006 (12)0.81746 (9)0.0660 (5)
H30.64260.17610.85810.079*
C40.3727 (3)0.24218 (12)0.82193 (9)0.0639 (5)
H40.32450.24660.86590.077*
C50.2508 (3)0.27862 (10)0.76182 (9)0.0545 (4)
H50.12040.30600.76580.065*
C60.3219 (2)0.27462 (8)0.69553 (7)0.0411 (3)
C70.2053 (2)0.28940 (9)0.56473 (8)0.0432 (3)
C80.3787 (2)0.22887 (8)0.54877 (7)0.0394 (3)
C90.3506 (2)0.19155 (9)0.48386 (7)0.0432 (3)
H90.22050.20540.45510.052*
C100.4893 (2)0.13308 (9)0.45089 (7)0.0424 (3)
C110.7127 (2)0.12295 (10)0.47337 (8)0.0490 (3)
H110.78260.15700.51030.059*
C120.8304 (2)0.06316 (11)0.44155 (8)0.0498 (3)
H120.97870.05720.45700.060*
C130.7282 (2)0.01232 (10)0.38690 (8)0.0475 (3)
C140.5106 (3)0.02288 (11)0.36082 (8)0.0543 (4)
H140.44350.01050.32290.065*
C150.3944 (2)0.08405 (11)0.39213 (8)0.0500 (3)
H150.24890.09290.37370.060*
C160.0506 (2)0.38381 (9)0.64572 (8)0.0445 (3)
H16A0.05030.36270.67600.053*
H16B0.03270.40010.60010.053*
C170.1671 (2)0.46259 (9)0.68036 (8)0.0440 (3)
H17A0.05990.50410.69070.053*
H17B0.25300.44580.72540.053*
C180.5244 (2)0.50246 (11)0.65165 (9)0.0536 (4)
C190.4331 (4)0.58882 (14)0.55426 (12)0.0787 (6)
H19A0.45130.58450.50440.094*
H19B0.42640.64910.56690.094*
C200.2305 (3)0.54183 (12)0.56775 (10)0.0616 (4)
H20A0.11130.58120.57030.074*
H20B0.18580.49880.53130.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0707 (3)0.0563 (2)0.0708 (3)0.00881 (19)0.0257 (2)0.00626 (19)
S10.03737 (19)0.0733 (3)0.0475 (2)0.00586 (16)0.00185 (14)0.01277 (17)
O10.0699 (7)0.0718 (8)0.0531 (6)0.0307 (6)0.0048 (5)0.0007 (6)
O20.0369 (6)0.1218 (13)0.0767 (8)0.0130 (7)0.0055 (6)0.0065 (8)
O30.0541 (7)0.0942 (10)0.0820 (9)0.0240 (7)0.0199 (6)0.0076 (8)
N10.0388 (6)0.0353 (5)0.0492 (6)0.0031 (4)0.0052 (5)0.0034 (5)
N20.0322 (5)0.0462 (6)0.0571 (7)0.0000 (5)0.0004 (5)0.0027 (5)
C10.0459 (7)0.0392 (7)0.0421 (7)0.0007 (5)0.0000 (5)0.0066 (5)
C20.0614 (9)0.0510 (8)0.0519 (8)0.0117 (7)0.0072 (7)0.0078 (7)
C30.0911 (13)0.0568 (9)0.0454 (8)0.0081 (9)0.0046 (8)0.0007 (7)
C40.0907 (14)0.0563 (10)0.0462 (8)0.0019 (9)0.0153 (8)0.0001 (7)
C50.0650 (10)0.0478 (8)0.0535 (8)0.0019 (7)0.0178 (7)0.0023 (6)
C60.0450 (7)0.0330 (6)0.0448 (7)0.0014 (5)0.0051 (5)0.0029 (5)
C70.0438 (7)0.0385 (7)0.0464 (7)0.0021 (5)0.0040 (6)0.0016 (5)
C80.0387 (6)0.0373 (6)0.0416 (6)0.0008 (5)0.0048 (5)0.0024 (5)
C90.0413 (7)0.0469 (7)0.0405 (6)0.0010 (6)0.0037 (5)0.0018 (5)
C100.0445 (7)0.0455 (7)0.0379 (6)0.0022 (6)0.0088 (5)0.0012 (5)
C110.0437 (7)0.0597 (9)0.0436 (7)0.0052 (6)0.0062 (6)0.0088 (6)
C120.0436 (7)0.0597 (9)0.0467 (7)0.0027 (6)0.0088 (6)0.0005 (6)
C130.0540 (8)0.0463 (7)0.0457 (7)0.0006 (6)0.0190 (6)0.0016 (6)
C140.0525 (8)0.0617 (9)0.0496 (8)0.0085 (7)0.0110 (6)0.0146 (7)
C150.0425 (7)0.0634 (9)0.0442 (7)0.0027 (6)0.0064 (6)0.0070 (6)
C160.0328 (6)0.0392 (7)0.0613 (8)0.0022 (5)0.0069 (6)0.0066 (6)
C170.0357 (6)0.0401 (7)0.0562 (8)0.0038 (5)0.0076 (5)0.0063 (6)
C180.0347 (7)0.0639 (9)0.0618 (9)0.0036 (6)0.0066 (6)0.0171 (7)
C190.0960 (15)0.0654 (11)0.0780 (13)0.0226 (11)0.0243 (11)0.0038 (10)
C200.0598 (9)0.0572 (9)0.0638 (10)0.0026 (8)0.0030 (8)0.0099 (8)
Geometric parameters (Å, º) top
Cl1—C131.7426 (15)C8—C91.3448 (19)
S1—C11.7427 (15)C9—C101.459 (2)
S1—C81.7501 (13)C9—H90.9300
O1—C71.2190 (17)C10—C111.4004 (19)
O2—C181.203 (2)C10—C151.4015 (19)
O3—C181.367 (2)C11—C121.378 (2)
O3—C191.439 (3)C11—H110.9300
N1—C71.3763 (18)C12—C131.377 (2)
N1—C61.4207 (18)C12—H120.9300
N1—C161.4696 (16)C13—C141.380 (2)
N2—C181.3416 (17)C14—C151.383 (2)
N2—C171.4386 (19)C14—H140.9300
N2—C201.444 (2)C15—H150.9300
C1—C21.393 (2)C16—C171.5201 (19)
C1—C61.396 (2)C16—H16A0.9700
C2—C31.384 (2)C16—H16B0.9700
C2—H20.9300C17—H17A0.9700
C3—C41.362 (3)C17—H17B0.9700
C3—H30.9300C19—C201.514 (3)
C4—C51.388 (3)C19—H19A0.9700
C4—H40.9300C19—H19B0.9700
C5—C61.394 (2)C20—H20A0.9700
C5—H50.9300C20—H20B0.9700
C7—C81.4980 (19)
C1—S1—C8101.01 (7)C10—C11—H11119.5
C18—O3—C19108.68 (13)C13—C12—C11119.94 (14)
C7—N1—C6124.90 (11)C13—C12—H12120.0
C7—N1—C16116.93 (11)C11—C12—H12120.0
C6—N1—C16118.01 (11)C12—C13—C14121.05 (14)
C18—N2—C17123.65 (13)C12—C13—Cl1118.99 (12)
C18—N2—C20112.28 (14)C14—C13—Cl1119.95 (12)
C17—N2—C20123.86 (12)C13—C14—C15118.65 (14)
C2—C1—C6120.25 (14)C13—C14—H14120.7
C2—C1—S1117.74 (12)C15—C14—H14120.7
C6—C1—S1122.01 (11)C14—C15—C10121.91 (14)
C3—C2—C1120.54 (15)C14—C15—H15119.0
C3—C2—H2119.7C10—C15—H15119.0
C1—C2—H2119.7N1—C16—C17112.26 (11)
C4—C3—C2119.37 (16)N1—C16—H16A109.2
C4—C3—H3120.3C17—C16—H16A109.2
C2—C3—H3120.3N1—C16—H16B109.2
C3—C4—C5121.02 (16)C17—C16—H16B109.2
C3—C4—H4119.5H16A—C16—H16B107.9
C5—C4—H4119.5N2—C17—C16113.18 (12)
C4—C5—C6120.60 (16)N2—C17—H17A108.9
C4—C5—H5119.7C16—C17—H17A108.9
C6—C5—H5119.7N2—C17—H17B108.9
C5—C6—C1118.19 (14)C16—C17—H17B108.9
C5—C6—N1120.89 (13)H17A—C17—H17B107.8
C1—C6—N1120.92 (13)O2—C18—N2128.85 (17)
O1—C7—N1121.25 (13)O2—C18—O3122.14 (14)
O1—C7—C8119.49 (13)N2—C18—O3109.02 (14)
N1—C7—C8119.24 (12)O3—C19—C20104.66 (15)
C9—C8—C7117.29 (12)O3—C19—H19A110.8
C9—C8—S1123.97 (11)C20—C19—H19A110.8
C7—C8—S1118.30 (10)O3—C19—H19B110.8
C8—C9—C10131.05 (13)C20—C19—H19B110.8
C8—C9—H9114.5H19A—C19—H19B108.9
C10—C9—H9114.5N2—C20—C19100.66 (14)
C11—C10—C15117.29 (13)N2—C20—H20A111.6
C11—C10—C9124.53 (12)C19—C20—H20A111.6
C15—C10—C9118.18 (12)N2—C20—H20B111.6
C12—C11—C10120.92 (13)C19—C20—H20B111.6
C12—C11—H11119.5H20A—C20—H20B109.4
C8—S1—C1—C2153.67 (12)S1—C8—C9—C105.3 (2)
C8—S1—C1—C626.30 (13)C8—C9—C10—C1119.8 (2)
C6—C1—C2—C31.0 (2)C8—C9—C10—C15160.93 (15)
S1—C1—C2—C3178.98 (14)C15—C10—C11—C123.9 (2)
C1—C2—C3—C41.5 (3)C9—C10—C11—C12176.77 (14)
C2—C3—C4—C50.3 (3)C10—C11—C12—C130.1 (2)
C3—C4—C5—C61.5 (3)C11—C12—C13—C143.1 (2)
C4—C5—C6—C11.9 (2)C11—C12—C13—Cl1177.73 (12)
C4—C5—C6—N1177.67 (15)C12—C13—C14—C152.0 (2)
C2—C1—C6—C50.7 (2)Cl1—C13—C14—C15178.92 (12)
S1—C1—C6—C5179.28 (11)C13—C14—C15—C102.3 (2)
C2—C1—C6—N1178.92 (13)C11—C10—C15—C145.2 (2)
S1—C1—C6—N11.12 (18)C9—C10—C15—C14175.49 (15)
C7—N1—C6—C5154.04 (14)C7—N1—C16—C17118.43 (14)
C16—N1—C6—C521.29 (19)C6—N1—C16—C1765.86 (16)
C7—N1—C6—C126.4 (2)C18—N2—C17—C16110.69 (16)
C16—N1—C6—C1158.30 (12)C20—N2—C17—C1663.64 (18)
C6—N1—C7—O1167.61 (14)N1—C16—C17—N263.91 (16)
C16—N1—C7—O17.8 (2)C17—N2—C18—O20.1 (3)
C6—N1—C7—C813.8 (2)C20—N2—C18—O2175.00 (18)
C16—N1—C7—C8170.82 (12)C17—N2—C18—O3179.91 (13)
O1—C7—C8—C915.3 (2)C20—N2—C18—O35.18 (19)
N1—C7—C8—C9166.08 (13)C19—O3—C18—O2170.22 (18)
O1—C7—C8—S1157.32 (12)C19—O3—C18—N29.62 (19)
N1—C7—C8—S121.29 (17)C18—O3—C19—C2019.5 (2)
C1—S1—C8—C9151.29 (12)C18—N2—C20—C1916.49 (19)
C1—S1—C8—C736.61 (12)C17—N2—C20—C19168.61 (15)
C7—C8—C9—C10177.49 (14)O3—C19—C20—N220.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O3i0.932.603.380 (2)142
C9—H9···O10.932.342.7344 (18)105
C11—H11···S10.932.503.1463 (15)127
C16—H16B···O10.972.232.6923 (19)108
C17—H17B···O20.972.542.9049 (18)102
C20—H20A···O1ii0.972.433.159 (2)132
Symmetry codes: (i) x+3/2, y1/2, z+3/2; (ii) x, y+1, z+1.
 

Acknowledgements

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationArmenise, D., Muraglia, M., Florio, M. A., De Laurentis, N., Rosato, A., Carrieri, A., Corbo, F. & Franchini, C. (2012). Arch. Pharm. Pharm. Med. Chem. 345, 407–416.  Web of Science CrossRef CAS Google Scholar
First citationBansode, T. N., Shelke, J. V. & Dongre, V. G. (2009). Eur. J. Med. Chem. 44, 5094–5098.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDixit, Y., Dixit, R., Gautam, N. & Gautam, D. C. (2009). Nucleosides Nucleotides Nucleic Acids, 28, 998–1006.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEllouz, M., Sebbar, N. K., Essassi, E. M., Ouzidan, Y. & Mague, J. T. (2015). Acta Cryst. E71, o1022–o1023.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGupta, S., Ajmera, N., Meena, P., Gautam, N., Kumar, A. & Gautam, D. C. (2009). Jordan. J. Chem. 4, 209–221.  CAS Google Scholar
First citationJacquot, Y., Bermont, L., Giorgi, H., Refouvelet, B. L., Adessi, G., Daubrosse, E. & Xicluna, A. (2001). Eur. J. Med. Chem. 36, 127–136.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalluraya, B., Chimbalkar, R. M. & Hegde, J. C. (2005). Indian J. Heterocycl. Chem. 15, 15–18.  CAS Google Scholar
First citationMunirajasekar, D., Himaja, M. & Sunil, M. (2011). Int. Res. J. Pharm. 2, 114–117.  Google Scholar
First citationSabatini, S., Kaatz, G. W., Rossolini, G. M., Brandini, D. & Fravolini, A. (2008). J. Med. Chem. 51, 4321–4330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchiaffella, F., Macchiarulo, A., Milanese, L., Vecchiarelli, A. & Fringuelli, R. (2006). Bioorg. Med. Chem. 14, 5196–5203.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSebbar, N. K., Mekhzoum, M. E. M., Essassi, E. M., Zerzouf, A., Talbaoui, A., Bakri, Y., Saadi, M. & Ammari, L. E. (2016). Res. Chem. Intermed. 42, 6845–6862.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThomas, L., Gupta, A. & Gupta, V. (2003). J. Fluor. Chem. 122, 207–213.  Web of Science CrossRef CAS Google Scholar
First citationWarren, B. K. & Knaus, E. E. (1987). Eur. J. Med. Chem. 22, 411–415.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds