organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Chloro-N-(pyridin-4-ylmeth­yl)pyridine-3-sulfonamide

aDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur Karnataka 572 103, India, bSoild State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, India, and cDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur Karnataka 572 103, India
*Correspondence e-mail: drsreenivasa@yahoo.co.in

(Received 28 October 2013; accepted 7 November 2013; online 13 November 2013)

In the title sulfonamide derivative, C11H10ClN3O2S, the dihedral angle between the pyridine rings is 46.85 (12)°. The N atom of the chloro­pyridine ring is anti to the N—H bond. In the crystal, mol­ecules are linked through N—H⋯N hydrogen bonds into zigzag chains parallel to [001] with a C(7) graph-set motif.

Related literature

For graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the anti­microbial activity of related compounds, see: Desai et al. (2013[Desai, N. C., Satodiya, H. M., Rajpara, K. M., Joshi, V. V. & Vaghani, H. V. (2013). Indian J. Chem. Sect. B, 52, 904-914.]); Mohan et al. (2013[Mohan, R. N., Sreenivasa, S., Manojkumar, K. E. & Madhu Chakrapani Rao, T. (2013). J. Appl. Chem. 2, 722-729.]). For the proliferation activity of these compounds, see: Renu et al. (2006[Renu, M., Mithu, B., Anasuya, R., Tapas, M., Leslie, W., Takashi, O., Bhabatarak, B. & Dulal, P. (2006). Biochemistry, 45, 5440-5449.]), and for their tuberculostaic acitivity, see: Gobis et al. (2013[Gobis, K., Foks, H., Slawinski, J., Augustynowicz-Kopec, E. & Napiorkowska, A. (2013). Monatsh. Chem. 144, 1197-1203.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10ClN3O2S

  • Mr = 283.73

  • Monoclinic, P 21 /c

  • a = 5.4140 (6) Å

  • b = 18.172 (2) Å

  • c = 12.9392 (15) Å

  • β = 92.388 (6)°

  • V = 1271.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 293 K

  • 0.35 × 0.29 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.852, Tmax = 0.899

  • 20929 measured reflections

  • 2961 independent reflections

  • 2185 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.137

  • S = 0.82

  • 2961 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—HN2⋯N3i 0.78 (3) 2.10 (3) 2.870 (3) 174.53
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyridine ring containing sulfonamide moieties show antimicrobial activity (Desai et al., 2013; Mohan et al., 2013), proliferation activity (Renu et al., 2006) and tuberculostaic acitivity (Gobis et al., 2013). Keeping this in mind, the title compound, C11H10ClN3O2S, (I), was synthesized and its crystal structure determined.

In the structure of compound (I) the dihedral angle between the two pyridine rings is 46.85(12°. The N-atom of the chloropyridine ring in the compound is anti to the N—H bond (Fig 1). In the crystal structure, the molecules are linked through N2—HN2···N3 hydrogen bonds (Table 1, Fig. 2) into zigzag chains with graph-set notation C(7) (Bernstein et al. 1995) running parallel to [001] .

Related literature top

For graph-set analysis of hydrogen-bond patterns, see: Bernstein et al. (1995). For the antimicrobial activity of related compounds, see: Desai et al. (2013); Mohan et al. (2013). For the proliferation activity of these compounds, see: Renu et al. (2006), and for their tuberculostaic acitivity, see: Gobis et al. (2013).

Experimental top

Pyridin-4-ylmethanamine (7.4 mmol) was taken in dry dichloromethane (10 ml) and cooled to 273 K. To this solution 6-chloropyridine-3-sulfonyl chloride (7.4 mmol) in dichloromethane and triethylamine (1.48 mmol) was added slowly and the solution was heated to 323 K for 4 h. The reaction was monitored by TLC. The reaction mixture was cooled and washed with 10% sodium bicarbonate solution. The organic layer was separated, dried and concentrated to obtain the crude compound. It was purified by column chromatography using petroleum ether: ethyl acetate (7:3) as eluent.

Yellow prisms of the title compound suitable for diffraction studies were obtained from evapouration of the solution of the compound in a mixture of petroleum ether: ethyl acetate (7:3).

Refinement top

The H atom of the NH group was located in a difference map and refined freely. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å (aromatic) and 0.97 Å (methylene). Isotropic displacement parameters for all H atoms were set to 1.2 times Ueq of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Linking of individual molecules into C(7) chains parallel to [001] through N—H···N hydrogen bonds. H-atoms not involved in H-bonding are omitted for clarity.
6-Chloro-N-(pyridin-4-ylmethyl)pyridine-3-sulfonamide top
Crystal data top
C11H10ClN3O2SPrism
Mr = 283.73Dx = 1.482 Mg m3
Monoclinic, P21/cMelting point: 492 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.4140 (6) ÅCell parameters from 1103 reflections
b = 18.172 (2) Åθ = 1.9–27.8°
c = 12.9392 (15) ŵ = 0.46 mm1
β = 92.388 (6)°T = 293 K
V = 1271.9 (2) Å3Prism, yellow
Z = 40.35 × 0.29 × 0.23 mm
F(000) = 584
Data collection top
Bruker APEXII CCD
diffractometer
2961 independent reflections
Radiation source: fine-focus sealed tube2185 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 27.8°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 77
Tmin = 0.852, Tmax = 0.899k = 2323
20929 measured reflectionsl = 1316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 0.82 w = 1/[σ2(Fo2) + (0.0847P)2 + 0.7427P]
where P = (Fo2 + 2Fc2)/3
2961 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C11H10ClN3O2SV = 1271.9 (2) Å3
Mr = 283.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.4140 (6) ŵ = 0.46 mm1
b = 18.172 (2) ÅT = 293 K
c = 12.9392 (15) Å0.35 × 0.29 × 0.23 mm
β = 92.388 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
2961 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2185 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.899Rint = 0.035
20929 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 0.82Δρmax = 0.27 e Å3
2961 reflectionsΔρmin = 0.39 e Å3
167 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
HN20.486 (4)0.3469 (13)0.213 (2)0.058 (7)*
S10.32655 (10)0.44681 (3)0.19440 (4)0.0590 (2)
Cl11.10225 (15)0.64661 (4)0.41805 (6)0.0911 (3)
C10.5418 (4)0.50525 (11)0.25986 (16)0.0486 (4)
C70.6225 (4)0.32076 (10)0.00501 (15)0.0474 (4)
N20.4712 (4)0.37356 (11)0.16614 (15)0.0584 (5)
C30.8769 (4)0.59143 (12)0.35659 (18)0.0600 (5)
N30.5621 (4)0.22140 (11)0.15918 (16)0.0692 (5)
C110.4300 (4)0.27124 (12)0.00074 (17)0.0571 (5)
H110.31570.27000.05090.068*
N10.8263 (5)0.60509 (13)0.2581 (2)0.0899 (7)
O10.1498 (3)0.42543 (11)0.26714 (16)0.0804 (5)
O20.2501 (4)0.48324 (12)0.10098 (16)0.0912 (6)
C100.4071 (4)0.22353 (13)0.08329 (19)0.0653 (6)
H100.27460.19090.08560.078*
C50.6049 (6)0.49344 (15)0.36172 (19)0.0785 (8)
H50.53140.45530.39730.094*
C20.6559 (6)0.56102 (15)0.2099 (2)0.0822 (8)
H20.61530.56910.14020.099*
C80.7862 (5)0.31869 (14)0.0734 (2)0.0676 (6)
H80.92000.35080.07310.081*
C60.6641 (4)0.37509 (14)0.09095 (17)0.0635 (6)
H6A0.82200.36480.12620.076*
H6B0.67250.42410.06170.076*
C40.7741 (6)0.53707 (15)0.41083 (18)0.0797 (8)
H40.81830.52980.48030.096*
C90.7497 (5)0.26847 (16)0.1525 (2)0.0805 (8)
H90.86350.26750.20440.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0487 (3)0.0671 (4)0.0603 (4)0.0063 (2)0.0084 (2)0.0061 (3)
Cl10.0924 (5)0.0868 (5)0.0934 (5)0.0227 (4)0.0072 (4)0.0295 (4)
C10.0463 (10)0.0461 (10)0.0534 (11)0.0038 (8)0.0016 (8)0.0003 (8)
C70.0480 (10)0.0485 (10)0.0454 (10)0.0020 (8)0.0032 (8)0.0064 (8)
N20.0767 (12)0.0571 (10)0.0413 (10)0.0150 (9)0.0034 (8)0.0012 (8)
C30.0623 (13)0.0550 (12)0.0626 (14)0.0032 (10)0.0027 (10)0.0153 (10)
N30.0808 (13)0.0633 (11)0.0640 (12)0.0020 (10)0.0095 (10)0.0132 (9)
C110.0542 (11)0.0622 (12)0.0554 (12)0.0072 (10)0.0088 (9)0.0077 (10)
N10.1045 (18)0.0783 (14)0.0853 (17)0.0339 (13)0.0122 (14)0.0155 (12)
O10.0526 (9)0.0965 (13)0.0928 (13)0.0144 (9)0.0127 (9)0.0050 (11)
O20.0814 (12)0.1002 (14)0.0883 (14)0.0074 (10)0.0385 (11)0.0283 (11)
C100.0620 (13)0.0641 (13)0.0700 (15)0.0071 (11)0.0051 (11)0.0144 (11)
C50.106 (2)0.0773 (16)0.0522 (14)0.0350 (15)0.0037 (13)0.0053 (12)
C20.098 (2)0.0758 (16)0.0713 (16)0.0242 (14)0.0187 (15)0.0251 (13)
C80.0635 (14)0.0694 (14)0.0710 (15)0.0096 (11)0.0158 (12)0.0021 (12)
C60.0645 (13)0.0728 (14)0.0532 (12)0.0219 (11)0.0026 (10)0.0049 (11)
C40.111 (2)0.0838 (17)0.0432 (12)0.0313 (15)0.0079 (13)0.0001 (11)
C90.0896 (19)0.0863 (18)0.0678 (16)0.0030 (15)0.0309 (14)0.0107 (14)
Geometric parameters (Å, º) top
S1—O11.4238 (19)N3—C91.328 (3)
S1—O21.4244 (18)C11—C101.377 (3)
S1—N21.595 (2)C11—H110.9300
S1—C11.767 (2)N1—C21.354 (3)
Cl1—C31.745 (2)C10—H100.9300
C1—C21.364 (3)C5—C41.350 (3)
C1—C51.365 (3)C5—H50.9300
C7—C111.376 (3)C2—H20.9300
C7—C81.375 (3)C8—C91.379 (4)
C7—C61.497 (3)C8—H80.9300
N2—C61.457 (3)C6—H6A0.9700
N2—HN20.78 (3)C6—H6B0.9700
C3—N11.316 (3)C4—H40.9300
C3—C41.346 (3)C9—H90.9300
N3—C101.318 (3)
O1—S1—O2120.54 (13)N3—C10—H10118.1
O1—S1—N2105.88 (11)C11—C10—H10118.1
O2—S1—N2108.75 (13)C4—C5—C1120.0 (2)
O1—S1—C1107.16 (11)C4—C5—H5120.0
O2—S1—C1106.87 (11)C1—C5—H5120.0
N2—S1—C1106.94 (10)N1—C2—C1122.3 (2)
C2—C1—C5118.3 (2)N1—C2—H2118.9
C2—C1—S1121.47 (18)C1—C2—H2118.9
C5—C1—S1120.14 (17)C7—C8—C9119.2 (2)
C11—C7—C8116.9 (2)C7—C8—H8120.4
C11—C7—C6124.15 (19)C9—C8—H8120.4
C8—C7—C6118.97 (19)N2—C6—C7113.18 (17)
C6—N2—S1120.65 (17)N2—C6—H6A108.9
C6—N2—HN2118.6 (19)C7—C6—H6A108.9
S1—N2—HN2112.0 (18)N2—C6—H6B108.9
N1—C3—C4124.7 (2)C7—C6—H6B108.9
N1—C3—Cl1116.52 (19)H6A—C6—H6B107.8
C4—C3—Cl1118.74 (19)C3—C4—C5118.2 (2)
C10—N3—C9116.2 (2)C3—C4—H4120.9
C7—C11—C10119.8 (2)C5—C4—H4120.9
C7—C11—H11120.1N3—C9—C8124.1 (2)
C10—C11—H11120.1N3—C9—H9118.0
C3—N1—C2116.4 (2)C8—C9—H9118.0
N3—C10—C11123.8 (2)
O1—S1—C1—C2148.2 (2)C2—C1—C5—C40.9 (4)
O2—S1—C1—C217.7 (3)S1—C1—C5—C4178.3 (2)
N2—S1—C1—C298.7 (2)C3—N1—C2—C10.0 (5)
O1—S1—C1—C534.4 (2)C5—C1—C2—N10.7 (5)
O2—S1—C1—C5164.9 (2)S1—C1—C2—N1178.2 (2)
N2—S1—C1—C578.7 (2)C11—C7—C8—C90.3 (3)
O1—S1—N2—C6178.59 (17)C6—C7—C8—C9179.6 (2)
O2—S1—N2—C647.7 (2)S1—N2—C6—C7125.57 (19)
C1—S1—N2—C667.37 (19)C11—C7—C6—N23.3 (3)
C8—C7—C11—C100.9 (3)C8—C7—C6—N2177.4 (2)
C6—C7—C11—C10179.8 (2)N1—C3—C4—C50.6 (5)
C4—C3—N1—C20.7 (5)Cl1—C3—C4—C5178.2 (2)
Cl1—C3—N1—C2178.4 (2)C1—C5—C4—C30.2 (5)
C9—N3—C10—C110.5 (4)C10—N3—C9—C81.2 (4)
C7—C11—C10—N30.5 (4)C7—C8—C9—N30.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—HN2···N3i0.78 (3)2.10 (3)2.870 (3)174.53
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—HN2···N3i0.78 (3)2.10 (3)2.870 (3)174.53
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Prof T. N. Guru Row, Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, for his help and valuable suggestions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesai, N. C., Satodiya, H. M., Rajpara, K. M., Joshi, V. V. & Vaghani, H. V. (2013). Indian J. Chem. Sect. B, 52, 904–914.  Google Scholar
First citationGobis, K., Foks, H., Slawinski, J., Augustynowicz-Kopec, E. & Napiorkowska, A. (2013). Monatsh. Chem. 144, 1197–1203.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohan, R. N., Sreenivasa, S., Manojkumar, K. E. & Madhu Chakrapani Rao, T. (2013). J. Appl. Chem. 2, 722–729.  Google Scholar
First citationRenu, M., Mithu, B., Anasuya, R., Tapas, M., Leslie, W., Takashi, O., Bhabatarak, B. & Dulal, P. (2006). Biochemistry, 45, 5440–5449.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds