metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[benzyl 3-(3-phenyl­prop-2-enyl­­idene)di­thio­carbazato-κ2N3,S]cadmium

aDepartment of Chemistry, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh, bDepartment of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh, cDepartment of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan, and dDepartment of Chemical and Pharmaceutical Science, Via L. Giorgieri 1, 34127 Trieste, Italy
*Correspondence e-mail: ttofazzal@yahoo.com

(Received 19 June 2012; accepted 21 June 2012; online 30 June 2012)

In the title complex, [Cd(C17H15N2S2)2], the CdII ion is located on a twofold rotation axis and exhibits a coordination number of four within a very distorted coordination environment that is best described as bis­phenoidal. The two deprotonated Schiff base ligands chelate the CdII ion through the azomethine N and the thiol­ate S atom. The dihedral angle between the two chelating ligands is 84.01 (9)°. Weak inter­molecular C—H⋯S inter­actions lead to the formation of chains along the c axis.

Related literature

For the structure of uncoordinated Schiff bases, see: Tarafder, Crouse et al. (2008[Tarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1042-o1043.]); Tarafder, Islam et al. (2008[Tarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416-m417.]). For the isotypic Zn and Hg analogues, see: Fun et al. (2008[Fun, H.-K., Chantrapromma, S., Tarafder, M. T. H., Islam, M. T., Zakaria, C. M. & Islam, M. A. A. A. A. (2008). Acta Cryst. E64, m518-m519.]); Islam et al. (2012[Islam, M. A. A. A. A., Reza, M. S., Tarafder, M. T. H., Sheikh, M. C. & Zangrando, E. (2012). Acta Cryst. E68, m924-m925.]). For the coordination behaviour of metal ions (Co, Ni, Cu, Zn, Cd and Hg) with the cinnamaldehyde Schiff base of S-methyl­dithio­carbazate, see: Liu et al. (2009[Liu, Y. H., Ye, J., Liu, X. L. & Guo, R. (2009). J. Coord. Chem. 62, 3488-3499.]); Abram et al. (2006[Abram, U., Castineiras, A., Garcia-Santos, I. & Rodriguez-Riobo, R. (2006). Eur. J. Inorg. Chem. pp. 3079-3087.]). For the bioactivity of transition metal complexes of similar Schiff base ligands, see: Chew et al. (2004[Chew, K.-B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 1385-1392.]); How et al. (2008[How, F. N.-F., Crouse, K. A., Tahir, M. I. M., Tarafder, M. T. H. & Cowley, A. R. (2008). Polyhedron, 27, 3325-3329.]); Maia et al. (2010[Maia, P. I. da S., Fernandes, A. G. de A., Silva, J. J. N., Andricopulo, A. D., Lemos, S. S., Lang, E. S., Abram, U. & Deflon, V. M. (2010). J. Inorg. Biochem. 104, 1276-1282.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C17H15N2S2)2]

  • Mr = 735.26

  • Orthorhombic, P b c n

  • a = 36.2497 (7) Å

  • b = 9.9940 (2) Å

  • c = 8.9392 (2) Å

  • V = 3238.49 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 8.05 mm−1

  • T = 173 K

  • 0.3 × 0.3 × 0.1 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR and RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.325, Tmax = 0.448

  • 10761 measured reflections

  • 2964 independent reflections

  • 2439 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.115

  • S = 1.02

  • 2964 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 1.36 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cd—N1 2.306 (2)
Cd—S1 2.4285 (9)
N1i—Cd—N1 103.00 (12)
N1i—Cd—S1 119.99 (6)
N1—Cd—S1 80.27 (6)
S1—Cd—S1i 149.19 (5)
Symmetry code: (i) [-x+1, y, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯S2ii 0.95 2.75 3.690 (4) 170
Symmetry code: (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1995[Rigaku (1995). ABSCOR and RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In continuation of our interest in exploring the chemistry of Schiff bases derived from S-benzyldithiocarbazate (Tarafder, Crouse et al., 2008; Tarafder, Islam et al., 2008) and of their metal complexes, due to their intriguing coordination behaviour, physico-chemical properties, and potential biological activities, we have completed the syntheses of group 12 metal complexes with the same Schiff base, viz. bis[benzyl N'-(3-phenylprop-2-enylidene)dithiocarbazate]. For the coordination behaviour of metal ions (Co, Ni, Cu, Zn, Cd, and Hg) with the cinnamaldehyde Schiff base of S-methyldithiocarbazate, see: Liu et al. (2009); Abram et al., (2006). For the bioactivity of transition metal complexes of similar Schiff base ligands, see: Chew et al. (2004); How et al. (2008); Maia et al. (2010).

In the present complex the CdII ion lies on a twofold rotation axis and therefore the asymmetric unit contains one-half of the molecule (Fig. 1). The fourfold coordination is best described as bisphenoidal, with the CdII ion being chelated by two benzyl N'-(3-phenylprop-2-enylidene)dithiocarbazate ligands through the azomethine nitrogen and the thiolate sulfur donors. The two chelating five-membered rings form a dihedral angle of 84.01 (9)°. Since the structure is isotypic with those of Zn (Fun et al., 2008) and Hg (Islam et al., 2012), it is worthwhile to compare the geometries around the metal ions. The M—N bond lengths in the series follow the trend Zn < Cd < Hg (2.0662 (12), 2.306 (2), 2.489 (3) Å) in agreement with the respective ionic radii. On the other hand, among the M—S bond lengths, the Cd—S one is the longest, with values of 2.2636 (4), 2.4285 (9), 2.3668 (11) Å along this series. Moreover, the bite angle N1—Cd—S1 of 80.27 (6)° is in between the values for the Zn (86.96 (3)°) and Hg (77.93 (6)°) complexes.

The crystal packing is consolidated by weak C13–H13···S2 interactions , giving rise to a chain motif extending along the c axis.

Related literature top

For the structure of uncoordinated Schiff bases, see: Tarafder, Crouse et al. (2008); Tarafder, Islam et al. (2008). For the isotypic Zn and Hg analogues, see: Fun et al. (2008); Islam et al. (2012). For the coordination behaviour of metal ions (Co, Ni, Cu, Zn, Cd and Hg) with the cinnamaldehyde Schiff base of S-methyldithiocarbazate, see: Liu et al. (2009); Abram et al. (2006). For the bioactivity of transition metal complexes of similar Schiff base ligands, see: Chew et al. (2004); How et al. (2008); Maia et al. (2010).

Experimental top

The Schiff base, benzyl N'-(3-phenylprop-2-enylidene)hydrazinecarbodithioate was prepared as prevoiusly reported (Tarafder, Islam et al., 2008). Cadmium(II) acetate dihydrate (0.066 g, 0.25 mmol) dissolved in absolute ethanol (20 ml) was added to a hot absolute ethanol solution (50 ml) of the Schiff base (0.163 g, 0.5 mmol) under refluxing condition, which was continued for 2 h. The yellow precipitate which formed was filtered off, washed with hot ethanol and dried in vacuo over anhydrous CaCl2. Yield: 0.199 g (87%). 54 mg of the compound was dissolved in chloroform (10 ml) at room temperature and mixed with toluene (5 ml). The resultant solution was allowed to stand at ambient temperature. Yellow square-shaped flat single crystals developed after 7 days. (m.p.= 438 K).

Refinement top

All H atoms were geometrically located and treated as riding atoms, with C—H = 0.95 Å for C(aromatic) and 0.99 Å, for C(methylene), with Uiso(H) = 1.2Ueq(C). The highest residual electron density peak (1.36 e Å-3) is located at 1.09 Å from the Cd atom.

Structure description top

no

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1995); cell refinement: RAPID-AUTO (Rigaku, 1995); data reduction: RAPID-AUTO (Rigaku, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. An ORTEP drawing (ellipsoids at the 50% probability level) of the title compound with the atom labelling scheme. [Symmetry code: (i) -x + 1, y, -z + 3/2.]
Bis[benzyl 3-(3-phenylprop-2-enylidene)dithiocarbazato- κ2N3,S]cadmium top
Crystal data top
[Cd(C17H15N2S2)2]F(000) = 1496
Mr = 735.26Dx = 1.508 Mg m3
Orthorhombic, PbcnCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2n 2abCell parameters from 29242 reflections
a = 36.2497 (7) Åθ = 3.7–68.2°
b = 9.9940 (2) ŵ = 8.05 mm1
c = 8.9392 (2) ÅT = 173 K
V = 3238.49 (12) Å3Prism, yellow
Z = 40.3 × 0.3 × 0.1 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2964 independent reflections
Radiation source: fine-focus sealed tube2439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 10.000 pixels mm-1θmax = 68.3°, θmin = 4.6°
ω scansh = 4243
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
k = 1112
Tmin = 0.325, Tmax = 0.448l = 1010
10761 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0606P)2]
where P = (Fo2 + 2Fc2)/3
2964 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 1.36 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Cd(C17H15N2S2)2]V = 3238.49 (12) Å3
Mr = 735.26Z = 4
Orthorhombic, PbcnCu Kα radiation
a = 36.2497 (7) ŵ = 8.05 mm1
b = 9.9940 (2) ÅT = 173 K
c = 8.9392 (2) Å0.3 × 0.3 × 0.1 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2964 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
2439 reflections with I > 2σ(I)
Tmin = 0.325, Tmax = 0.448Rint = 0.079
10761 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.02Δρmax = 1.36 e Å3
2964 reflectionsΔρmin = 0.52 e Å3
195 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd0.50000.44301 (4)0.75000.04150 (16)
N10.52779 (6)0.2994 (3)0.9175 (3)0.0358 (6)
N20.56616 (6)0.2968 (3)0.9179 (3)0.0367 (6)
S10.56402 (2)0.50756 (11)0.71527 (10)0.0483 (3)
S20.62987 (2)0.39583 (11)0.83639 (11)0.0540 (3)
C10.51250 (9)0.2128 (3)1.0048 (3)0.0398 (7)
H10.52760.15111.05780.048*
C20.47320 (8)0.2078 (3)1.0235 (3)0.0395 (7)
H20.45870.27150.97100.047*
C30.45573 (8)0.1191 (4)1.1103 (4)0.0415 (8)
H30.47050.05261.15700.050*
C40.41607 (8)0.1147 (3)1.1403 (3)0.0381 (7)
C50.39164 (8)0.2100 (4)1.0849 (4)0.0436 (8)
H50.40070.28081.02440.052*
C60.35458 (8)0.2033 (4)1.1162 (4)0.0476 (9)
H60.33830.26951.07790.057*
C70.34086 (9)0.1000 (4)1.2038 (4)0.0511 (9)
H70.31520.09491.22430.061*
C80.36437 (11)0.0055 (5)1.2607 (4)0.0516 (10)
H80.35500.06431.32200.062*
C90.40186 (10)0.0116 (5)1.2288 (4)0.0455 (8)
H90.41800.05501.26750.055*
C100.58178 (8)0.3856 (3)0.8347 (3)0.0391 (7)
C110.64403 (8)0.2893 (4)0.9912 (4)0.0455 (8)
H11A0.63000.31181.08290.055*
H11B0.63990.19390.96680.055*
C120.68464 (8)0.3169 (3)1.0126 (3)0.0413 (8)
C130.69639 (9)0.4203 (4)1.1010 (5)0.0577 (10)
H130.67870.47471.15060.069*
C140.73377 (10)0.4472 (4)1.1193 (5)0.0619 (12)
H140.74150.51881.18180.074*
C150.75932 (9)0.3706 (4)1.0474 (4)0.0538 (10)
H150.78490.38841.05980.065*
C160.74806 (8)0.2689 (4)0.9579 (5)0.0593 (10)
H160.76590.21670.90650.071*
C170.71095 (8)0.2401 (4)0.9404 (4)0.0517 (9)
H170.70350.16750.87870.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd0.0334 (2)0.0470 (3)0.0440 (2)0.0000.01208 (12)0.000
N10.0262 (12)0.0447 (16)0.0365 (13)0.0008 (11)0.0011 (10)0.0027 (12)
N20.0255 (12)0.0478 (17)0.0368 (13)0.0013 (11)0.0000 (10)0.0006 (12)
S10.0401 (5)0.0524 (6)0.0525 (5)0.0107 (4)0.0125 (4)0.0125 (4)
S20.0278 (4)0.0780 (7)0.0562 (5)0.0073 (4)0.0006 (3)0.0214 (5)
C10.0286 (14)0.050 (2)0.0411 (16)0.0016 (14)0.0024 (13)0.0023 (15)
C20.0269 (14)0.051 (2)0.0408 (16)0.0021 (14)0.0023 (12)0.0052 (15)
C30.0308 (16)0.052 (2)0.0422 (17)0.0037 (14)0.0054 (13)0.0017 (15)
C40.0285 (15)0.049 (2)0.0368 (16)0.0030 (13)0.0014 (12)0.0023 (14)
C50.0337 (16)0.049 (2)0.0481 (18)0.0035 (14)0.0000 (14)0.0018 (16)
C60.0289 (16)0.056 (2)0.058 (2)0.0016 (15)0.0051 (14)0.0033 (18)
C70.0328 (18)0.068 (3)0.053 (2)0.0074 (17)0.0038 (16)0.013 (2)
C80.044 (2)0.058 (3)0.054 (2)0.013 (2)0.0063 (14)0.0020 (17)
C90.0410 (19)0.047 (2)0.0486 (19)0.0003 (17)0.0010 (14)0.0020 (16)
C100.0301 (15)0.049 (2)0.0382 (16)0.0005 (14)0.0046 (12)0.0002 (15)
C110.0256 (15)0.060 (2)0.0504 (19)0.0024 (14)0.0032 (13)0.0102 (17)
C120.0256 (15)0.055 (2)0.0438 (17)0.0007 (13)0.0037 (12)0.0050 (16)
C130.0376 (19)0.071 (3)0.065 (3)0.0062 (17)0.0113 (17)0.014 (2)
C140.046 (2)0.075 (3)0.065 (3)0.0093 (19)0.0016 (18)0.017 (2)
C150.0273 (16)0.077 (3)0.057 (2)0.0049 (17)0.0021 (15)0.004 (2)
C160.0286 (18)0.068 (3)0.081 (3)0.0077 (17)0.0040 (16)0.010 (2)
C170.0330 (17)0.054 (2)0.068 (2)0.0011 (15)0.0028 (16)0.0126 (19)
Geometric parameters (Å, º) top
Cd—N1i2.306 (2)C6—H60.9500
Cd—N12.306 (2)C7—C81.370 (6)
Cd—S12.4285 (9)C7—H70.9500
Cd—S1i2.4285 (9)C8—C91.390 (5)
N1—C11.291 (4)C8—H80.9500
N1—N21.391 (3)C9—H90.9500
N2—C101.288 (4)C11—C121.510 (4)
S1—C101.744 (3)C11—H11A0.9900
S2—C101.746 (3)C11—H11B0.9900
S2—C111.819 (3)C12—C131.368 (5)
C1—C21.435 (4)C12—C171.384 (4)
C1—H10.9500C13—C141.391 (4)
C2—C31.337 (4)C13—H130.9500
C2—H20.9500C14—C151.362 (5)
C3—C41.463 (4)C14—H140.9500
C3—H30.9500C15—C161.356 (5)
C4—C51.392 (4)C15—H150.9500
C4—C91.398 (5)C16—C171.385 (4)
C5—C61.374 (4)C16—H160.9500
C5—H50.9500C17—H170.9500
C6—C71.388 (5)
N1i—Cd—N1103.00 (12)C7—C8—C9120.2 (4)
N1i—Cd—S1119.99 (6)C7—C8—H8119.9
N1—Cd—S180.27 (6)C9—C8—H8119.9
N1i—Cd—S1i80.27 (6)C8—C9—C4120.6 (4)
N1—Cd—S1i119.99 (6)C8—C9—H9119.7
S1—Cd—S1i149.19 (5)C4—C9—H9119.7
C1—N1—N2114.6 (2)N2—C10—S1132.2 (2)
C1—N1—Cd128.5 (2)N2—C10—S2118.3 (2)
N2—N1—Cd116.73 (17)S1—C10—S2109.45 (17)
C10—N2—N1115.2 (2)C12—C11—S2105.4 (2)
C10—S1—Cd95.10 (11)C12—C11—H11A110.7
C10—S2—C11104.71 (14)S2—C11—H11A110.7
N1—C1—C2121.3 (3)C12—C11—H11B110.7
N1—C1—H1119.3S2—C11—H11B110.7
C2—C1—H1119.3H11A—C11—H11B108.8
C3—C2—C1124.1 (3)C13—C12—C17118.2 (3)
C3—C2—H2117.9C13—C12—C11121.0 (3)
C1—C2—H2117.9C17—C12—C11120.8 (3)
C2—C3—C4126.3 (3)C12—C13—C14121.1 (3)
C2—C3—H3116.9C12—C13—H13119.4
C4—C3—H3116.9C14—C13—H13119.4
C5—C4—C9118.1 (3)C15—C14—C13119.9 (4)
C5—C4—C3122.7 (3)C15—C14—H14120.1
C9—C4—C3119.2 (3)C13—C14—H14120.1
C6—C5—C4121.1 (3)C16—C15—C14119.6 (3)
C6—C5—H5119.5C16—C15—H15120.2
C4—C5—H5119.5C14—C15—H15120.2
C5—C6—C7120.1 (3)C15—C16—C17121.0 (3)
C5—C6—H6119.9C15—C16—H16119.5
C7—C6—H6119.9C17—C16—H16119.5
C8—C7—C6119.9 (3)C12—C17—C16120.1 (3)
C8—C7—H7120.0C12—C17—H17119.9
C6—C7—H7120.0C16—C17—H17119.9
N1i—Cd—N1—C162.5 (2)C6—C7—C8—C91.1 (6)
S1—Cd—N1—C1178.8 (3)C7—C8—C9—C40.8 (6)
S1i—Cd—N1—C123.7 (3)C5—C4—C9—C80.3 (5)
N1i—Cd—N1—N2111.98 (19)C3—C4—C9—C8179.3 (3)
S1—Cd—N1—N26.76 (17)N1—N2—C10—S12.2 (4)
S1i—Cd—N1—N2161.87 (15)N1—N2—C10—S2176.47 (19)
C1—N1—N2—C10177.9 (3)Cd—S1—C10—N23.1 (3)
Cd—N1—N2—C106.8 (3)Cd—S1—C10—S2178.22 (14)
N1i—Cd—S1—C1095.26 (13)C11—S2—C10—N210.3 (3)
N1—Cd—S1—C104.21 (13)C11—S2—C10—S1168.62 (18)
S1i—Cd—S1—C10138.83 (11)C10—S2—C11—C12169.8 (2)
N2—N1—C1—C2176.4 (2)S2—C11—C12—C1386.4 (3)
Cd—N1—C1—C29.0 (4)S2—C11—C12—C1792.0 (3)
N1—C1—C2—C3178.8 (3)C17—C12—C13—C140.6 (6)
C1—C2—C3—C4176.1 (3)C11—C12—C13—C14179.1 (3)
C2—C3—C4—C53.2 (5)C12—C13—C14—C150.7 (6)
C2—C3—C4—C9177.2 (3)C13—C14—C15—C160.2 (6)
C9—C4—C5—C60.1 (5)C14—C15—C16—C171.1 (6)
C3—C4—C5—C6179.5 (3)C13—C12—C17—C160.2 (5)
C4—C5—C6—C70.3 (5)C11—C12—C17—C16178.2 (3)
C5—C6—C7—C80.8 (5)C15—C16—C17—C121.1 (6)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···S2ii0.952.753.690 (4)170
Symmetry code: (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C17H15N2S2)2]
Mr735.26
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)173
a, b, c (Å)36.2497 (7), 9.9940 (2), 8.9392 (2)
V3)3238.49 (12)
Z4
Radiation typeCu Kα
µ (mm1)8.05
Crystal size (mm)0.3 × 0.3 × 0.1
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Rigaku, 1995)
Tmin, Tmax0.325, 0.448
No. of measured, independent and
observed [I > 2σ(I)] reflections
10761, 2964, 2439
Rint0.079
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.115, 1.02
No. of reflections2964
No. of parameters195
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.36, 0.52

Computer programs: RAPID-AUTO (Rigaku, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Cd—N12.306 (2)Cd—S12.4285 (9)
N1i—Cd—N1103.00 (12)N1—Cd—S180.27 (6)
N1i—Cd—S1119.99 (6)S1—Cd—S1i149.19 (5)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···S2ii0.952.753.690 (4)170
Symmetry code: (ii) x, y+1, z+1/2.
 

Acknowledgements

The authors MAAAAI and MSR are grateful to the Department of Chemistry, Rajshahi University of Engineering and Technology, for the provision of laboratory facilities. MTHT thanks the Department of Chemistry, Rajshahi University, for supplying the necessary chemicals. MCS acknowledges the Department of Chemistry, Toyama University, for providing funds for the X-ray single-crystal facility.

References

First citationAbram, U., Castineiras, A., Garcia-Santos, I. & Rodriguez-Riobo, R. (2006). Eur. J. Inorg. Chem. pp. 3079–3087.  Web of Science CSD CrossRef Google Scholar
First citationChew, K.-B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 1385–1392.  Web of Science CSD CrossRef CAS Google Scholar
First citationFun, H.-K., Chantrapromma, S., Tarafder, M. T. H., Islam, M. T., Zakaria, C. M. & Islam, M. A. A. A. A. (2008). Acta Cryst. E64, m518–m519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHow, F. N.-F., Crouse, K. A., Tahir, M. I. M., Tarafder, M. T. H. & Cowley, A. R. (2008). Polyhedron, 27, 3325–3329.  Web of Science CSD CrossRef CAS Google Scholar
First citationIslam, M. A. A. A. A., Reza, M. S., Tarafder, M. T. H., Sheikh, M. C. & Zangrando, E. (2012). Acta Cryst. E68, m924–m925.  CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y. H., Ye, J., Liu, X. L. & Guo, R. (2009). J. Coord. Chem. 62, 3488–3499.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaia, P. I. da S., Fernandes, A. G. de A., Silva, J. J. N., Andricopulo, A. D., Lemos, S. S., Lang, E. S., Abram, U. & Deflon, V. M. (2010). J. Inorg. Biochem. 104, 1276–1282.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (1995). ABSCOR and RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1042–o1043.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416–m417.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds