inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

NASICON-related Na3.4Mn0.4Fe1.6(PO4)3

aDepartment of Inorganic Chemistry, Taras Shevchenko National University, 64 Volodymyrska str., 01601 Kyiv, Ukraine, and bSTC "Institute for Single Crystals", NAS of Ukraine, 60 Lenin ave., 61001 Kharkiv, Ukraine
*Correspondence e-mail: yats_13@ukr.net

(Received 31 May 2012; accepted 18 June 2012; online 23 June 2012)

The solid solution, sodium [iron(III)/manganese(II)] tris­(orthophosphate), Na3.4Mn0.4Fe1.6(PO4)3, was obtained using a flux method. Its crystal structure is related to that of NASICON-type compounds. The [(Mn/Fe)2(PO4)3] framework is built up from an (Mn/Fe)O6 octa­hedron (site symmetry 3.), with a mixed Mn/Fe occupancy, and a PO4 tetra­hedron (site symmetry .2). The Na+ cations are distributed over two partially occupied sites in the cavities of the framework. One Na+ cation (site symmetry -3.) is surrounded by six O atoms, whereas the other Na+ cation (site symmetry .2) is surrounded by eight O atoms.

Related literature

For applications and properties of NASICON-related compounds, see: Goodenough et al. (1976[Goodenough, J. B., Hong, H. Y. P. & Kafalas, J. A. (1976). Mater. Res. Bull. 11, 203-220.]); Shimizu & Ushijima (2000[Shimizu, Y. & Ushijima, T. (2000). Solid State Ionics, 132, 143-148.]); Veríssimo et al. (1997[Veríssimo, C., Garrido, F. M. S., Alves, O. L., Calle, P., Martínez-Juárezc, A., Iglesias, J. E. & Rojo, J. M. (1997). Solid State Ionics, 100, 127-134.]); Mariappan et al. (2005[Mariappan, C. R., Govindaraj, G. & Roling, B. (2005). Solid State Ionics, 176, 723-729.]); Arbi et al. (2002[Arbi, K., Mandal, S., Rojo, J. M. & Sanz, J. (2002). Chem. Mater. 14, 1091-1097.]); Moreno-Real et al. (2002[Moreno-Real, L., Maldonado-Manso, P., Leon-Reina, L., Losilla, E. R., Mouahid, F. E., Zahir, M. & Sanz, J. (2002). J. Mater. Chem. 12, 3681-3687.]). For details of structural relationships with other compounds, see: γ-Na3Fe2(PO4)3 (Masquelier et al., 2000[Masquelier, C., Wurm, C., Rodríguez-Carvajal, J., Gaubicher, J. & Nazar, L. (2000). Chem. Mater. 12, 525-532.]); Na4Fe2(PO4)3 (Hatert, 2009[Hatert, F. (2009). Acta Cryst. E65, i30.]); Na4MgFe(PO4)3 (Strutynska et al., 2012[Strutynska, N. Yu., Zatovsky, I. V., Yatskin, M. M., Slobodyanik, N. S. & Ogorodnyk, I. V. (2012). Inorg. Mater. 48, 402-406.]); Na4NiFe(PO4)3 (Essehli et al., 2011[Essehli, R., Bali, B. E., Benmokhtar, S., Bouziane, K., Manoun, B., Abdalslam, M. A. & Ehrenberg, H. (2011). J. Alloys Compd, 509, 1163-1171.]).

Experimental

Crystal data
  • Na3.4Mn0.4Fe1.6(PO4)3

  • Mr = 474.41

  • Trigonal, [R \overline 3c ]

  • a = 8.8694 (2) Å

  • c = 21.6074 (7) Å

  • V = 1472.05 (7) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 3.59 mm−1

  • T = 293 K

  • 0.10 × 0.10 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur-3 diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.721, Tmax = 0.795

  • 8867 measured reflections

  • 728 independent reflections

  • 658 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.072

  • S = 1.23

  • 728 reflections

  • 38 parameters

  • 2 restraints

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Na1—O2 2.4546 (15)
Na2—O2i 2.4505 (16)
Na2—O2ii 2.472 (2)
Na2—O1i 2.587 (2)
Na2—O1iii 2.921 (2)
Fe1—O1 1.9962 (16)
Fe1—O2 2.1053 (15)
P1—O1 1.5244 (16)
P1—O2ii 1.5346 (15)
Symmetry codes: (i) [y+{\script{2\over 3}}, -x+y+{\script{1\over 3}}, -z+{\script{1\over 3}}]; (ii) [-x+y+{\script{1\over 3}}, y-{\script{1\over 3}}, z+{\script{1\over 6}}]; (iii) [y+1, x, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. University of Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

NASICON-type compounds possess high ionic conductivity, chemical stability and attract great interest for application in solid-state electrochemical devices (Goodenough et al., 1976; Shimizu & Ushijima, 2000; Veríssimo et al., 1997; Mariappan et al., 2005; Arbi et al., 2002; Moreno-Real et al., 2002).

Herein, the structure of Na3.4Mn0.4Fe1.6(PO4)3, (I), is reported. Compound (I) can be considered as a solid solution of γ-Na3Fe2(PO4)3 (Masquelier et al., 2000) and belongs to the NASICON structure type.

There are two Na sites (Wyckoff positions 6b and 18e), one mixed occupied Mn/Fe site (12c), one P site (18e) and two O sites (36f) in the asymmetric unit of (I) (Fig. 1). The basic building block of the structure is the [(Mn/Fe)2(PO4)3] unit, which consists of two (Mn/Fe)O6 polyhedra interlinked by three bridging PO4-tetrahedra (Fig. 2). These fragments alternate with Na1O6-polyhedra along [001] forming ribbons, which in turn are interconnected by PO4-tetrahedra forming a three-dimensional framework (Fig. 2). The distances M—O in the (Mn/Fe)O6 octahedra vary from 1.9962 (16) to 2.1053 (15) Å and are similar to that in isotypic structures (e.g. 1.956 (2)–2.048 (2) Å in γ-Na3Fe2(PO4)3 (Masquelier et al., 2000); 2.010 (6)–2.130 (6) Å in Na4Fe2(PO4)3 (Hatert, 2009); 1.926 (5)–2.037 (6) Å in Na4MgFe(PO4)3 (Strutynska et al., 2012); 1.955 (3)–2.050 (3) Å in Na4NiFe(PO4)3 (Essehli et al., 2011). The P atom has an almost regular tetrahedral coordination, the P—O distances in the PO4 tetrahedra being in the range 1.5244 (16)–1.5346 (15) Å, as is typically observed in NASICON-type phosphates. Two types of sodium atoms occupy the cavities of the framework. The Na1 atoms (s.o.f. = 0.848 (5)) lie on a threefold roto-inversion axis and are surrounded by six O2 atoms in a distance of 2.4546 (15) Å. The Na2 (s.o.f. = 0.853 (5)) coordination environment is formed by eight oxygen atoms with four pairs of equal contacts (d(Na2—O) = 2.4505 (16)–2.921 (2) Å, using a cut-off distance of 3.1 Å).

Related literature top

For applications and properties of NASICON-related compounds, see: Goodenough et al. (1976); Shimizu & Ushijima (2000); Veríssimo et al. (1997); Mariappan et al. (2005); Arbi et al. (2002); Moreno-Real et al. (2002). For details of structural relationships with other compounds, see: γ-Na3Fe2(PO4)3 (Masquelier et al., 2000); Na4Fe2(PO4)3 (Hatert, 2009); Na4MgFe(PO4)3 (Strutynska et al., 2012); Na4NiFe(PO4)3 (Essehli et al., 2011).

Experimental top

The title compound was obtained during investigation of the melting system Na2O–P2O5–Fe2O3–MnO. A mixture of NaPO3 (12.24 g), Na2CO3 (1.908 g), Fe2O3 (2.4 g) and MnCO3.Mn(OH)2 (3.8 g) was ground in an agate mortar, placed in a platinum crucible and heated up to 1273 K. The melt was kept at this temperature for 3 h. After that, the temperature was cooled down to 973 K at a rate of 10 K/h. The light-violet crystals of (I) were recovered using hot water. The chemical composition of single-crystal was verified using EDX analysis. Analysis found: Na 16.62, Mn 2.14, Fe 7.93, P 14.94 and O 58.37 at%, while Na3.4Mn0.4Fe1.6(PO4)3 requires Na 16.67, Mn 1.96, Fe 7.84, P 14.70 and O 58.82 at%.

Refinement top

For refinement of the Fe/Mn ratio and the Na-content, SUMP instructions in SHELXL (Sheldrick, 2008) were employed, assuming full occupancy of the (Fe/Mn) site and an average charge of the (Fe/Mn) and Na sites of +9. The refined composition is close to that determined by EDX measurements. The highest remaining peak in the final difference Fourier map is 0.76 A from P1 and the deepest hole is 1.09 Å from the same atom.

Structure description top

NASICON-type compounds possess high ionic conductivity, chemical stability and attract great interest for application in solid-state electrochemical devices (Goodenough et al., 1976; Shimizu & Ushijima, 2000; Veríssimo et al., 1997; Mariappan et al., 2005; Arbi et al., 2002; Moreno-Real et al., 2002).

Herein, the structure of Na3.4Mn0.4Fe1.6(PO4)3, (I), is reported. Compound (I) can be considered as a solid solution of γ-Na3Fe2(PO4)3 (Masquelier et al., 2000) and belongs to the NASICON structure type.

There are two Na sites (Wyckoff positions 6b and 18e), one mixed occupied Mn/Fe site (12c), one P site (18e) and two O sites (36f) in the asymmetric unit of (I) (Fig. 1). The basic building block of the structure is the [(Mn/Fe)2(PO4)3] unit, which consists of two (Mn/Fe)O6 polyhedra interlinked by three bridging PO4-tetrahedra (Fig. 2). These fragments alternate with Na1O6-polyhedra along [001] forming ribbons, which in turn are interconnected by PO4-tetrahedra forming a three-dimensional framework (Fig. 2). The distances M—O in the (Mn/Fe)O6 octahedra vary from 1.9962 (16) to 2.1053 (15) Å and are similar to that in isotypic structures (e.g. 1.956 (2)–2.048 (2) Å in γ-Na3Fe2(PO4)3 (Masquelier et al., 2000); 2.010 (6)–2.130 (6) Å in Na4Fe2(PO4)3 (Hatert, 2009); 1.926 (5)–2.037 (6) Å in Na4MgFe(PO4)3 (Strutynska et al., 2012); 1.955 (3)–2.050 (3) Å in Na4NiFe(PO4)3 (Essehli et al., 2011). The P atom has an almost regular tetrahedral coordination, the P—O distances in the PO4 tetrahedra being in the range 1.5244 (16)–1.5346 (15) Å, as is typically observed in NASICON-type phosphates. Two types of sodium atoms occupy the cavities of the framework. The Na1 atoms (s.o.f. = 0.848 (5)) lie on a threefold roto-inversion axis and are surrounded by six O2 atoms in a distance of 2.4546 (15) Å. The Na2 (s.o.f. = 0.853 (5)) coordination environment is formed by eight oxygen atoms with four pairs of equal contacts (d(Na2—O) = 2.4505 (16)–2.921 (2) Å, using a cut-off distance of 3.1 Å).

For applications and properties of NASICON-related compounds, see: Goodenough et al. (1976); Shimizu & Ushijima (2000); Veríssimo et al. (1997); Mariappan et al. (2005); Arbi et al. (2002); Moreno-Real et al. (2002). For details of structural relationships with other compounds, see: γ-Na3Fe2(PO4)3 (Masquelier et al., 2000); Na4Fe2(PO4)3 (Hatert, 2009); Na4MgFe(PO4)3 (Strutynska et al., 2012); Na4NiFe(PO4)3 (Essehli et al., 2011).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Elementary fragments and three-dimensional framework in the title compound.
[iron(III)/manganese(II)] tris(orthophosphate) top
Crystal data top
Na3.4Mn0.4Fe1.6(PO4)3Dx = 3.212 Mg m3
Mr = 474.41Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 8867 reflections
Hall symbol: -R 3 2" cθ = 3.3–35.0°
a = 8.8694 (2) ŵ = 3.59 mm1
c = 21.6074 (7) ÅT = 293 K
V = 1472.05 (7) Å3Prism, light-violet
Z = 60.10 × 0.10 × 0.08 mm
F(000) = 1380
Data collection top
Oxford Diffraction Xcalibur-3
diffractometer
728 independent reflections
Radiation source: fine-focus sealed tube658 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 35.0°, θmin = 3.3°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1414
Tmin = 0.721, Tmax = 0.795k = 1314
8867 measured reflectionsl = 3434
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.028Secondary atom site location: difference Fourier map
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0324P)2 + 3.4282P]
where P = (Fo2 + 2Fc2)/3
S = 1.23(Δ/σ)max = 0.064
728 reflectionsΔρmax = 0.66 e Å3
38 parametersΔρmin = 0.39 e Å3
Crystal data top
Na3.4Mn0.4Fe1.6(PO4)3Z = 6
Mr = 474.41Mo Kα radiation
Trigonal, R3cµ = 3.59 mm1
a = 8.8694 (2) ÅT = 293 K
c = 21.6074 (7) Å0.10 × 0.10 × 0.08 mm
V = 1472.05 (7) Å3
Data collection top
Oxford Diffraction Xcalibur-3
diffractometer
728 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
658 reflections with I > 2σ(I)
Tmin = 0.721, Tmax = 0.795Rint = 0.033
8867 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02838 parameters
wR(F2) = 0.0722 restraints
S = 1.23Δρmax = 0.66 e Å3
728 reflectionsΔρmin = 0.39 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Na10000.0322 (8)0.848 (5)
Na20.63677 (18)00.250.0356 (6)0.853 (5)
Fe1000.149480 (18)0.01045 (11)0.7991 (12)
Mn1000.149480 (18)0.01045 (11)0.2009 (12)
P10.29637 (7)00.250.01144 (13)
O10.1887 (2)0.0197 (3)0.19242 (8)0.0346 (4)
O20.18883 (19)0.17055 (18)0.08615 (7)0.0214 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0421 (11)0.0421 (11)0.0124 (10)0.0211 (6)00
Na20.0206 (6)0.0151 (7)0.0694 (14)0.0075 (3)0.0068 (4)0.0136 (7)
Fe10.01042 (13)0.01042 (13)0.01049 (17)0.00521 (7)00
Mn10.01042 (13)0.01042 (13)0.01049 (17)0.00521 (7)00
P10.01059 (19)0.0092 (2)0.0141 (2)0.00459 (12)0.00093 (9)0.00185 (18)
O10.0270 (8)0.0404 (10)0.0327 (8)0.0142 (7)0.0155 (7)0.0016 (7)
O20.0157 (6)0.0139 (6)0.0274 (7)0.0021 (5)0.0002 (5)0.0021 (5)
Geometric parameters (Å, º) top
Na1—O2i2.4546 (15)Na2—O1x2.921 (2)
Na1—O22.4546 (15)Na2—O1xi2.921 (2)
Na1—O2ii2.4546 (15)Fe1—O1ii1.9962 (16)
Na1—O2iii2.4546 (15)Fe1—O1iii1.9962 (16)
Na1—O2iv2.4546 (15)Fe1—O11.9962 (16)
Na1—O2v2.4546 (15)Fe1—O2ii2.1053 (15)
Na2—O2vi2.4505 (16)Fe1—O2iii2.1053 (15)
Na2—O2vii2.4505 (16)Fe1—O22.1053 (15)
Na2—O2viii2.472 (2)P1—O11.5244 (16)
Na2—O2ix2.472 (2)P1—O1xii1.5244 (16)
Na2—O1vii2.587 (2)P1—O2ix1.5346 (15)
Na2—O1vi2.587 (2)P1—O2viii1.5346 (15)
O2i—Na1—O2180.00 (5)O1vii—Na2—O1xi109.85 (7)
O2i—Na1—O2ii111.27 (5)O1vi—Na2—O1xi86.08 (4)
O2—Na1—O2ii68.73 (5)O1x—Na2—O1xi81.67 (9)
O2i—Na1—O2iii111.27 (5)O1ii—Fe1—O1iii100.14 (7)
O2—Na1—O2iii68.73 (5)O1ii—Fe1—O1100.14 (7)
O2ii—Na1—O2iii68.73 (5)O1iii—Fe1—O1100.14 (7)
O2i—Na1—O2iv68.73 (5)O1ii—Fe1—O2ii87.95 (7)
O2—Na1—O2iv111.27 (5)O1iii—Fe1—O2ii167.15 (7)
O2ii—Na1—O2iv111.27 (5)O1—Fe1—O2ii88.10 (7)
O2iii—Na1—O2iv180.00 (8)O1ii—Fe1—O2iii88.10 (7)
O2i—Na1—O2v68.73 (5)O1iii—Fe1—O2iii87.95 (7)
O2—Na1—O2v111.27 (5)O1—Fe1—O2iii167.15 (7)
O2ii—Na1—O2v180.00 (9)O2ii—Fe1—O2iii82.32 (6)
O2iii—Na1—O2v111.27 (5)O1ii—Fe1—O2167.15 (7)
O2iv—Na1—O2v68.73 (5)O1iii—Fe1—O288.10 (7)
O2vi—Na2—O2vii162.12 (10)O1—Fe1—O287.95 (7)
O2vi—Na2—O2viii129.35 (6)O2ii—Fe1—O282.32 (6)
O2vii—Na2—O2viii68.52 (7)O2iii—Fe1—O282.32 (6)
O2vi—Na2—O2ix68.52 (7)O1—P1—O1xii110.62 (16)
O2vii—Na2—O2ix129.35 (6)O1—P1—O2ix112.19 (10)
O2viii—Na2—O2ix60.85 (8)O1xii—P1—O2ix106.30 (9)
O2vi—Na2—O1vii114.64 (5)O1—P1—O2viii106.30 (9)
O2vii—Na2—O1vii68.83 (5)O1xii—P1—O2viii112.19 (10)
O2viii—Na2—O1vii68.62 (6)O2ix—P1—O2viii109.33 (12)
O2ix—Na2—O1vii93.19 (7)P1—O1—Fe1150.92 (13)
O2vi—Na2—O1vi68.83 (5)P1—O1—Na2xiii120.86 (11)
O2vii—Na2—O1vi114.64 (5)Fe1—O1—Na2xiii86.63 (6)
O2viii—Na2—O1vi93.19 (7)P1—O1—Na2xiv76.78 (7)
O2ix—Na2—O1vi68.62 (6)Fe1—O1—Na2xiv102.77 (7)
O1vii—Na2—O1vi159.36 (11)Na2xiii—O1—Na2xiv112.45 (8)
O2vi—Na2—O1x53.35 (5)P1ix—O2—Fe1141.73 (9)
O2vii—Na2—O1x111.21 (7)P1ix—O2—Na2xiii93.51 (8)
O2viii—Na2—O1x153.24 (6)Fe1—O2—Na2xiii87.96 (6)
O2ix—Na2—O1x114.32 (5)P1ix—O2—Na1128.40 (8)
O1vii—Na2—O1x86.07 (4)Fe1—O2—Na189.86 (5)
O1vi—Na2—O1x109.85 (7)Na2xiii—O2—Na186.38 (5)
O2vi—Na2—O1xi111.22 (7)P1ix—O2—Na2ix94.91 (7)
O2vii—Na2—O1xi53.35 (5)Fe1—O2—Na2ix87.39 (6)
O2viii—Na2—O1xi114.32 (5)Na2xiii—O2—Na2ix171.00 (7)
O2ix—Na2—O1xi153.24 (6)Na1—O2—Na2ix85.91 (5)
Symmetry codes: (i) x, y, z; (ii) x+y, x, z; (iii) y, xy, z; (iv) y, x+y, z; (v) xy, x, z; (vi) y+2/3, x+y+1/3, z+1/3; (vii) x+1/3, xy1/3, z+1/6; (viii) x+y+1/3, y1/3, z+1/6; (ix) x+2/3, y+1/3, z+1/3; (x) y+1, x, z+1/2; (xi) x+y+1, x, z; (xii) xy, y, z+1/2; (xiii) xy1/3, x2/3, z+1/3; (xiv) y, xy1, z.

Experimental details

Crystal data
Chemical formulaNa3.4Mn0.4Fe1.6(PO4)3
Mr474.41
Crystal system, space groupTrigonal, R3c
Temperature (K)293
a, c (Å)8.8694 (2), 21.6074 (7)
V3)1472.05 (7)
Z6
Radiation typeMo Kα
µ (mm1)3.59
Crystal size (mm)0.10 × 0.10 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur-3
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.721, 0.795
No. of measured, independent and
observed [I > 2σ(I)] reflections
8867, 728, 658
Rint0.033
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.23
No. of reflections728
No. of parameters38
No. of restraints2
Δρmax, Δρmin (e Å3)0.66, 0.39

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Selected bond lengths (Å) top
Na1—O22.4546 (15)Fe1—O11.9962 (16)
Na2—O2i2.4505 (16)Fe1—O22.1053 (15)
Na2—O2ii2.472 (2)P1—O11.5244 (16)
Na2—O1i2.587 (2)P1—O2ii1.5346 (15)
Na2—O1iii2.921 (2)
Symmetry codes: (i) y+2/3, x+y+1/3, z+1/3; (ii) x+y+1/3, y1/3, z+1/6; (iii) y+1, x, z+1/2.
 

Acknowledgements

The authors are grateful to Dr. Igor V. Zatovsky from Department of Inorganic Chemistry, Taras Shevchenko National University, Kiev, Ukraine, for valuable comments and support.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationArbi, K., Mandal, S., Rojo, J. M. & Sanz, J. (2002). Chem. Mater. 14, 1091–1097.  Web of Science CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationEssehli, R., Bali, B. E., Benmokhtar, S., Bouziane, K., Manoun, B., Abdalslam, M. A. & Ehrenberg, H. (2011). J. Alloys Compd, 509, 1163–1171.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGoodenough, J. B., Hong, H. Y. P. & Kafalas, J. A. (1976). Mater. Res. Bull. 11, 203–220.  CrossRef CAS Web of Science Google Scholar
First citationHatert, F. (2009). Acta Cryst. E65, i30.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMariappan, C. R., Govindaraj, G. & Roling, B. (2005). Solid State Ionics, 176, 723–729.  Web of Science CrossRef CAS Google Scholar
First citationMasquelier, C., Wurm, C., Rodríguez-Carvajal, J., Gaubicher, J. & Nazar, L. (2000). Chem. Mater. 12, 525–532.  Web of Science CrossRef CAS Google Scholar
First citationMoreno-Real, L., Maldonado-Manso, P., Leon-Reina, L., Losilla, E. R., Mouahid, F. E., Zahir, M. & Sanz, J. (2002). J. Mater. Chem. 12, 3681–3687.  CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimizu, Y. & Ushijima, T. (2000). Solid State Ionics, 132, 143–148.  Web of Science CrossRef CAS Google Scholar
First citationStrutynska, N. Yu., Zatovsky, I. V., Yatskin, M. M., Slobodyanik, N. S. & Ogorodnyk, I. V. (2012). Inorg. Mater. 48, 402–406.  Web of Science CrossRef CAS Google Scholar
First citationVeríssimo, C., Garrido, F. M. S., Alves, O. L., Calle, P., Martínez-Juárezc, A., Iglesias, J. E. & Rojo, J. M. (1997). Solid State Ionics, 100, 127–134.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds