metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­[aqua­(1,10-phenanthroline)lead(II)]-bis­­(μ3-2-hy­dr­oxy-5-sulfonato­benzoato)] acetic acid monosolvate]

aDepartment of Chemistry, Weifang Medical University, Weifang 261053, People's Republic of China
*Correspondence e-mail: zlpchyzh@163.com

(Received 18 May 2012; accepted 27 May 2012; online 13 June 2012)

In the title compound, [Pb2(C7H4O6S)2(C12H8N2)2(H2O)2]·CH3COOH, the seven-coordinate PbII atom is chelated by two N atoms of one 1,10-phenanthroline ligand, four O atoms from three 5-sulfosalicylate dianions and one water O atom. Each dianion serves as a bridging ligand, connecting adjacent PbII atoms into a centrosymmetric polymeric chain extending parallel to [001]. There are ππ inter­actions between the aromatic systems of neighbouring dianions, with plane-to-plane distances of 3.371 (2) Å, and between phenanthroline ligands, with a centroid-to-centroid distance of 3.484 (2) Å. O—H⋯O hydrogen bonding additionally stabilizes the crystal packing. The acetic acid mol­ecules are incorporated in the voids of this arrangement. They exhibit half-occupancy due to disorder around a centre of inversion.

Related literature

For background to 5-sulfosalicylic acid and its metal complexes, see: Chen et al. (2003[Chen, Z.-F., Shi, S.-M., Hu, R.-X., Zhang, M., Liang, H. & Zhou, Z.-Y. (2003). Chin. J. Chem. 21, 1059-1065.]); Du et al. (2006[Du, Z.-X., Han, M.-L., Wang, J.-G. & Qin, J.-H. (2006). Acta Cryst. E62, m3047-m3048.]); Fan & Zhu (2005a[Fan, S.-R. & Zhu, L.-G. (2005a). Acta Cryst. E61, m1298-m1300.],b[Fan, S.-R. & Zhu, L.-G. (2005b). Acta Cryst. E61, m1598-m1600.], 2006[Fan, S.-R. & Zhu, L.-G. (2006). Inorg. Chem. 45, 7935-7942.]); Li et al. (2004[Li, J.-F., Zhao, Y.-J., Li, X.-H. & Hu, M.-L. (2004). Acta Cryst. E60, m1210-m1212.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb2(C7H4O6S)2(C12H8N2)2(H2O)2]·C2H4O2

  • Mr = 1303.24

  • Triclinic, [P \overline 1]

  • a = 9.7372 (7) Å

  • b = 10.1619 (5) Å

  • c = 11.6637 (5) Å

  • α = 74.171 (4)°

  • β = 74.379 (5)°

  • γ = 79.748 (5)°

  • V = 1062.50 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 8.09 mm−1

  • T = 293 K

  • 0.15 × 0.13 × 0.12 mm

Data collection
  • Oxford Xcalibur CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2011[Oxford Diffraction (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.309, Tmax = 0.379

  • 6374 measured reflections

  • 3745 independent reflections

  • 3438 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.064

  • S = 1.05

  • 3745 reflections

  • 310 parameters

  • 28 restraints

  • H-atom parameters constrained

  • Δρmax = 1.83 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Selected bond lengths (Å)

Pb1—O6 2.472 (3)
Pb1—N2 2.473 (3)
Pb1—N1 2.488 (3)
Pb1—O5 2.745 (3)
Pb1—O3i 2.757 (3)
Pb1—O7 2.835 (4)
Pb1—O1ii 2.792 (1)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y, z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O6 0.82 1.83 2.522 (4) 141
O7—H7A⋯O2iii 0.85 2.11 2.959 (5) 172
Symmetry code: (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2011[Oxford Diffraction (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

5-Sulfosalicylic acid (H3ssal) has three functional groups, viz -SO3H, -COOH and -OH, and can form three kind of ions (H2ssal-, Hssal2- and ssal3-) (Fan & Zhu, 2006). Hssal2- possesses the ability to bridge and chelate metal atoms using the carboxylate O atoms and the sulfonate O atoms (Chen et al., 2003). A few complexes containing Hssal2- and phen ligands have been reported (Chen et al., 2003; Li et al., 2004; Fan & Zhu, 2005a,b, 2006; Du et al., 2006). Among the aforementioned complexes, there is a polymer (Fan & Zhu, 2006), which contains PbII atoms and N,N-dimethylformamide ligands. In this paper, we report a new polymeric PbII complex which contains water ligands instead of N,N-dimethylformamide ligands and acetic acid solvent molecules in the crystal lattice.

The PbII atom is seven-coordinated by two N atoms of one phenanthroline ligand, four O atoms from three Hssal2- ligands, and one O atom from one H2O molecule (Fig. 1). The Pb—O distances range from 2.472 (3) Å to 2.835 (4) Å, and the Pb—N distances from 2.473 (3) Å to 2.488 (3) Å (Table 1). The distances of Pb···Pb separated by the Hssal2- ligand are 8.9162 (4) Å and 11.6637 (5) Å, while the Pb···Pb separation by sulfonate is 5.0722 (3) Å.

In the crystal, there is an intramolecular O4—H4···O6 hydrogen bond in the Hssal2- ligand. In addition, there are intermolecular O—H···O hydrogen bonds linking water molecular and Hssal2- ligands (Table 2 and Fig. 2). Aromatic ππ stacking occurs between neighbouring phenanthroline ligands (Fig. 3). The centroid–centroid distance between Cg3 (C1/C5–C8/C12) and Cg3 (C1/C5–C8/C12) [symmetry code: 1 - x, -y, 2 - z] is 3.484 (2) Å. ππ interactions between the aromatic systems of neighbouring dianions with plane-to-plane distances of 3.371 (2) Å also occur.

In the voids of this arrangement acetic acid molecules are incorporated. They exhibit half-occupancy due to disorder around a centre of inversion.

Related literature top

For background to 5-sulfosalicylic acid and its metal complexes, see: Chen et al. (2003); Du et al. (2006); Fan & Zhu (2005a,b, 2006); Li et al. (2004).

Experimental top

A mixture of Pb(CH3COO)2.3H2O (0.5 mmol, 0.1897 g) and 1.10-phenanthroline (0.5 mmol, 0.0991 g) in a solution of dimethylacetylamide (DMAC; 20 ml) was stirred for 20 min. Then 5-sulfosalicylic acid dihydrate (0.5 mmol, 0.1271 g) and NaOH (0.5 mmol, 0.0200 g) were dissolved in water (20 ml), which was added dropwise into the previous solution under stirring. The mixed solution was stirred for 1 h and filtered. The resulting solution was set aside for evaporation at room temperature for 11 d, and colorless block-shaped single crystals were obtained.

Refinement top

The H atoms were placed at calculated positions and were allowed to ride on their parent atoms,with C—H = 0.93 (aromatic C—H), 0.96 (methyl) and O—H = 0.82 (hydroxyl), 0.85 (water) Å, with Uiso(H) = 1.2Ueq(aromatic C), Uiso(H)= 1.5Ueq(methyl C) and Uiso(H) = 1.5Ueq(O). The acetic acid molecule is disordered around an inversion centre and was modelled with half-occupancy.

Structure description top

5-Sulfosalicylic acid (H3ssal) has three functional groups, viz -SO3H, -COOH and -OH, and can form three kind of ions (H2ssal-, Hssal2- and ssal3-) (Fan & Zhu, 2006). Hssal2- possesses the ability to bridge and chelate metal atoms using the carboxylate O atoms and the sulfonate O atoms (Chen et al., 2003). A few complexes containing Hssal2- and phen ligands have been reported (Chen et al., 2003; Li et al., 2004; Fan & Zhu, 2005a,b, 2006; Du et al., 2006). Among the aforementioned complexes, there is a polymer (Fan & Zhu, 2006), which contains PbII atoms and N,N-dimethylformamide ligands. In this paper, we report a new polymeric PbII complex which contains water ligands instead of N,N-dimethylformamide ligands and acetic acid solvent molecules in the crystal lattice.

The PbII atom is seven-coordinated by two N atoms of one phenanthroline ligand, four O atoms from three Hssal2- ligands, and one O atom from one H2O molecule (Fig. 1). The Pb—O distances range from 2.472 (3) Å to 2.835 (4) Å, and the Pb—N distances from 2.473 (3) Å to 2.488 (3) Å (Table 1). The distances of Pb···Pb separated by the Hssal2- ligand are 8.9162 (4) Å and 11.6637 (5) Å, while the Pb···Pb separation by sulfonate is 5.0722 (3) Å.

In the crystal, there is an intramolecular O4—H4···O6 hydrogen bond in the Hssal2- ligand. In addition, there are intermolecular O—H···O hydrogen bonds linking water molecular and Hssal2- ligands (Table 2 and Fig. 2). Aromatic ππ stacking occurs between neighbouring phenanthroline ligands (Fig. 3). The centroid–centroid distance between Cg3 (C1/C5–C8/C12) and Cg3 (C1/C5–C8/C12) [symmetry code: 1 - x, -y, 2 - z] is 3.484 (2) Å. ππ interactions between the aromatic systems of neighbouring dianions with plane-to-plane distances of 3.371 (2) Å also occur.

In the voids of this arrangement acetic acid molecules are incorporated. They exhibit half-occupancy due to disorder around a centre of inversion.

For background to 5-sulfosalicylic acid and its metal complexes, see: Chen et al. (2003); Du et al. (2006); Fan & Zhu (2005a,b, 2006); Li et al. (2004).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2011); cell refinement: CrysAlis PRO (Oxford Diffraction, 2011); data reduction: CrysAlis PRO (Oxford Diffraction, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (A) -x, -y + 1, -z + 1; (B) x, y, z + 1]. Only one orientation of the disordered acetic acid molecule is shown.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing O—H···O hydrogen bonds as green dashed lines.
[Figure 3] Fig. 3. The ππ stacking of the 1,10-phenanthroline units in the title compound. Only one orientation of the disordered acetic acid molecule is shown.
catena-Poly[[bis[aqua(1,10-phenanthroline)lead(II)]-bis(µ3-2-hydroxy- 5-sulfonatobenzoato)] acetic acid monosolvate] top
Crystal data top
[Pb2(C7H4O6S)2(C12H8N2)2(H2O)2]·C2H4O2Z = 1
Mr = 1303.24F(000) = 624
Triclinic, P1Dx = 2.037 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7372 (7) ÅCell parameters from 4152 reflections
b = 10.1619 (5) Åθ = 2.5–28.4°
c = 11.6637 (5) ŵ = 8.09 mm1
α = 74.171 (4)°T = 293 K
β = 74.379 (5)°Block, colourless
γ = 79.748 (5)°0.15 × 0.13 × 0.12 mm
V = 1062.50 (11) Å3
Data collection top
Oxford Xcalibur CCD
diffractometer
3745 independent reflections
Radiation source: fine-focus sealed tube3438 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16.2563 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 119
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2011)
k = 1212
Tmin = 0.309, Tmax = 0.379l = 1313
6374 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0245P)2 + 1.8039P]
where P = (Fo2 + 2Fc2)/3
3745 reflections(Δ/σ)max = 0.002
310 parametersΔρmax = 1.83 e Å3
28 restraintsΔρmin = 0.84 e Å3
Crystal data top
[Pb2(C7H4O6S)2(C12H8N2)2(H2O)2]·C2H4O2γ = 79.748 (5)°
Mr = 1303.24V = 1062.50 (11) Å3
Triclinic, P1Z = 1
a = 9.7372 (7) ÅMo Kα radiation
b = 10.1619 (5) ŵ = 8.09 mm1
c = 11.6637 (5) ÅT = 293 K
α = 74.171 (4)°0.15 × 0.13 × 0.12 mm
β = 74.379 (5)°
Data collection top
Oxford Xcalibur CCD
diffractometer
3745 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2011)
3438 reflections with I > 2σ(I)
Tmin = 0.309, Tmax = 0.379Rint = 0.036
6374 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02728 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 1.05Δρmax = 1.83 e Å3
3745 reflectionsΔρmin = 0.84 e Å3
310 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pb10.189696 (15)0.433942 (12)0.821869 (11)0.02627 (4)
S10.22096 (9)0.49032 (9)0.11157 (7)0.0246 (2)
O10.2783 (3)0.3880 (3)0.0395 (2)0.0432 (8)
O20.3283 (3)0.5673 (3)0.1171 (3)0.0458 (8)
O30.0989 (3)0.5773 (3)0.0720 (3)0.0491 (9)
O40.0031 (3)0.1689 (3)0.6124 (2)0.0383 (7)
H40.00070.20860.66420.057*
O50.2292 (3)0.4891 (3)0.5720 (2)0.0382 (7)
O60.1091 (3)0.3183 (3)0.6945 (2)0.0364 (7)
O70.4185 (4)0.5870 (4)0.7930 (4)0.0693 (11)
H7B0.39100.65120.83070.104*
H7A0.48540.53730.82430.104*
N10.1815 (3)0.1900 (3)0.9396 (2)0.0254 (7)
N20.4095 (3)0.2831 (3)0.7557 (3)0.0288 (8)
C10.2972 (4)0.0991 (3)0.9122 (3)0.0269 (8)
C20.0744 (4)0.1459 (4)1.0323 (3)0.0295 (9)
H20.00630.20781.05040.035*
C30.0764 (4)0.0128 (4)1.1034 (3)0.0347 (10)
H30.00050.01241.17010.042*
C40.1901 (5)0.0810 (4)1.0751 (3)0.0380 (10)
H4A0.19060.17181.12050.046*
C50.3070 (4)0.0411 (4)0.9775 (3)0.0306 (9)
C60.4306 (5)0.1315 (4)0.9431 (4)0.0404 (11)
H60.43550.22360.98500.048*
C70.5421 (5)0.0859 (4)0.8498 (4)0.0411 (11)
H70.62220.14730.82870.049*
C80.5379 (4)0.0553 (4)0.7835 (3)0.0313 (9)
C90.6530 (4)0.1072 (4)0.6884 (4)0.0376 (10)
H90.73530.04910.66520.045*
C100.6423 (4)0.2446 (4)0.6304 (4)0.0368 (10)
H100.71750.28060.56780.044*
C110.5202 (4)0.3280 (4)0.6656 (3)0.0346 (10)
H110.51400.42050.62480.041*
C120.4181 (4)0.1465 (3)0.8141 (3)0.0272 (9)
C130.1267 (4)0.3569 (3)0.4810 (3)0.0231 (8)
C140.0492 (4)0.2454 (4)0.5000 (3)0.0262 (9)
C150.0285 (4)0.2095 (4)0.3998 (3)0.0342 (10)
H150.02120.13490.41170.041*
C160.0813 (4)0.2838 (4)0.2825 (3)0.0297 (9)
H160.06660.25940.21580.036*
C170.1568 (4)0.3956 (3)0.2634 (3)0.0229 (8)
C180.1787 (3)0.4310 (3)0.3625 (3)0.0217 (8)
H180.22890.50550.34990.026*
C190.1577 (4)0.3934 (4)0.5883 (3)0.0275 (9)
O80.52594 (15)1.0143 (5)0.4767 (3)0.0604 (17)0.50
H80.46661.08240.46930.091*0.50
O90.5369 (3)0.8114 (4)0.5772 (5)0.0472 (15)0.50
C200.3157 (9)0.9480 (4)0.6248 (6)0.055 (2)0.50
H20A0.29690.89560.70830.082*0.50
H20B0.25300.92700.58290.082*0.50
H20C0.29931.04450.62310.082*0.50
C210.4666 (8)0.9126 (7)0.5634 (7)0.048 (2)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.03519 (7)0.02124 (7)0.02146 (6)0.00169 (5)0.00812 (5)0.00301 (5)
S10.0322 (4)0.0227 (4)0.0179 (4)0.0038 (3)0.0059 (3)0.0025 (3)
O10.0686 (19)0.0337 (14)0.0251 (13)0.0031 (14)0.0067 (12)0.0094 (11)
O20.0594 (16)0.0478 (16)0.0329 (14)0.0329 (13)0.0095 (12)0.0017 (12)
O30.0382 (15)0.0552 (18)0.0336 (15)0.0070 (14)0.0060 (12)0.0127 (13)
O40.0428 (15)0.0428 (15)0.0243 (13)0.0212 (12)0.0008 (11)0.0039 (11)
O50.0516 (15)0.0403 (14)0.0297 (12)0.0105 (12)0.0177 (11)0.0082 (11)
O60.0495 (15)0.0422 (15)0.0185 (11)0.0128 (12)0.0095 (11)0.0027 (10)
O70.069 (2)0.0504 (19)0.087 (3)0.0183 (17)0.0103 (19)0.0140 (18)
N10.0366 (15)0.0219 (14)0.0202 (13)0.0090 (12)0.0092 (11)0.0028 (11)
N20.0364 (16)0.0230 (14)0.0267 (14)0.0075 (13)0.0093 (12)0.0008 (12)
C10.0422 (18)0.0198 (16)0.0242 (16)0.0086 (14)0.0155 (14)0.0035 (13)
C20.0375 (19)0.0298 (18)0.0226 (16)0.0102 (15)0.0076 (14)0.0039 (14)
C30.045 (2)0.034 (2)0.0244 (18)0.0142 (17)0.0074 (16)0.0001 (15)
C40.058 (2)0.0277 (19)0.0299 (19)0.0206 (17)0.0156 (17)0.0060 (15)
C50.046 (2)0.0229 (17)0.0282 (17)0.0092 (15)0.0196 (15)0.0014 (14)
C60.057 (2)0.0224 (18)0.045 (2)0.0028 (17)0.0269 (18)0.0005 (16)
C70.051 (2)0.0279 (19)0.049 (2)0.0030 (18)0.0229 (18)0.0090 (17)
C80.0362 (18)0.0253 (17)0.0379 (18)0.0001 (15)0.0169 (15)0.0103 (14)
C90.0322 (19)0.041 (2)0.042 (2)0.0001 (17)0.0122 (16)0.0127 (17)
C100.032 (2)0.039 (2)0.037 (2)0.0086 (17)0.0030 (16)0.0074 (17)
C110.037 (2)0.0315 (19)0.0325 (19)0.0107 (16)0.0061 (16)0.0017 (16)
C120.0346 (18)0.0212 (16)0.0294 (17)0.0062 (14)0.0141 (14)0.0033 (13)
C130.0235 (16)0.0239 (16)0.0228 (15)0.0007 (13)0.0084 (13)0.0064 (13)
C140.0237 (16)0.0279 (18)0.0247 (17)0.0043 (14)0.0042 (13)0.0030 (14)
C150.040 (2)0.0307 (18)0.0345 (19)0.0175 (16)0.0059 (16)0.0061 (15)
C160.0372 (19)0.0290 (18)0.0267 (17)0.0106 (15)0.0085 (14)0.0076 (14)
C170.0252 (16)0.0229 (16)0.0203 (15)0.0038 (14)0.0043 (13)0.0050 (13)
C180.0234 (16)0.0201 (16)0.0216 (15)0.0041 (13)0.0061 (13)0.0033 (12)
C190.0295 (18)0.0284 (18)0.0264 (17)0.0026 (15)0.0102 (14)0.0095 (14)
O80.055 (3)0.059 (3)0.063 (3)0.004 (2)0.014 (2)0.014 (2)
O90.042 (2)0.051 (3)0.051 (2)0.024 (2)0.022 (2)0.022 (2)
C200.048 (3)0.073 (4)0.054 (3)0.008 (3)0.018 (3)0.036 (3)
C210.049 (3)0.050 (3)0.049 (3)0.006 (3)0.018 (3)0.010 (3)
Geometric parameters (Å, º) top
Pb1—O62.472 (3)C5—C61.414 (5)
Pb1—N22.473 (3)C6—C71.359 (6)
Pb1—N12.488 (3)C6—H60.9300
Pb1—O52.745 (3)C7—C81.432 (5)
Pb1—O3i2.757 (3)C7—H70.9300
Pb1—O72.835 (4)C8—C121.385 (5)
Pb1—O1ii2.792 (1)C8—C91.410 (5)
S1—O21.436 (3)C9—C101.375 (6)
S1—O31.451 (3)C9—H90.9300
S1—O11.454 (3)C10—C111.367 (5)
S1—C171.772 (3)C10—H100.9300
O3—Pb1i2.757 (3)C11—H110.9300
O4—C141.345 (4)C13—C181.387 (4)
O4—H40.8200C13—C141.407 (5)
O5—C191.239 (5)C13—C191.513 (5)
O6—C191.280 (4)C14—C151.388 (6)
O7—H7B0.8501C15—C161.379 (5)
O7—H7A0.8500C15—H150.9300
N1—C21.324 (4)C16—C171.397 (5)
N1—C11.349 (4)C16—H160.9300
N2—C111.333 (5)C17—C181.378 (5)
N2—C121.368 (4)C18—H180.9300
C1—C51.421 (5)O8—C211.324 (7)
C1—C121.450 (5)O8—H80.8200
C2—C31.381 (5)O9—C211.127 (8)
C2—H20.9300C20—C211.479 (10)
C3—C41.357 (6)C20—H20A0.9600
C3—H30.9300C20—H20B0.9600
C4—C51.404 (5)C20—H20C0.9600
C4—H4A0.9300
O6—Pb1—N278.58 (10)C4—C5—C1116.4 (3)
O6—Pb1—N174.87 (9)C6—C5—C1119.8 (3)
N2—Pb1—N167.00 (9)C7—C6—C5121.1 (3)
O6—Pb1—O549.83 (8)C7—C6—H6119.5
N2—Pb1—O575.83 (9)C5—C6—H6119.5
N1—Pb1—O5118.07 (9)C6—C7—C8120.8 (4)
O6—Pb1—O3i76.29 (10)C6—C7—H7119.6
N2—Pb1—O3i140.58 (10)C8—C7—H7119.6
N1—Pb1—O3i77.36 (9)C12—C8—C9117.9 (3)
O5—Pb1—O3i108.70 (9)C12—C8—C7119.6 (3)
O6—Pb1—O7136.69 (10)C9—C8—C7122.5 (3)
N2—Pb1—O775.24 (10)C10—C9—C8119.2 (4)
N1—Pb1—O7123.15 (10)C10—C9—H9120.4
O5—Pb1—O790.23 (10)C8—C9—H9120.4
O3i—Pb1—O7141.81 (11)C11—C10—C9119.4 (4)
O2—S1—O3113.04 (19)C11—C10—H10120.3
O2—S1—O1113.22 (19)C9—C10—H10120.3
O3—S1—O1111.07 (19)N2—C11—C10123.1 (3)
O2—S1—C17106.19 (17)N2—C11—H11118.4
O3—S1—C17107.19 (16)C10—C11—H11118.4
O1—S1—C17105.53 (16)N2—C12—C8122.1 (3)
S1—O3—Pb1i128.98 (15)N2—C12—C1117.6 (3)
C14—O4—H4109.5C8—C12—C1120.2 (3)
C19—O5—Pb187.7 (2)C18—C13—C14119.5 (3)
C19—O6—Pb199.6 (2)C18—C13—C19119.9 (3)
Pb1—O7—H7B111.1C14—C13—C19120.5 (3)
Pb1—O7—H7A111.5O4—C14—C15118.1 (3)
H7B—O7—H7A105.1O4—C14—C13122.4 (3)
C2—N1—C1118.1 (3)C15—C14—C13119.5 (3)
C2—N1—Pb1123.9 (2)C16—C15—C14120.3 (4)
C1—N1—Pb1117.9 (2)C16—C15—H15119.8
C11—N2—C12118.2 (3)C14—C15—H15119.8
C11—N2—Pb1123.3 (2)C15—C16—C17120.4 (4)
C12—N2—Pb1118.5 (2)C15—C16—H16119.8
N1—C1—C5122.7 (3)C17—C16—H16119.8
N1—C1—C12119.0 (3)C18—C17—C16119.6 (3)
C5—C1—C12118.3 (3)C18—C17—S1121.3 (3)
N1—C2—C3123.4 (3)C16—C17—S1119.1 (3)
N1—C2—H2118.3C17—C18—C13120.8 (3)
C3—C2—H2118.3C17—C18—H18119.6
C4—C3—C2119.3 (3)C13—C18—H18119.6
C4—C3—H3120.3O5—C19—O6122.8 (3)
C2—C3—H3120.3O5—C19—C13120.9 (3)
C3—C4—C5120.1 (3)O6—C19—C13116.3 (3)
C3—C4—H4A119.9O9—C21—O8115.5 (6)
C5—C4—H4A119.9O9—C21—C20129.7 (5)
C4—C5—C6123.8 (3)O8—C21—C20114.8 (5)
O2—S1—O3—Pb1i130.0 (2)C5—C6—C7—C80.1 (7)
O1—S1—O3—Pb1i101.4 (2)C6—C7—C8—C120.5 (7)
C17—S1—O3—Pb1i13.4 (3)C6—C7—C8—C9178.2 (4)
O6—Pb1—O5—C191.53 (19)C12—C8—C9—C100.0 (6)
N2—Pb1—O5—C1988.4 (2)C7—C8—C9—C10178.8 (4)
N1—Pb1—O5—C1934.7 (2)C8—C9—C10—C110.3 (7)
O3i—Pb1—O5—C1950.7 (2)C12—N2—C11—C101.1 (6)
O7—Pb1—O5—C19163.1 (2)Pb1—N2—C11—C10179.1 (3)
N2—Pb1—O6—C1982.5 (2)C9—C10—C11—N20.9 (7)
N1—Pb1—O6—C19151.5 (2)C11—N2—C12—C80.8 (6)
O5—Pb1—O6—C191.50 (19)Pb1—N2—C12—C8179.4 (3)
O3i—Pb1—O6—C19128.1 (2)C11—N2—C12—C1179.8 (4)
O7—Pb1—O6—C1928.9 (3)Pb1—N2—C12—C10.4 (4)
O6—Pb1—N1—C299.5 (3)C9—C8—C12—N20.3 (6)
N2—Pb1—N1—C2176.7 (3)C7—C8—C12—N2178.6 (4)
O5—Pb1—N1—C2125.1 (3)C9—C8—C12—C1179.2 (4)
O3i—Pb1—N1—C220.5 (3)C7—C8—C12—C10.4 (6)
O7—Pb1—N1—C2124.2 (3)N1—C1—C12—N21.4 (5)
O6—Pb1—N1—C184.9 (3)C5—C1—C12—N2177.2 (3)
N2—Pb1—N1—C11.1 (3)N1—C1—C12—C8179.5 (4)
O5—Pb1—N1—C159.2 (3)C5—C1—C12—C81.8 (6)
O3i—Pb1—N1—C1163.9 (3)C18—C13—C14—O4179.5 (3)
O7—Pb1—N1—C151.5 (3)C19—C13—C14—O41.5 (5)
O6—Pb1—N2—C11101.2 (3)C18—C13—C14—C151.3 (5)
N1—Pb1—N2—C11179.5 (3)C19—C13—C14—C15176.7 (3)
O5—Pb1—N2—C1150.1 (3)O4—C14—C15—C16179.3 (3)
O3i—Pb1—N2—C11152.4 (3)C13—C14—C15—C161.1 (5)
O7—Pb1—N2—C1143.9 (3)C14—C15—C16—C170.3 (6)
O6—Pb1—N2—C1278.6 (3)C15—C16—C17—C180.2 (5)
N1—Pb1—N2—C120.3 (3)C15—C16—C17—S1179.1 (3)
O5—Pb1—N2—C12129.7 (3)O2—S1—C17—C1818.1 (3)
O3i—Pb1—N2—C1227.4 (3)O3—S1—C17—C18103.0 (3)
O7—Pb1—N2—C12136.3 (3)O1—S1—C17—C18138.5 (3)
C2—N1—C1—C51.0 (5)O2—S1—C17—C16162.6 (3)
Pb1—N1—C1—C5176.9 (3)O3—S1—C17—C1676.3 (3)
C2—N1—C1—C12177.6 (3)O1—S1—C17—C1642.1 (3)
Pb1—N1—C1—C121.7 (4)C16—C17—C18—C130.0 (5)
C1—N1—C2—C31.2 (6)S1—C17—C18—C13179.4 (2)
Pb1—N1—C2—C3174.4 (3)C14—C13—C18—C170.8 (5)
N1—C2—C3—C43.1 (6)C19—C13—C18—C17177.2 (3)
C2—C3—C4—C52.6 (6)Pb1—O5—C19—O62.7 (3)
C3—C4—C5—C6179.0 (4)Pb1—O5—C19—C13179.1 (3)
C3—C4—C5—C10.5 (6)Pb1—O6—C19—O53.0 (4)
N1—C1—C5—C41.3 (6)Pb1—O6—C19—C13178.7 (2)
C12—C1—C5—C4177.3 (4)C18—C13—C19—O50.0 (5)
N1—C1—C5—C6179.1 (4)C14—C13—C19—O5178.0 (3)
C12—C1—C5—C62.2 (6)C18—C13—C19—O6178.3 (3)
C4—C5—C6—C7178.1 (4)C14—C13—C19—O60.4 (5)
C1—C5—C6—C71.3 (6)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O60.821.832.522 (4)141
O7—H7A···O2iii0.852.112.959 (5)172
Symmetry code: (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pb2(C7H4O6S)2(C12H8N2)2(H2O)2]·C2H4O2
Mr1303.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.7372 (7), 10.1619 (5), 11.6637 (5)
α, β, γ (°)74.171 (4), 74.379 (5), 79.748 (5)
V3)1062.50 (11)
Z1
Radiation typeMo Kα
µ (mm1)8.09
Crystal size (mm)0.15 × 0.13 × 0.12
Data collection
DiffractometerOxford Xcalibur CCD
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2011)
Tmin, Tmax0.309, 0.379
No. of measured, independent and
observed [I > 2σ(I)] reflections
6374, 3745, 3438
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.064, 1.05
No. of reflections3745
No. of parameters310
No. of restraints28
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.83, 0.84

Computer programs: CrysAlis PRO (Oxford Diffraction, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Pb1—O62.472 (3)Pb1—O3i2.757 (3)
Pb1—N22.473 (3)Pb1—O72.835 (4)
Pb1—N12.488 (3)Pb1—O1ii2.792 (1)
Pb1—O52.745 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O60.821.832.522 (4)141
O7—H7A···O2iii0.852.112.959 (5)172
Symmetry code: (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors gratefully acknowledge financial support from Shandong Provincial Education Department (grant No. J09LB57)

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, Z.-F., Shi, S.-M., Hu, R.-X., Zhang, M., Liang, H. & Zhou, Z.-Y. (2003). Chin. J. Chem. 21, 1059–1065.  CAS Google Scholar
First citationDu, Z.-X., Han, M.-L., Wang, J.-G. & Qin, J.-H. (2006). Acta Cryst. E62, m3047–m3048.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFan, S.-R. & Zhu, L.-G. (2005a). Acta Cryst. E61, m1298–m1300.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFan, S.-R. & Zhu, L.-G. (2005b). Acta Cryst. E61, m1598–m1600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFan, S.-R. & Zhu, L.-G. (2006). Inorg. Chem. 45, 7935–7942.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLi, J.-F., Zhao, Y.-J., Li, X.-H. & Hu, M.-L. (2004). Acta Cryst. E60, m1210–m1212.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2011). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds