metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m298-m299

Di­chlorido(4′-phenyl-2,2′:6′,2′′-ter­pyridyl)zinc

aGuangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
*Correspondence e-mail: mzmz2009@sohu.com

(Received 9 January 2012; accepted 4 February 2012; online 17 February 2012)

The title compound, [ZnCl2(C21H15N3)], was obtained from the reaction of ZnCl2·4H2O with 4′-phenyl­terpyridine (L) and disodium 2,6-dipicolinate. The Zn2+ cation is ligated by the N atoms of the tridentate L ligand and two chloride anions, forming a ZnN3Cl2 polyhedron with a distorted trigonal–bipyramidal coordination geometry. In the crystal, nonclassical C—H⋯Cl hydrogen bonds are observed.

Related literature

For the structures, properties and applications of MLX2 compounds (M = transition metal, L = terpyridine, X = halogen), see: Bugarcic et al. (2004[Bugarcic, Z. D., Heinemann, F. W. & van Eldik, R. (2004). Dalton Trans. pp. 279-286.]); Koo et al. (2003[Koo, B.-K., Bewley, L., Golub, V., Rarig, R. S., Burkholder, E., O'Cornor, C. J. & Zubieta, J. (2003). Inorg. Chim. Acta, 351, 167-176.]); Ma, Liu et al. (2009[Ma, Z., Liu, B. Q., Yang, H., Xing, Y. P., Hu, M. & Sun, J. (2009). J. Coord. Chem. 62, 3314-3323.]); Ma, Xing et al. (2009[Ma, Z., Xing, Y., Yang, M., Hu, M., Liu, B., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2009). Inorg. Chim. Acta, 362, 2921-2926.]); Ma, Bi et al. (2010[Ma, Z., Bi, C., Ran, G., Wu, Z., Liu, B., Hu, M. & Xing, Y. (2010). Acta Cryst. E66, m465.]); Ma, Cao et al. (2010[Ma, Z., Cao, Y., Li, Q., Guedes da Silva, M. F. C., Silva, J. J. R. F. & Pombeiro, A. J. L. (2010). J. Inorg. Biochem. 104, 704-711.]); Tu et al. (2004[Tu, Q.-D., Li, D., Wu, T., Yin, Y.-G. & Ng, S. W. (2004). Acta Cryst. E60, m1403-m1404.]); Yam et al. (2003[Yam, V. W.-W., Wong, K. M.-C. & Zhu, N. (2003). Angew. Chem. Int. Ed. 42, 1400-1403.]). For the preparation of the ligand, see: Constable et al. (1990[Constable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47-54.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C21H15N3)]

  • Mr = 445.63

  • Monoclinic, P 21 /c

  • a = 12.0728 (10) Å

  • b = 9.5640 (8) Å

  • c = 17.5822 (13) Å

  • β = 111.386 (5)°

  • V = 1890.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.59 mm−1

  • T = 150 K

  • 0.41 × 0.32 × 0.27 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.548, Tmax = 0.651

  • 23122 measured reflections

  • 4711 independent reflections

  • 3809 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.066

  • S = 1.01

  • 4711 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N2 2.0987 (13)
Zn1—N3 2.1979 (15)
Zn1—N1 2.2000 (15)
Zn1—Cl1 2.2596 (5)
Zn1—Cl2 2.2609 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯Cl1i 0.93 2.78 3.546 (2) 140
C12—H12A⋯Cl2ii 0.93 2.83 3.583 (2) 139
C13—H13A⋯Cl2iii 0.93 2.83 3.694 (2) 155
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+2; (iii) x, y-1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This paper forms part of our continuing studies of the synthesis and structural characterization of metal 4'-Ph-terpyridine compounds (Ma, Liu et al. (2009); Ma, Xing et al. (2009); Ma, Bi et al. (2010); Ma, Cao et al. (2010)). We are particularly interested in the design and synthesis of metal coordination compounds bearing terpy ligands due to their different coordination topologies and their potential applications in photo-luminescence and antitumor activities. Previous studies on such terpyridine complexes have been published, including Pd(II), Pt(II), Zn(II) and Ag(I) (Bugarcic et al., 2004; Koo et al., 2003; Yam et al., 2003). We report here on the synthesis and the results of the crystal structure analysis of an adduct of zinc chloride with 4'-Ph-terpyridine.

The structure of the title compound, [ZnCl2(C21H15N3)], consists of a neutral molecular unit where the metal is penta-coordinate within a [ZnCl2L] (L = 4'-phenyl-2,2':6',2"-terpyridine) (Fig. 1) coordination set. All bond lengths and angles are within normal ranges (Allen et al., 1987). The Zn2+ cation is surrounded by the three nitrogen atoms of the ligand and two chloride anions, forming an irregular distorted trigonal-bipyramidal ZnN3Cl2 polyhedron, whereby the two chloride ions occupy the axial positions and the three equatorial sites are occupied by the nitrogen atoms of L. The angles between the apical chloride ions and the three terpy nitrogen atoms range from 96.70 (4) - 123.87 (4) °. The terpyridyl molecule is nearly planar (with an RMS deviations of 0.1029 Å), but the pendant phenyl ring is twisted and makes an angle of 26.55 (9) ° with the plane defined by N1, N2, N3 and Zn1.

No classic hydrogen bonding is observed, but three weak C—H···Cl hydrogen bonds are recognized (Table 2, Fig. 2). The molecules also show an intermolecular C—H···π interaction between a –CH2-(C20) and a neighboring five membered group [H···Cgii 2.960 Å, Cg is the centroid of the five-membered ring Zn(1)-N(1)-C(5)-C(6)-N(2); symmetry code: (ii) -1-x, -y, -1-z]. Both the hydrogen bonds and the intermolecular interaction help to consolidate the three-dimensional network.

In the title complex no solvent molecule is contained in the structure. However, two crystal structures of [ZnCl2L] with different solvents (water or dimethylformamide) were already reported (Tu et al., 2004; Ma, Cao et al., 2010).

Related literature top

For the structures, properties and applications of MLX2 compounds (M = transition metal, L = terpyridine, X = halogen), see: Bugarcic et al. (2004); Koo et al. (2003); Ma, Liu et al. (2009); Ma, Xing et al. (2009); Ma, Bi et al. (2010); Ma, Cao et al. (2010); Tu et al. (2004); Yam et al. (2003). For the preparation of the ligand, see: Constable et al. (1990). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Free L was prepared by a reported procedure (Constable et al., 1990).

The title compound was synthesized by reaction of zinc(II) chloride, L and disodium 2,6-dipicolinate (Na2C7H3N1O4) in the conditions as follows: ZnCl2.4H2O (0.021 g, 0.10 mM), L (0.031 g, 0.10 mM) were dissoved in a mixture of methanol and DMF (16 cm3, 1:1) and a aqueous solution of disodium 2,6-dipicolinate (5 cm3, 0.01 M/L) was added. The system was stirred for 48 h at 437 K and cooled down to room temperature. After filtration, a unknown solid and a colorless solution were obtained. Evaporation of the solution gave colorless crystals, which were isolated by mechanical separation from a mixture including an unidentified powder and were suitable for X-ray characterization. The yield of the compound is 16 % (7.3 mg) based on the ligand.

Refinement top

Hydrogen atoms bonded to the ligands were positioned geometrically and refined using a riding model with C—H = 0.93 Å and with Uiso(H) = 1.2×Ueq(C). These hydrogen atoms were assigned isotropic thermal parameters and allowed to ride on their respective parent atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title complex, showing the atom labelling scheme with 50 % probability displacement ellipsoids. H atoms are presented as small spheres of arbitrary radius. Zn-ligand bonds are indicated by full lines.
[Figure 2] Fig. 2. A view of the crystal packing along the a axis. Thin dashed lines are used to show the C—H···Cl hydrogen bonds.
Dichlorido(4'-phenyl-2,2':6',2''-terpyridyl)zinc top
Crystal data top
[ZnCl2(C21H15N3)]F(000) = 904
Mr = 445.63Dx = 1.566 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 23122 reflections
a = 12.0728 (10) Åθ = 2.5–28.3°
b = 9.5640 (8) ŵ = 1.59 mm1
c = 17.5822 (13) ÅT = 150 K
β = 111.386 (5)°Prism, colorless
V = 1890.3 (3) Å30.41 × 0.32 × 0.27 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4711 independent reflections
Radiation source: fine-focus sealed tube3809 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.024
ϕ and ω scansθmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1416
Tmin = 0.548, Tmax = 0.651k = 1212
23122 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0261P)2 + 0.8758P]
where P = (Fo2 + 2Fc2)/3
4711 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[ZnCl2(C21H15N3)]V = 1890.3 (3) Å3
Mr = 445.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0728 (10) ŵ = 1.59 mm1
b = 9.5640 (8) ÅT = 150 K
c = 17.5822 (13) Å0.41 × 0.32 × 0.27 mm
β = 111.386 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4711 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3809 reflections with I > 2σ(I)
Tmin = 0.548, Tmax = 0.651Rint = 0.024
23122 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.01Δρmax = 0.30 e Å3
4711 reflectionsΔρmin = 0.24 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.826519 (19)0.72657 (2)0.855588 (11)0.04016 (7)
Cl10.69654 (5)0.70715 (6)0.72558 (3)0.05675 (13)
Cl20.99013 (4)0.85910 (5)0.87665 (3)0.05130 (12)
N10.72851 (13)0.87880 (16)0.90086 (8)0.0417 (3)
N20.78944 (12)0.62385 (15)0.94908 (8)0.0363 (3)
N30.90559 (13)0.51746 (15)0.86385 (8)0.0408 (3)
C10.70079 (18)1.0079 (2)0.87212 (12)0.0503 (4)
H1A0.71761.03490.82670.060*
C20.64816 (19)1.1033 (2)0.90694 (13)0.0556 (5)
H2A0.62621.19140.88400.067*
C30.62875 (19)1.0653 (2)0.97635 (13)0.0559 (5)
H3A0.59611.12911.00230.067*
C40.65785 (18)0.9324 (2)1.00747 (11)0.0492 (4)
H4A0.64610.90541.05480.059*
C50.70490 (15)0.83993 (19)0.96679 (10)0.0385 (4)
C60.73050 (15)0.69077 (19)0.98985 (9)0.0372 (4)
C70.69419 (16)0.62213 (19)1.04596 (9)0.0403 (4)
H7A0.65420.67071.07400.048*
C80.71776 (15)0.48016 (19)1.06039 (9)0.0390 (4)
C90.78203 (16)0.41385 (19)1.01902 (10)0.0404 (4)
H9A0.80170.31981.02850.048*
C100.81661 (15)0.48883 (18)0.96363 (9)0.0362 (3)
C110.88390 (15)0.42766 (18)0.91567 (9)0.0367 (3)
C120.92301 (17)0.29096 (19)0.92334 (11)0.0445 (4)
H12A0.90660.23030.95920.053*
C130.98702 (18)0.2453 (2)0.87693 (12)0.0496 (4)
H13A1.01400.15350.88110.060*
C141.01030 (18)0.3371 (2)0.82457 (11)0.0498 (4)
H14A1.05390.30910.79320.060*
C150.96758 (18)0.4716 (2)0.81954 (11)0.0487 (4)
H15A0.98260.53340.78360.058*
C160.67254 (16)0.3996 (2)1.11540 (10)0.0415 (4)
C170.7271 (2)0.2763 (2)1.15197 (12)0.0533 (5)
H17A0.79720.24751.14620.064*
C180.6775 (2)0.1954 (2)1.19729 (12)0.0611 (6)
H18A0.71370.11211.22080.073*
C190.5750 (2)0.2383 (2)1.20741 (12)0.0590 (6)
H19A0.54120.18311.23670.071*
C200.52267 (18)0.3626 (3)1.17430 (12)0.0563 (5)
H20A0.45510.39321.18290.068*
C210.57041 (17)0.4428 (2)1.12796 (11)0.0487 (4)
H21A0.53380.52631.10510.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.05320 (13)0.04105 (12)0.03372 (10)0.00062 (9)0.02474 (9)0.00281 (8)
Cl10.0724 (3)0.0640 (3)0.0343 (2)0.0018 (2)0.0199 (2)0.0009 (2)
Cl20.0591 (3)0.0462 (3)0.0567 (3)0.0048 (2)0.0307 (2)0.0041 (2)
N10.0520 (9)0.0415 (8)0.0373 (7)0.0009 (6)0.0229 (6)0.0018 (6)
N20.0439 (8)0.0386 (8)0.0305 (6)0.0000 (6)0.0187 (6)0.0006 (5)
N30.0531 (9)0.0403 (8)0.0361 (7)0.0008 (6)0.0245 (6)0.0013 (6)
C10.0650 (12)0.0455 (11)0.0466 (10)0.0017 (9)0.0276 (9)0.0056 (8)
C20.0685 (13)0.0421 (11)0.0596 (12)0.0074 (9)0.0273 (10)0.0049 (9)
C30.0669 (13)0.0475 (12)0.0613 (12)0.0076 (10)0.0328 (10)0.0058 (9)
C40.0605 (12)0.0507 (11)0.0454 (9)0.0026 (9)0.0301 (9)0.0023 (8)
C50.0430 (9)0.0414 (9)0.0338 (8)0.0008 (7)0.0173 (7)0.0017 (7)
C60.0415 (9)0.0421 (9)0.0306 (7)0.0013 (7)0.0163 (7)0.0022 (6)
C70.0462 (9)0.0480 (10)0.0317 (7)0.0009 (8)0.0203 (7)0.0020 (7)
C80.0413 (9)0.0492 (10)0.0285 (7)0.0040 (7)0.0148 (7)0.0017 (7)
C90.0494 (10)0.0402 (9)0.0360 (8)0.0000 (7)0.0209 (7)0.0043 (7)
C100.0409 (9)0.0395 (9)0.0303 (7)0.0012 (7)0.0154 (6)0.0009 (6)
C110.0423 (9)0.0405 (9)0.0299 (7)0.0014 (7)0.0162 (6)0.0016 (6)
C120.0553 (11)0.0422 (10)0.0395 (9)0.0012 (8)0.0216 (8)0.0025 (7)
C130.0606 (12)0.0424 (11)0.0488 (10)0.0062 (8)0.0234 (9)0.0046 (8)
C140.0597 (12)0.0547 (12)0.0428 (9)0.0045 (9)0.0280 (9)0.0070 (8)
C150.0619 (12)0.0521 (11)0.0436 (9)0.0001 (9)0.0329 (9)0.0006 (8)
C160.0469 (10)0.0504 (10)0.0303 (7)0.0068 (8)0.0175 (7)0.0014 (7)
C170.0611 (12)0.0607 (13)0.0450 (10)0.0034 (10)0.0276 (9)0.0107 (9)
C180.0788 (15)0.0610 (14)0.0476 (11)0.0018 (11)0.0280 (10)0.0156 (10)
C190.0674 (13)0.0727 (15)0.0407 (10)0.0248 (11)0.0242 (9)0.0033 (9)
C200.0488 (11)0.0796 (16)0.0468 (10)0.0141 (10)0.0251 (9)0.0001 (10)
C210.0493 (10)0.0593 (12)0.0409 (9)0.0050 (9)0.0203 (8)0.0035 (8)
Geometric parameters (Å, º) top
Zn1—N22.0987 (13)C8—C161.488 (2)
Zn1—N32.1979 (15)C9—C101.390 (2)
Zn1—N12.2000 (15)C9—H9A0.9300
Zn1—Cl12.2596 (5)C10—C111.488 (2)
Zn1—Cl22.2609 (5)C11—C121.380 (3)
N1—C11.330 (2)C12—C131.383 (3)
N1—C51.343 (2)C12—H12A0.9300
N2—C101.334 (2)C13—C141.374 (3)
N2—C61.342 (2)C13—H13A0.9300
N3—C151.336 (2)C14—C151.376 (3)
N3—C111.346 (2)C14—H14A0.9300
C1—C21.376 (3)C15—H15A0.9300
C1—H1A0.9300C16—C171.389 (3)
C2—C31.373 (3)C16—C211.392 (3)
C2—H2A0.9300C17—C181.393 (3)
C3—C41.378 (3)C17—H17A0.9300
C3—H3A0.9300C18—C191.375 (3)
C4—C51.383 (2)C18—H18A0.9300
C4—H4A0.9300C19—C201.372 (3)
C5—C61.484 (3)C19—H19A0.9300
C6—C71.383 (2)C20—C211.388 (3)
C7—C81.392 (3)C20—H20A0.9300
C7—H7A0.9300C21—H21A0.9300
C8—C91.395 (2)
N2—Zn1—N374.56 (5)C7—C8—C16121.66 (16)
N2—Zn1—N174.33 (5)C9—C8—C16120.63 (16)
N3—Zn1—N1148.89 (5)C10—C9—C8119.80 (16)
N2—Zn1—Cl1119.08 (4)C10—C9—H9A120.1
N3—Zn1—Cl196.70 (4)C8—C9—H9A120.1
N1—Zn1—Cl198.84 (4)N2—C10—C9121.20 (15)
N2—Zn1—Cl2123.87 (4)N2—C10—C11114.77 (14)
N3—Zn1—Cl299.60 (4)C9—C10—C11124.03 (16)
N1—Zn1—Cl297.05 (4)N3—C11—C12121.80 (15)
Cl1—Zn1—Cl2117.05 (2)N3—C11—C10114.47 (15)
C1—N1—C5118.79 (16)C12—C11—C10123.73 (15)
C1—N1—Zn1124.82 (12)C11—C12—C13119.10 (17)
C5—N1—Zn1116.14 (12)C11—C12—H12A120.4
C10—N2—C6120.02 (14)C13—C12—H12A120.4
C10—N2—Zn1119.71 (11)C14—C13—C12119.22 (18)
C6—N2—Zn1120.07 (11)C14—C13—H13A120.4
C15—N3—C11118.29 (16)C12—C13—H13A120.4
C15—N3—Zn1125.63 (12)C13—C14—C15118.50 (17)
C11—N3—Zn1116.01 (11)C13—C14—H14A120.7
N1—C1—C2122.63 (18)C15—C14—H14A120.7
N1—C1—H1A118.7N3—C15—C14123.09 (17)
C2—C1—H1A118.7N3—C15—H15A118.5
C3—C2—C1118.47 (19)C14—C15—H15A118.5
C3—C2—H2A120.8C17—C16—C21118.48 (17)
C1—C2—H2A120.8C17—C16—C8121.08 (17)
C2—C3—C4119.69 (19)C21—C16—C8120.36 (17)
C2—C3—H3A120.2C16—C17—C18120.4 (2)
C4—C3—H3A120.2C16—C17—H17A119.8
C3—C4—C5118.55 (18)C18—C17—H17A119.8
C3—C4—H4A120.7C19—C18—C17120.2 (2)
C5—C4—H4A120.7C19—C18—H18A119.9
N1—C5—C4121.73 (17)C17—C18—H18A119.9
N1—C5—C6114.40 (14)C20—C19—C18120.05 (19)
C4—C5—C6123.85 (15)C20—C19—H19A120.0
N2—C6—C7121.49 (16)C18—C19—H19A120.0
N2—C6—C5114.23 (14)C19—C20—C21120.2 (2)
C7—C6—C5124.24 (15)C19—C20—H20A119.9
C6—C7—C8119.76 (16)C21—C20—H20A119.9
C6—C7—H7A120.1C20—C21—C16120.67 (19)
C8—C7—H7A120.1C20—C21—H21A119.7
C7—C8—C9117.67 (15)C16—C21—H21A119.7
N2—Zn1—N1—C1179.81 (17)N1—C5—C6—C7168.21 (16)
N3—Zn1—N1—C1178.96 (14)C4—C5—C6—C710.2 (3)
Cl1—Zn1—N1—C161.95 (16)N2—C6—C7—C80.7 (3)
Cl2—Zn1—N1—C156.93 (16)C5—C6—C7—C8176.87 (16)
N2—Zn1—N1—C56.05 (12)C6—C7—C8—C92.4 (2)
N3—Zn1—N1—C54.82 (19)C6—C7—C8—C16175.30 (15)
Cl1—Zn1—N1—C5123.91 (12)C7—C8—C9—C102.1 (2)
Cl2—Zn1—N1—C5117.21 (12)C16—C8—C9—C10175.64 (15)
N3—Zn1—N2—C106.33 (12)C6—N2—C10—C91.8 (2)
N1—Zn1—N2—C10174.33 (14)Zn1—N2—C10—C9173.10 (12)
Cl1—Zn1—N2—C1082.81 (13)C6—N2—C10—C11178.90 (14)
Cl2—Zn1—N2—C1097.65 (12)Zn1—N2—C10—C116.16 (19)
N3—Zn1—N2—C6178.74 (14)C8—C9—C10—N20.0 (3)
N1—Zn1—N2—C60.59 (12)C8—C9—C10—C11179.19 (15)
Cl1—Zn1—N2—C692.12 (12)C15—N3—C11—C120.5 (3)
Cl2—Zn1—N2—C687.42 (13)Zn1—N3—C11—C12176.50 (13)
N2—Zn1—N3—C15177.69 (16)C15—N3—C11—C10178.75 (15)
N1—Zn1—N3—C15176.45 (14)Zn1—N3—C11—C104.23 (18)
Cl1—Zn1—N3—C1563.93 (15)N2—C10—C11—N31.0 (2)
Cl2—Zn1—N3—C1555.03 (15)C9—C10—C11—N3178.25 (16)
N2—Zn1—N3—C115.53 (12)N2—C10—C11—C12178.27 (16)
N1—Zn1—N3—C116.77 (19)C9—C10—C11—C122.5 (3)
Cl1—Zn1—N3—C11112.85 (12)N3—C11—C12—C130.5 (3)
Cl2—Zn1—N3—C11128.19 (12)C10—C11—C12—C13178.71 (17)
C5—N1—C1—C20.4 (3)C11—C12—C13—C140.2 (3)
Zn1—N1—C1—C2174.39 (16)C12—C13—C14—C150.7 (3)
N1—C1—C2—C33.1 (3)C11—N3—C15—C140.1 (3)
C1—C2—C3—C42.5 (3)Zn1—N3—C15—C14176.81 (15)
C2—C3—C4—C50.7 (3)C13—C14—C15—N30.7 (3)
C1—N1—C5—C43.0 (3)C7—C8—C16—C17157.38 (18)
Zn1—N1—C5—C4171.47 (14)C9—C8—C16—C1725.0 (3)
C1—N1—C5—C6175.42 (16)C7—C8—C16—C2126.0 (2)
Zn1—N1—C5—C610.07 (19)C9—C8—C16—C21151.68 (18)
C3—C4—C5—N13.6 (3)C21—C16—C17—C182.6 (3)
C3—C4—C5—C6174.71 (18)C8—C16—C17—C18174.12 (18)
C10—N2—C6—C71.5 (2)C16—C17—C18—C191.2 (3)
Zn1—N2—C6—C7173.40 (12)C17—C18—C19—C201.4 (3)
C10—N2—C6—C5179.26 (15)C18—C19—C20—C212.4 (3)
Zn1—N2—C6—C54.35 (19)C19—C20—C21—C160.9 (3)
N1—C5—C6—N29.5 (2)C17—C16—C21—C201.6 (3)
C4—C5—C6—N2172.12 (17)C8—C16—C21—C20175.17 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cl1i0.932.783.546 (2)140
C12—H12A···Cl2ii0.932.833.583 (2)139
C13—H13A···Cl2iii0.932.833.694 (2)155
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y+1, z+2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[ZnCl2(C21H15N3)]
Mr445.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)12.0728 (10), 9.5640 (8), 17.5822 (13)
β (°) 111.386 (5)
V3)1890.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.59
Crystal size (mm)0.41 × 0.32 × 0.27
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.548, 0.651
No. of measured, independent and
observed [I > 2σ(I)] reflections
23122, 4711, 3809
Rint0.024
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.066, 1.01
No. of reflections4711
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.24

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N22.0987 (13)Zn1—Cl12.2596 (5)
Zn1—N32.1979 (15)Zn1—Cl22.2609 (5)
Zn1—N12.2000 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cl1i0.932.783.546 (2)140
C12—H12A···Cl2ii0.932.833.583 (2)139
C13—H13A···Cl2iii0.932.833.694 (2)155
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y+1, z+2; (iii) x, y1, z.
 

Acknowledgements

The authors are grateful for financial support from the Scientific Fund of Guangxi University (grant No. X061144) and the Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (grant No. K008).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBugarcic, Z. D., Heinemann, F. W. & van Eldik, R. (2004). Dalton Trans. pp. 279–286.  Google Scholar
First citationConstable, E. C., Lewis, J., Liptrot, M. C. & Raithby, P. R. (1990). Inorg. Chim. Acta, 178, 47–54.  CSD CrossRef CAS Web of Science Google Scholar
First citationKoo, B.-K., Bewley, L., Golub, V., Rarig, R. S., Burkholder, E., O'Cornor, C. J. & Zubieta, J. (2003). Inorg. Chim. Acta, 351, 167–176.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Bi, C., Ran, G., Wu, Z., Liu, B., Hu, M. & Xing, Y. (2010). Acta Cryst. E66, m465.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMa, Z., Cao, Y., Li, Q., Guedes da Silva, M. F. C., Silva, J. J. R. F. & Pombeiro, A. J. L. (2010). J. Inorg. Biochem. 104, 704–711.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMa, Z., Liu, B. Q., Yang, H., Xing, Y. P., Hu, M. & Sun, J. (2009). J. Coord. Chem. 62, 3314–3323.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Xing, Y., Yang, M., Hu, M., Liu, B., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2009). Inorg. Chim. Acta, 362, 2921–2926.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTu, Q.-D., Li, D., Wu, T., Yin, Y.-G. & Ng, S. W. (2004). Acta Cryst. E60, m1403–m1404.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYam, V. W.-W., Wong, K. M.-C. & Zhu, N. (2003). Angew. Chem. Int. Ed. 42, 1400–1403.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 3| March 2012| Pages m298-m299
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds